# CSCI 5832 Natural Language Processing

Jim Martin Lecture 8

1

2/7/08

# Today 2/7

- Finish remaining LM issues
   Smoothing
  - Backoff and Interpolation
- Parts of Speech
- POS Tagging
- HMMs and Viterbi

# Also called add-one smoothing

- Just add one to all the counts!
- Very simple
- MLE estimate:  $P(w_i) = \frac{c_i}{N}$

• Laplace estimate: 
$$P_{\text{Laplace}}(w_i) = \frac{c_i + 1}{N + V}$$

• Reconstructed counts:  $c_i^* = (c_i + 1) \frac{N}{N+V}$ 

2/7/08

| Laplace smoothed bigram<br>counts |    |      |     |     |         |      |       |      |  |  |
|-----------------------------------|----|------|-----|-----|---------|------|-------|------|--|--|
|                                   |    |      |     |     |         |      |       |      |  |  |
|                                   | i  | want | to  | eat | chinese | food | lunch | spen |  |  |
| i                                 | 6  | 828  | 1   | 10  | 1       | 1    | 1     | 3    |  |  |
| want                              | 3  | 1    | 609 | 2   | 7       | 7    | 6     | 2    |  |  |
| to                                | 3  | 1    | 5   | 687 | 3       | 1    | 7     | 212  |  |  |
| eat                               | 1  | 1    | 3   | 1   | 17      | 3    | 43    | 1    |  |  |
| chinese                           | 2  | 1    | 1   | 1   | 1       | 83   | 2     | 1    |  |  |
| food                              | 16 | 1    | 16  | 1   | 2       | 5    | 1     | 1    |  |  |
| lunch                             | 3  | 1    | 1   | 1   | 1       | 2    | 1     | 1    |  |  |
| spend                             | 2  | 1    | 2   | 1   | 1       | 1    | 1     | 1    |  |  |
| spend                             | 2  | 1    | 2   | 1   | 1       | 1    | 1     | 1    |  |  |



| $P^*(w_n w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$ |                                        |                               |                             |                            |                   |                            |                          |                    |  |  |
|---------------------------------------------------------------|----------------------------------------|-------------------------------|-----------------------------|----------------------------|-------------------|----------------------------|--------------------------|--------------------|--|--|
|                                                               |                                        |                               |                             | C(v                        | $v_{n-1})$ -      | + v                        |                          |                    |  |  |
|                                                               |                                        |                               |                             |                            |                   |                            |                          |                    |  |  |
|                                                               | i                                      | want                          | to                          | eat                        | chinese           | food                       | lunch                    | spend              |  |  |
|                                                               | 0.0015                                 | 0.21                          | 0.00025                     | 0.0025                     | 0.00025           | 0.00025                    | 0.00025                  | 0.00075            |  |  |
| i 🏻                                                           |                                        |                               | 0.00                        | 0.00084                    | 0.0029            | 0.0029                     | 0.0025                   | 0.00084            |  |  |
| i<br>want                                                     | 0.0013                                 | 0.00042                       | 0.26                        |                            |                   |                            |                          |                    |  |  |
|                                                               |                                        | 0.00042 0.00026               | 0.26 0.0013                 | 0.18                       | 0.00078           | 0.00026                    | 0.0018                   | 0.055              |  |  |
| i<br>want<br>to<br>eat                                        | 0.0013                                 | 0.000.2                       | 0.20                        | 0100001                    | 0.00078<br>0.0078 | 010021                     | 010020                   | 0.055<br>0.00046   |  |  |
| to<br>eat                                                     | 0.0013<br>0.00078                      | 0.00026                       | 0.0013                      | 0.18                       | 0100010           | 0.00026                    | 0.0018                   | 01000              |  |  |
| to<br>eat<br>chinese                                          | 0.0013<br>0.00078<br>0.00046           | 0.00026<br>0.00046            | 0.0013<br>0.0014            | 0.18<br>0.00046            | 0.0078            | 0.00026<br>0.0014          | 0.0018<br>0.02           | 0.00046            |  |  |
| to                                                            | 0.0013<br>0.00078<br>0.00046<br>0.0012 | 0.00026<br>0.00046<br>0.00062 | 0.0013<br>0.0014<br>0.00062 | 0.18<br>0.00046<br>0.00062 | 0.0078<br>0.00062 | 0.00026<br>0.0014<br>0.052 | 0.0018<br>0.02<br>0.0012 | 0.00046<br>0.00062 |  |  |



