Natural Language Processing
CSCI 5832
Jim Martin
Lecture 9

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Today 2/12
"
\qquad

- Review
- GT example
- HMMs and Viterbi
- POS tagging
\qquad
\qquad
\qquad
\qquad
\qquad

Good-Turing Intuition

\qquad
"
\qquad

- Notation: N_{x} is the frequency-of-frequency-x - So $\mathrm{N}_{10}=1, \mathrm{~N}_{1}=3$, etc
- To estimate counts/probs for unseen species
- Use number of species (words) we've seen once
- $\mathrm{c}_{0}{ }^{*}=\mathrm{c}_{1} \quad \mathrm{p}_{0}=\mathrm{N}_{1} / \mathrm{N}$
- All other estimates are adjusted (down) to allow for increased probabilities for unseen

$$
c^{*}=(c+1) \frac{N_{c+1}}{N_{c}}
$$

\qquad
\qquad
\qquad
\qquad

212108

\qquad

HW 0 Results	
- Favorite color - Blue 8 - Green 3 - Red 2 - Black 2 - White 2 - Periwinkle 1 - Gamboge 1 - Eau-de-Nil 1 - Brown 1	- 21 events - Count of counts - $\mathrm{N}_{1}=4$ - $\mathrm{N}_{2}=3$ - $\mathrm{N}_{3}=1$ - $\mathrm{N}_{4,5,6,7}=0$ - $\mathrm{N}_{8}=1$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

GT for a New Color

- Treat the 0s as 1s so..
- $\mathrm{N}_{0}=4 ; \mathrm{P}$ (new color) $=4 / 21=.19$

Count of counts

- $\mathrm{N}_{1}=4$
- If we new the number of colors out there we
would divide 19 by the number of colors not would divide .19 by the number of colors not seen.
- $\mathrm{N}_{2}=3$
- $\mathrm{N}_{3}=1$
- $\mathrm{N}_{4,5,6,7}=0$
- $\mathrm{N}_{8}=1$
- Otherwise
- $\mathrm{N}^{*}{ }_{1}=(1+1) 3 / 4=6 / 4=1.5$
- $\mathrm{P}^{*}($ Periwinkle $)=1.5 / 21=.07$
- $\mathrm{N}^{*}{ }_{2}=(2+1) 1 / 3=1$
- $P^{*}($ Black $)=1 / 21=.047$ $c^{*}=(c+1) \frac{N_{c+1}}{N_{c}}$

GT for New Color	
- But 2 twists - Treat the high flyers as trusted. - So P(Blue) should stay 8/21 - Use interpolation to smooth the bin counts before reestimation - To deal with - $\mathrm{N}_{3}=(3+1) 0 / 1$	- Count of counts - $\mathrm{N}_{1}=4$ - $\mathrm{N}_{2}=3$ - $\mathrm{N}_{3}=1$ - $\mathrm{N}_{4,5,6,7}=0$ - $\mathrm{N}_{8}=1$ $c^{*}=(c+1) \frac{N_{c+1}}{N_{c}}$
2112108	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Part of Speech tagging

- Part of speech tagging
- Parts of speech
-What's POS tagging good for anyhow?
- Tag sets
- Rule-based tagging
- Statistical tagging
- Simple most-frequent-tag baseline
- Important Ideas
- Training sets and test sets
- Unknown words
- HMM tagging

2/12/08

Parts of Speech

\square
\qquad

- 8 (ish) traditional parts of speech
- Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc
- Called: parts-of-speech, lexical category, word classes, morphological classes, lexical tags, POS
- Lots of debate in linguistics about the number, nature, and universality of these
- We'll completely ignore this debate. \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

POS Tagging
- Words often have more than one POS:
back
- The back door = JJ
- On my back = NN
- Win the voters back = RB
- Promised to back the bill = VB
- The POS tagging problem is to determine
the POS tag for a particular instance of a
word.
2121208

