CSCI 5832 Natural Language Processing

Jim Martin Lecture 9

1

Why Logs?Simple Good-Turing does linear
interpolation in log-space. Why?
$$log(N_c) = a + b log(c)$$

Part of Speech tagging

- · Part of speech tagging • Parts of speech

 - What's POS tagging good for anyhow?
 - Tag sets

2/12/08

2/12/08

- Rule-based tagging
- Statistical tagging
 - Simple most-frequent-tag baseline
- Important Ideas
 - Training sets and test sets
- Unknown words HMM tagging
- **Parts of Speech** • 8 (ish) traditional parts of speech • Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc • Called: parts-of-speech, lexical category, word classes, morphological classes, lexical tags, POS • Lots of debate in linguistics about the number, nature, and universality of these • We'll completely ignore this debate.

POS examples				
 N V ADJ ADV P PRO DET 	noun chair, bandwidth, pacing verb study, debate, munch adjective purple, tall, ridiculous adverb unfortunately, slowly preposition of, by, to pronoun <i>I</i> , me, mine determiner the, a, that, those			
2/12/08	10			

POS Tagging example				
	WORD	tag		
	the koala put the keys on the table	DET N V DET N P DET N		
2/12/08			11	

POS Tagging

- Words often have more than one POS: *back*
 - The back door = JJ
 - On my back = NN
 - Win the voters back = RB
 - Promised to *back* the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.
 These examples from Dekang Lin

12

How hard is POS tagging? Measuring ambiguity						
		0	riginal		Treebank	
		87-t	ag corpus	45-tag corpus		
Unambigu	ous (1 tag)	44,019		38,857		
Ambiguous	(2-7 tags)	5,490		8844		
Details:	2 tags	4,967		6,731		
	3 tags	411		1621		
	4 tags	91		357		
	5 tags	17		90		
	6 tags	2	(well, beat)	32		
	7 tags	2	(still, down)	6	(well, set, round, open fit, down)	
	8 tags			4	('s, half, back, a)	
	9 tags			3	(that, more, in)	

2 methods for POS tagging

- 1. Rule-based tagging
 - (ENGTWOL)
- 2. Stochastic (=Probabilistic) tagging
 - HMM (Hidden Markov Model) tagging

Hidden Markov Model Tagging

- Using an HMM to do POS tagging
- Is a special case of Bayesian inference
 - Foundational work in computational linguistics
 - Bledsoe 1959: OCR
 - Mosteller and Wallace 1964: authorship identification
- It is also related to the "noisy channel" model that's the basis for ASR, OCR and MT

2/12/08

POS Tagging as Sequence Classification

- We are given a sentence (an "observation" or "sequence of observations")
 - Secretariat is expected to race tomorrow
- What is the best sequence of tags which corresponds to this sequence of observations?

Probabilistic view:

- Consider all possible sequences of tags
- Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words w1...wn.

2/12/08

Using Bayes Rule

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P(w_{1}^{n}|t_{1}^{n})P(t_{1}^{n})}{P(w_{1}^{n})}$$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(w_{1}^{n}|t_{1}^{n})P(t_{1}^{n})$$

$$P(t_{1}^{n}) = \underset{t_{1}^{n}}{\operatorname{argmax}} P(w_{1}^{n}|t_{1}^{n})P(t_{1}^{n})$$

Two Sets of Probabilities (2)
• Word likelihood probabilities
$$p(w_i|t_i)$$

• VBZ (3sg Pres verb) likely to be "is"
• Compute P(is|VBZ) by counting in a
labeled corpus: $P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$
 $P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$

Example

- P(NN|TO) = .00047
- P(VB|TO) = .83
- P(race|NN) = .00057
- P(race|VB) = .00012
- P(NR|VB) = .0027
- P(NR|NN) = .0012
- P(VB|TO)P(NR|VB)P(race|VB) = .00000027
- P(NN|TO)P(NR|NN)P(race|NN)=.0000000032
- So we (correctly) choose the verb reading,

2/12/08

Hidden Markov Models

- What we've described with these two kinds of probabilities is a Hidden Markov Model
- Let's just spend a bit of time tying this into the model
- First some definitions.

21

25

Definitions

- A weighted finite-state automaton adds probabilities to the arcs
 - The sum of the probabilities leaving any arc must sum to one
- A Markov chain is a special case in which the input sequence uniquely determines which states the automaton will go through
- Markov chains can't represent inherently ambiguous problems
 - Useful for assigning probabilities to unambiguous sequences

2/12/08

Markov chain = "First-order **Observable Markov Model"**

- · A set of states
 - Q = q₁, q₂...q_N; the state at time t is q_t
- Transition probabilities:

 - a set of probabilities A = a₀₁a₀₂...a_{n1}...a_{nn}.
 Each a_{ij} represents the probability of transitioning from state i to state j
 - The set of these is the transition probability matrix A
- · Current state only depends on previous state

Markov chain for weather

- What is the probability of 4 consecutive rainy days?
- · Sequence is rainy-rainy-rainy-rainy
- I.e., state sequence is 3-3-3-3
- P(3,3,3,3) =

2/12/08

2/12/08

• $\pi_1 a_{11} a_{11} a_{11} a_{11} = 0.2 \times (0.6)^3 = 0.0432$

HMM for Ice Cream

- · You are a climatologist in the year 2799
- · Studying global warming
- You can't find any records of the weather in Baltimore, MA for summer of 2007
- But you find Jason Eisner's diary
- Which lists how many ice-creams Jason ate every date that summer
- · Our job: figure out how hot it was

Hidden Markov Model

- For Markov chains, the output symbols are the same as the states.
- See hot weather: we're in state hot
- But in part-of-speech tagging (and other things) • The output symbols are words
- But the hidden states are part-of-speech tags
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don't know which state we are in.

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
то	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014
NN PPSS Figure 4.15 87-tag Brow	.0040 .23 Tag transition p n corpus without sr	.016 .00079 robabilities (the <i>a</i> ar noothing. The rows	$\begin{array}{c c} .087\\ .0012 \end{array}$ ray, $p(t_i t_{i-1})$ comp are labeled with the	.00 .00

	I	want	to	race			
VB	0	.0093	0	.00012			
то	0	0	.99	0			
NN	0	.000054	0	.00057			
PPSS	.37	0	0	0			
Figure 4. Brown co	Figure 4.16 Observation likelihoods (the <i>b</i> array) computed from the 87-tag Brown corpus without smoothing.						
2/12/08				40			

Summary

46

HMM Tagging

- Markov Chains
- Hidden Markov Models