|                                                                                  | Reconstituted counts |       |       |       |         |      |       |       |  |  |  |
|----------------------------------------------------------------------------------|----------------------|-------|-------|-------|---------|------|-------|-------|--|--|--|
| $c^*(w_{n-1}w_n) = \frac{[C(w_{n-1}w_n) + 1] \times C(w_{n-1})}{C(w_{n-1}) + V}$ |                      |       |       |       |         |      |       |       |  |  |  |
|                                                                                  | i                    | want  | to    | eat   | chinese | food | lunch | spend |  |  |  |
| i                                                                                | 3.8                  | 527   | 0.64  | 6.4   | 0.64    | 0.64 | 0.64  | 1.9   |  |  |  |
| want                                                                             | 1.2                  | 0.39  | 238   | 0.78  | 2.7     | 2.7  | 2.3   | 0.78  |  |  |  |
| to                                                                               | 1.9                  | 0.63  | 3.1   | 430   | 1.9     | 0.63 | 4.4   | 133   |  |  |  |
| eat                                                                              | 0.34                 | 0.34  | 1     | 0.34  | 5.8     | 1    | 15    | 0.34  |  |  |  |
| chinese                                                                          | 0.2                  | 0.098 | 0.098 | 0.098 | 0.098   | 8.2  | 0.2   | 0.098 |  |  |  |
| food                                                                             | 6.9                  | 0.43  | 6.9   | 0.43  | 0.86    | 2.2  | 0.43  | 0.43  |  |  |  |
| lunch                                                                            | 0.57                 | 0.19  | 0.19  | 0.19  | 0.19    | 0.38 | 0.19  | 0.19  |  |  |  |
| spend                                                                            | 0.32                 | 0.16  | 0.32  | 0.16  | 0.16    | 0.16 | 0.16  | 0.16  |  |  |  |
| spend<br>2/7/08                                                                  | 0.32                 | 0.16  | 0.32  | 0.16  | 0.16    | 0.16 | 0.16  | 0.10  |  |  |  |



#### **Big Changes to Counts**

- C(count to) went from 608 to 238!
- P(to|want) from .66 to .26!
- Discount d= c\*/c

2/7/08

2/7/08

- d for "chinese food" = .10!!! A 10x reduction
  So in general, Laplace is a blunt instrument
- Could use more fine-grained method (add-k)
- Despite its flaws Laplace (add-k) is however still used to smooth other probabilistic models in NLP, especially
   For pilot studies
  - in domains where the number of zeros isn't so huge.

**Better Discounting Methods** 

- Intuition used by many smoothing algorithms
  - Good-Turing
  - Kneser-Ney
  - Witten-Bell
- Is to use the count of things we've seen once to help estimate the count of things we've never seen

# **Good-Turing**

- · Imagine you are fishing
  - There are 8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass
- You have caught
  - 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel
     = 18 fish (tokens)
    - = 6 species (types)
- · How likely is it that you'll next see another trout?



# **Good-Turing**

• Now how likely is it that next species is new (i.e. catfish or bass)

There were 18 distinct events... 3 of those represent singleton species

3/18

2/7/08

2/7/08

#### **Good-Turing**

• But that 3/18s isn't represented in our probability mass. Certainly not the one we used for estimating another trout.

# **Good-Turing Intuition**

- Notation: N<sub>x</sub> is the frequency-of-frequency-x
   So N<sub>10</sub>=1, N<sub>1</sub>=3, etc
- To estimate total number of unseen species
   Use number of species (words) we've seen once
   c<sub>0</sub><sup>-</sup>=c<sub>1</sub> p<sub>0</sub> = N<sub>1</sub>/N
- All other estimates are adjusted (down) to give
- All other estimates are adjusted (down) to give probabilities for unseen