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2 methods for POS tagging

1. Rule-based tagging
• (ENGTWOL)
2. Stochastic (=Probabilistic) tagging
• HMM (Hidden Markov Model) tagging
21208

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hidden Markov Model Tagging

\qquad

- Using an HMM to do POS tagging
- Is a special case of Bayesian inference
- Foundational work in computational linguistics
- Bledsoe 1959: OCR
- Mosteller and Wallace 1964: authorship identification
- It is also related to the "noisy channel" model that's the basis for ASR, OCR and MT

POS Tagging as Sequence

 Classification- We are given a sentence (an "observation" or "sequence of observations")
- Secretariat is expected to race tomorrow
- What is the best sequence of tags which corresponds to this sequence of observations?
- Probabilistic view:
- Consider all possible sequences of tags
- Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words $w 1$...wn.
211208
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Road to HMMs

- We want, out of all sequences of n tags $t_{1} \ldots t_{n}$ the single tag sequence such that $P\left(t_{1} \ldots t_{n} \mid w_{1} \ldots w_{n}\right)$ is highest.

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

- Hat ${ }^{\wedge}$ means "our estimate of the best one"
- $\operatorname{Argmax}_{x} f(x)$ means "the x such that $f(x)$ is maximized"

212108

Road to HMMs

- This equation is guaranteed to give us the best tag sequence

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

- But how to make it operational? How to compute this value?
- Intuition of Bayesian classification:
- Use Bayes rule to transform into a set of other probabilities that are easier to compute

212108

Using Bayes Rule
$P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}$
$\hat{1}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P\left(w_{1}^{n} \mid t_{1}^{n}\right) P\left(t_{1}^{n}\right)}{P\left(w_{1}^{n}\right)}$
$\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(w_{1}^{n} \mid t_{1}^{n}\right) P\left(t_{1}^{n}\right)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Two Sets of Probabilities (1)

- Tag transition probabilities $\mathrm{p}\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{t}_{\mathrm{i}-1}\right)$
- Determiners likely to precede adjs and nouns
- That/DT flight/NN
- The/DT yellow/JJ hat/NN
- So we expect $P(N N \mid D T)$ and $P(J J \mid D T)$ to be high
- Compute $\mathrm{P}(\mathrm{NN} \mid \mathrm{DT})$ by counting in a labeled corpus:

$$
P\left(t_{i} \mid t_{i-1}\right)=\frac{C\left(t_{i-1}, t_{i}\right)}{C\left(t_{i-1}\right)}
$$

$P(N N \mid D T)=\frac{C(D T, N N)}{C(D T)}=\frac{56,509}{116,454}=.49$

Two Sets of Probabilities (2)

- Word likelihood probabilities $p\left(w_{i} \mid t_{i}\right)$
- VBZ (3sg Pres verb) likely to be "is"
- Compute P (is|VBZ) bv countina in a labeled corpus: $\quad P\left(w_{i} \mid t_{i}\right)=\frac{C\left(t_{i}, w_{i}\right)}{C\left(t_{i}\right)}$
$P(i s \mid V B Z)=\frac{C(V B Z, i s)}{C(V B Z)}=\frac{10,073}{21,627}=.47$ ${ }^{22}$

An Example: the verb "race"

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag?

Example

- $\mathrm{P}(\mathrm{NN} \mid \mathrm{TO})=.00047$
- $\mathrm{P}(\mathrm{VB} \mid \mathrm{TO})=.83$
- $\mathrm{P}($ race $\mid \mathrm{NN})=.00057$
- $P($ race $\mid V B)=.00012$
- $P(N R \mid V B)=.0027$
- $P(N R \mid N N)=.0012$
- $P(V B \mid T O) P(N R \mid V B) P($ race $\mid V B)=.00000027$
- P(NN|TO)P(NR|NN)P(race|NN)=. 00000000032
- So we (correctly) choose the verb reading,

2/12/08

Hidden Markov Models

- What we've described with these two kinds of probabilities is a Hidden Markov Model
- Let's just spend a bit of time tying this into the model
- First some definitions.