 $c^* = (c+1) \frac{N_{c+1}}{N_c}$ 

2/7/08 Slide from Josh Goodman



| Bigram frequencies of<br>frequencies and GT re-estimates |                |                 |         |                |          |  |  |  |  |
|----------------------------------------------------------|----------------|-----------------|---------|----------------|----------|--|--|--|--|
|                                                          | AP Newswire    |                 | Ber     | keley Restau   | ant—     |  |  |  |  |
| c (MLE)                                                  | Nc             | <i>c</i> * (GT) | c (MLE) | N <sub>c</sub> |          |  |  |  |  |
| 0                                                        | 74,671,100,000 | 0.0000270       | 0       | 2,081,496      |          |  |  |  |  |
| 1                                                        | 2,018,046      | 0.446           | 1       | 5315           | 0.533960 |  |  |  |  |
| 2                                                        | 449,721        | 1.26            | 2       | 1419           | 1.357294 |  |  |  |  |
| 3                                                        | 188,933        | 2.24            | 3       | 642            | 2.373832 |  |  |  |  |
| 4                                                        | 105,668        | 3.24            | 4       | 381            | 4.081365 |  |  |  |  |
| 5                                                        | 68,379         | 4.22            | 5       | 311            | 3.781350 |  |  |  |  |
| 6                                                        | 48,190         | 5.19            | 6       | 196            | 4.500000 |  |  |  |  |



|         | i        | want    | to      | eat      | chinese  | food    | lunch   | spend    |
|---------|----------|---------|---------|----------|----------|---------|---------|----------|
| i       | 0.0014   | 0.326   | 0.00248 | 0.00355  | 0.000205 | 0.0017  | 0.00073 | 0.000489 |
| want    | 0.00134  | 0.00152 | 0.656   | 0.000483 | 0.00455  | 0.00455 | 0.00384 | 0.000483 |
| to      | 0.000512 | 0.00152 | 0.00165 | 0.284    | 0.000512 | 0.0017  | 0.00175 | 0.0873   |
| eat     | 0.00101  | 0.00152 | 0.00166 | 0.00189  | 0.0214   | 0.00166 | 0.0563  | 0.000585 |
| chinese | 0.00283  | 0.00152 | 0.00248 | 0.00189  | 0.000205 | 0.519   | 0.00283 | 0.00058  |
| food    | 0.0137   | 0.00152 | 0.0137  | 0.00189  | 0.000409 | 0.00366 | 0.00073 | 0.00058  |
| lunch   | 0.00363  | 0.00152 | 0.00248 | 0.00189  | 0.000205 | 0.00131 | 0.00073 | 0.00058  |
| spend   | 0.00161  | 0.00152 | 0.00161 | 0.00189  | 0.000205 | 0.0017  | 0.00073 | 0.00058  |
| spend   | 0.00181  | 0.00152 | 0.00181 | 0.00189  | 0.000205 | 0.0017  | 0.00073 | 0.000:   |





- Another really useful source of knowledge
- If we are estimating:
  trigram p(z|xy)
  - but c(xyz) is zero
- Use info from:
  - Bigram p(z|y)
- Or even:
- Unigram p(z)
- How to combine the trigram/bigram/unigram info?

2/7/08

2/7/08

#### **Backoff versus interpolation**

- **Backoff**: use trigram if you have it, otherwise bigram, otherwise unigram
- Interpolation: mix all three



#### How to set the lambdas?

- Use a held-out corpus
- Choose lambdas which maximize the probability of some held-out data
  - I.e. fix the N-gram probabilities
  - Then search for lambda values
  - That when plugged into previous equation
  - Give largest probability for held-out set
  - Can use EM to do this search

2/7/08

2/7/08

2/7/08

#### **Practical Issues**

- We do everything in log space
   Avoid underflow
  - (also adding is faster than multiplying)

 $p_1 \times p_2 \times p_3 \times p_4 = \exp(\log p_1 + \log p_2 + \log p_3 + \log p_4)$ 

# Language Modeling Toolkits

SRILM

CMU-Cambridge LM Toolkit

# <section-header><section-header><text><text><text><text><text>

2/7/08



23

| LM Summary                                                                                  |    |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| <ul> <li>Probability</li> <li>Basic probability</li> <li>Conditional probability</li> </ul> |    |  |  |  |  |  |  |
| Bayes Rule     Language Modeling (N-grams)     N-gram Intro     The Chain Rule              |    |  |  |  |  |  |  |
| Perplexity     Smoothing:     Add-1                                                         |    |  |  |  |  |  |  |
| Good-Turing 2/7/08                                                                          | 24 |  |  |  |  |  |  |



- Moving quiz to Thursday (2/14)
- Readings
  - Chapter 2: All
  - Chapter 3:
  - Skip 3.4.1 and 3.12
  - Chapter 4
  - Skip 4.7, 4.9, 4.10 and 4.11
  - Chapter 5
  - Read 5.1 through 5.5

2/7/08



25

HMM tagging
2/7/08



# Parts of Speech

- 8 (ish) traditional parts of speech
  - Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc
  - Called: parts-of-speech, lexical category, word classes, morphological classes, lexical tags, POS
  - Lots of debate in linguistics about the number, nature, and universality of these

28

• We'll completely ignore this debate.





|        | POS Tagging example                             |                                       |    |  |  |  |  |  |  |  |
|--------|-------------------------------------------------|---------------------------------------|----|--|--|--|--|--|--|--|
|        | WORD                                            | tag                                   |    |  |  |  |  |  |  |  |
|        | the<br>koala<br>put<br>the<br>keys<br>on<br>the | DET<br>N<br>V<br>DET<br>N<br>P<br>DET |    |  |  |  |  |  |  |  |
| 2/7/08 | table                                           | N                                     | 31 |  |  |  |  |  |  |  |



# What is POS tagging good for?

- · First step of a vast number of practical tasks
- Speech synthesis
  - How to pronounce "lead"?
     INsult inSULT

  - OBject OVERflow DIScount CONtent obJECT overFLOW disCOUNT conTENT
- Parsing

2/7/08

- Need to know if a word is an N or V before you can parse
- Information extraction
- Finding names, relations, etc. Machine Translation

#### **Open and Closed Classes**

- · Closed class: a relatively fixed membership
  - Prepositions: of, in, by, ...
  - Auxiliaries: may, can, will had, been, ...
  - Pronouns: I, you, she, mine, his, them, ...
  - Usually function words (short common words which play a role in grammar)
- · Open class: new ones can be created all the time
  - English has 4: Nouns, Verbs, Adjectives, Adverbs
  - Many languages have these 4, but not all!





|       | Prepositions from CELEX |         |        |            |       |       |    |  |  |  |
|-------|-------------------------|---------|--------|------------|-------|-------|----|--|--|--|
| of    | 540,085                 | through | 14,964 | worth      | 1,563 | pace  | 12 |  |  |  |
| in    | 331,235                 | after   | 13,670 | toward     | 1,390 | nigh  | 9  |  |  |  |
| for   | 142,421                 | between | 13,275 | plus       | 750   | re    | 4  |  |  |  |
| to    | 125,691                 | under   | 9,525  | till       | 686   | mid   | 1  |  |  |  |
| with  | 124,965                 | per     | 6,515  | amongst    | 525   | o'er  | 1  |  |  |  |
| on    | 109,129                 | among   | 5,090  | via        | 351   | but   | (  |  |  |  |
| at    | 100,169                 | within  | 5,030  | amid       | 222   | ere   | (  |  |  |  |
| by    | 77,794                  | towards | 4,700  | underneath | 164   | less  | (  |  |  |  |
| from  | 74,843                  | above   | 3,056  | versus     | 113   | midst | (  |  |  |  |
| about | 38,428                  | near    | 2,026  | amidst     | 67    | 0'    | (  |  |  |  |
| than  | 20,210                  | off     | 1,695  | sans       | 20    | thru  | (  |  |  |  |
| over  | 18,071                  | past    | 1,575  | circa      | 14    | vice  | (  |  |  |  |



| English particles |                 |                    |                    |          |                       |  |  |
|-------------------|-----------------|--------------------|--------------------|----------|-----------------------|--|--|
| aboard<br>about   | aside<br>astray | besides<br>hetween | forward(s)<br>home | opposite | through<br>throughout |  |  |
| above             | away            | beyond             | in                 | outside  | together              |  |  |
| across            | back            | by                 | inside             | over     | under                 |  |  |
| ahead             | before          | close              | instead            | overhead | underneath            |  |  |
| alongside         | behind          | down               | near               | past     | up                    |  |  |
| apart             | below           | east, etc.         | off                | round    | within                |  |  |
| around            | beneath         | eastward(s),etc.   | on                 | since    | without               |  |  |