Definitions

- A weighted finite-state automaton adds probabilities to the arcs
- The sum of the probabilities leaving any arc must sum to one
- A Markov chain is a special case in which the input sequence uniquely determines which states the automaton will go through
\qquad

Markov chains can't represent inherently ambiguous problems

- Useful for assigning probabilities to unambiguous sequences

212108

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Markov chain = "First-order
 Observable Markov Model"

- A set of states
- $\mathrm{Q}=\mathrm{q}_{1}, \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{N}}$ the state at time t is q_{t} \qquad
- Transition probabilities:
- a set of probabilities $A=a_{01} a_{02} \ldots a_{n 1} \ldots a_{n n}$
- Each a_{ij} represents the probability of transitioning from state i to state j
- The set of these is the transition probability matrix A
\qquad
\qquad
- Current state only depends on previous state

2/12108

Markov chain for weather
- What is the probability of 4 consecutive
rainy days?
- Sequence is rainy-rainy-rainy-rainy
- I.e., state sequence is 3-3-3-3
- $P(3,3,3,3)=$
$\quad \pi_{1} a_{11} a_{11} a_{11} a_{11}=0.2 \times(0.6)^{3}=0.0432$
2121208

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

HMM for Ice Cream

- You are a climatologist in the year 2799
- Studying global warming
- You can't find any records of the weather in Baltimore, MA for summer of 2007
- But you find Jason Eisner's diary
- Which lists how many ice-creams Jason ate every date that summer
- Our job: figure out how hot it was

21208

Hidden Markov Model

- For Markov chains, the output symbols are the same as the states.
- See hot weather: we're in state hot
- But in part-of-speech tagging (and other things)
- The output symbols are words
- But the hidden states are part-of-speech tags
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don't know which state we are in. 212108

Hidden Markov Models

- States $\mathrm{Q}=\mathrm{q}_{1}, \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{N}}$;
- Observations $\mathrm{O}=\mathrm{o}_{1}, \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{N}}$;
- Each observation is a symbol from a vocabulary $\mathrm{V}=$ $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{v}}\right\}$
- Transition probabilities
- Transition probability matrix $\mathrm{A}=\left\{\mathrm{a}_{\mathrm{ij}}\right\}$

- Observation likelihoods
- Output probability matrix $\mathrm{B}=\left\{\mathrm{b}_{\mathbf{i}}(\mathrm{k})\right\}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The A matrix for the POS HMM

\qquad

	VB	TO	NN	PPSS	
$<\mathbf{s}>$.019	.0043	.041	.067	
VB	.0038	.035	.047	.0070	
TO	.83	0	.00047	0	
NN	.0040	.016	.087	.0045	
PPSS	.23	.00079	.0012	.00014	

Figure 4.15 Tag transition probabilities (the a array, $p\left(t_{i} \mid t_{i-1}\right)$ computed from the 87 -tag Brown corpus without smoothing. The rows are labeled with the conditioning event; thus $P(P P S S \mid V B)$ is .0070 . The symbol $\langle\mathrm{s}\rangle$ is the start-of-sentence symbol.

The B matrix for the POS HMM

	I	want	to	race	
VB	0	.0093	0	.00012	
TO	0	0	.99	0	
NN	0	.000054	0	.00057	
PPSS	.37	0	0	0	

\qquad
\qquad

Figure 4.16 Observation likelihoods (the b array) computed from the 87-tag Brown corpus without smoothing. \qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Evaluation

\qquad
\qquad

- The result is compared with a manually coded "Gold Standard" \qquad
- Typically accuracy reaches $96-97 \%$
- This may be compared with result for a baseline tagger (one that uses no context).
- Important: 100% is impossible even for human annotators.

2/12/08

Summary
• HMM Tagging
\bullet Markov Chains
\bullet Hidden Markov Models
$2 / 1208$