|          |         | Cor       | າju   | nction          | S   |                |   |
|----------|---------|-----------|-------|-----------------|-----|----------------|---|
| _        | _       | _         | _     |                 | -   |                |   |
| and      | 514,946 | yet       | 5,040 | considering     | 174 | forasmuch as   | 0 |
| that     | 134,773 | since     | 4,843 | lest            | 131 | however        | 0 |
| but      | 96,889  | where     | 3,952 | albeit          | 104 | immediately    | 0 |
| or       | 76,563  | nor       | 3,078 | providing       | -96 | in as far as   | 0 |
| as       | 54,608  | once      | 2,826 | whereupon       | 85  | in so far as   | 0 |
| if       | 53,917  | unless    | 2,205 | seeing          | -63 | inasmuch as    | 0 |
| when     | 37,975  | why       | 1,333 | directly        | 26  | insomuch as    | 0 |
| because  | 23,626  | now       | 1,290 | ere             | 12  | insomuch that  | 0 |
| so       | 12,933  | neither   | 1,120 | notwithstanding | - 3 | like           | 0 |
| before   | 10,720  | whenever  | 913   | according as    | 0   | neither nor    | 0 |
| though   | 10,329  |           | 867   | as if           | 0   | now that       | 0 |
| than     | 9,511   | except    | 864   | as long as      | 0   | only           | 0 |
| while    | 8,144   |           | 686   | as though       | 0   | provided that  | 0 |
| after    | 7,042   | provided  | 594   | both and        | 0   | providing that | 0 |
| whether  | 5,978   | whilst    | 351   | but that        | 0   | seeing as      | 0 |
| for      | 5,935   | suppose   | 281   | but then        | 0   | seeing as how  | 0 |
| although | 5,424   | cos       | 188   | but then again  | 0   | seeing that    | 0 |
| until    | 5,072   | supposing | 185   | either or       | 0   | without        | 0 |



# POS tagging: Choosing a tagset

- There are so many parts of speech, potential distinctions we can draw
- To do POS tagging, need to choose a standard set of tags to work with
- Could pick very coarse tagets
   N, V, Adj, Adv.
- More commonly used set is finer grained, the "UPenn TreeBank tagset", 45 tags
   PRP\$, WRB, WP\$, VBG

39

• Even more fine-grained tagsets exist

| Р      | enn   | Tree                  | Bank            | Ρ    | OS Ta                 | ag se           | ət |
|--------|-------|-----------------------|-----------------|------|-----------------------|-----------------|----|
|        | Tag   | Description           | Example         | Tag  | Description           | Example         |    |
|        | CC    | Coordin. Conjunction  | and, but, or    | SYM  | Symbol                | +,%, &          |    |
|        | CD    | Cardinal number       | one, two, three | TO   | "to"                  | to              |    |
|        | DT    | Determiner            | a, the          | UH   | Interjection          | ah, oops        |    |
|        | EX    | Existential 'there'   | there           | VB   | Verb, base form       | eat             |    |
|        | FW    | Foreign word          | mea culpa       | VBD  | Verb, past tense      | ate             |    |
|        | IN    | Preposition/sub-conj  | of, in, by      | VBG  | Verb, gerund          | eating          |    |
|        | 11    | Adjective             | vellow          | VBN  | Verb, past participle | eaten           |    |
|        | JJR   | Adj., comparative     | bigger          | VBP  | Verb, non-3sg pres    | eat             |    |
|        | JJS   | Adj., superlative     | wildest         | VBZ  | Verb, 3sg pres        | eats            |    |
|        | LS    | List item marker      | 1.2. One        | WDT  | Wh-determiner         | which, that     |    |
|        | MD    | Modal                 | can, should     | WP   | Wh-pronoun            | what, who       |    |
|        | NN    | Noun, sing. or mass   | llama           | WP\$ | Possessive wh-        | whose           |    |
|        | NNS   | Noun, plural          | llamas          | WRB  | Wh-adverb             | how, where      |    |
|        | NNP   | Proper noun, singular | IBM             | \$   | Dollar sign           | S               |    |
|        | NNPS  | Proper noun, plural   | Carolinas       | #    | Pound sign            | #               |    |
|        | PDT   | Predeterminer         | all, both       | **   | Left quote            | (' or '')       |    |
|        | POS   | Possessive ending     | 's              | **   | Right quote           | (' or ")        |    |
|        | PRP   | Personal pronoun      | I, you, he      | (    | Left parenthesis      | ([, (, {, <)    |    |
|        | PRP\$ | Possessive pronoun    | your, one's     | )    | Right parenthesis     | $(], ), \}, >)$ |    |
|        | RB    | Adverb                | quickly, never  | í.   | Comma                 |                 |    |
|        | RBR   | Adverb, comparative   | faster          |      | Sentence-final punc   | (.!?)           |    |
|        | RBS   | Adverb, superlative   | fastest         |      | Mid-sentence punc     | (: ;)           | 40 |
| 2/7/08 | RP    | Particle              | up, off         |      |                       |                 |    |



#### Using the UPenn tagset

- The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
- Prepositions and subordinating conjunctions marked IN ("although/IN I/PRP..")
- Except the preposition/complementizer "to" is just marked "TO".

# POS Tagging

- Words often have more than one POS: *back* 
  - The back door = JJ
  - On my back = NN
  - Win the voters *back* = RB
  - Promised to *back* the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.
   These examples from Dekang Lin

42

2/7/08

| H         |             |        | is PO<br>ing ar |               | igging?<br>guity                      |  |
|-----------|-------------|--------|-----------------|---------------|---------------------------------------|--|
|           |             | C      | riginal         |               | Treebank                              |  |
|           |             |        | ag corpus       | 45-tag corpus |                                       |  |
| Unambigu  | ous (1 tag) | 44,019 |                 | 38,857        |                                       |  |
| Ambiguous | (2-7 tags)  | 5,490  |                 | 8844          |                                       |  |
| Details:  | 2 tags      | 4,967  |                 | 6,731         |                                       |  |
|           | 3 tags      | 411    |                 | 1621          |                                       |  |
|           | 4 tags      | 91     |                 | 357           |                                       |  |
|           | 5 tags      | 17     |                 | 90            |                                       |  |
|           | 6 tags      | 2      | (well, beat)    | 32            |                                       |  |
|           | 7 tags      | 2      | (still, down)   | 6             | (well, set, round, open<br>fit, down) |  |
|           | 8 tags      |        |                 | 4             | ('s, half, back, a)                   |  |
|           | 9 tags      |        |                 |               | (that, more, in)                      |  |



# 2 methods for POS tagging

- 1. Rule-based tagging
  - (ENGTWOL)

2/7/08

2/7/08

- 2. Stochastic (=Probabilistic) tagging
  - + HMM (Hidden Markov Model) tagging

# **Rule-based tagging**

- Start with a dictionary
- Assign all possible tags to words from the dictionary
- Write rules by hand to selectively remove tags
- Leaving the correct tag for each word.

| Start with a dictionary       |                             |    |  |  |  |
|-------------------------------|-----------------------------|----|--|--|--|
| • she:                        | PRP                         | _  |  |  |  |
| <ul> <li>promised:</li> </ul> | VBN,VBD                     |    |  |  |  |
| • to                          | ТО                          |    |  |  |  |
| <ul> <li>back:</li> </ul>     | VB, JJ, RB, NN              |    |  |  |  |
| • the:                        | DT                          |    |  |  |  |
| • bill:                       | NN, VB                      |    |  |  |  |
| • Etc for th                  | e ~100,000 words of English | 46 |  |  |  |

| Use the dictionary to assign<br>every possible tag |    |                      |      |   |    |     |    |  |  |
|----------------------------------------------------|----|----------------------|------|---|----|-----|----|--|--|
| VBN<br>PRP VBD                                     | то | NN<br>RB<br>JJ<br>VB | D    | т | VB |     |    |  |  |
| She promise<br>bill                                | ed | to                   | back |   |    | the | 47 |  |  |





| ; | Stage    | 1 of ENGTWOL Taggin                                                                                                                                                                                                                                                                | g  |
|---|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | analyzer | ge: Run words through FST morphological<br>to get all parts of speech.<br><i>PavLov had shown that salivation</i><br><i>PAVLov N NOM SG PROPER</i><br>HAVE V PAST VFIN SVO<br>HAVE PCP2 SVO<br>SHOW PCP2 SVOO SVO SV<br>ADV<br>PRON DEM SG<br>DET CENTRAL DEM SG<br>CS<br>N NOM SG |    |
|   |          |                                                                                                                                                                                                                                                                                    | 49 |

# Stage 2 of ENGTWOL Tagging Second Stage: Apply NEGATIVE constraints. Example: Adverbial "that" rule Eliminates all readings of "that" except the one in

- Eliminates all readings of "that except the one i

   "It isn't <u>that</u> odd"

   Given input: "that"
  - If (+1 A/ADV/QUANT) ;if next word is adj/adv/quantifier (+2 SENT-LIM) ;following which is E-O-S
  - (NOT -1 SVOC/A) ; and the previous word is not a ; verb like "consider" which
    - ; allows adjective complements
  - ; in "I consider that odd" Then eliminate non-ADV tags
  - Else eliminate ADV

# Hidden Markov Model Tagging

- · Using an HMM to do POS tagging
- Is a special case of Bayesian inference
  - Foundational work in computational linguistics
  - Bledsoe 1959: OCR
  - Mosteller and Wallace 1964: authorship identification
- It is also related to the "noisy channel" model that's the basis for ASR, OCR and MT

51

```
2/7/08
```

#### POS tagging as a sequence classification task

- We are given a sentence (an "observation" or "sequence of observations")
  - Secretariat is expected to race tomorrow
- What is the best sequence of tags which corresponds to this sequence of observations?

#### Probabilistic view:

2/7/08

- Consider all possible sequences of tags
- Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words w1...wn.

 $\begin{array}{l} \textbf{Getting to HMM}\\ \text{ • We want, out of all sequences of n tags } t_1 \dots t_n \text{ the single}\\ tag sequence such that P(t_1 \dots t_n | w_1 \dots w_n) \text{ is highest.} \end{array}$   $\begin{array}{l} \hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n)\\ t_1^n \end{array}$   $\begin{array}{l} \text{ • Hat }^n \text{ means "our estimate of the best one"}\\ \text{ • Argmax}_x f(x) \text{ means "the x such that } f(x) \text{ is maximized"} \end{array}$ 



Using Bayes Rule  

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P(w_{1}^{n}|t_{1}^{n})P(t_{1}^{n})}{P(w_{1}^{n})}$$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(w_{1}^{n}|t_{1}^{n})P(t_{1}^{n})$$

$$f_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(w_{1}^{n}|t_{1}^{n})P(t_{1}^{n})$$
55









**Two kinds of probabilities (2)**  
• Word likelihood probabilities 
$$p(w_i|t_i)$$
  
• VBZ (3sg Pres verb) likely to be "is"  
• Compute P(is|VBZ) by counting in a labelec'  
 $P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$   
 $P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$ 

# An Example: the verb "race" Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN How do we pick the right tag?





#### Example

- P(NN|TO) = .00047
- P(VB|TO) = .83
- P(race|NN) = .00057
- P(race|VB) = .00012
- P(NR|VB) = .0027
- P(NR|NN) = .0012
- P(VB|TO)P(NR|VB)P(race|VB) = .00000027
- P(NN|TO)P(NR|NN)P(race|NN)=.0000000032
- So we (correctly) choose the verb reading,

2/7/08

2/7/08

#### **Hidden Markov Models**

- What we've described with these two kinds of probabilities is a Hidden Markov Model
- Let's just spend a bit of time tying this into the model
- First some definitions.



# Definitions

- A weighted finite-state automaton adds probabilities to the arcs
  - The sum of the probabilities leaving any arc must sum to one
- A Markov chain is a special case of a WFST in which the input sequence uniquely determines which states the automaton will go through
- Markov chains can't represent inherently ambiguous problems
  - Useful for assigning probabilities to unambiguous sequences







# Markov chain = "First-order observable Markov Model"

- · A set of states
  - Q = q<sub>1</sub>, q<sub>2</sub>...q<sub>N</sub>; the state at time t is q<sub>t</sub>
- Transition probabilities:

  - a set of probabilities A = a<sub>01</sub>a<sub>02</sub>...a<sub>n1</sub>...a<sub>nn</sub>.
    Each a<sub>ij</sub> represents the probability of transitioning from state i to state j
  - The set of these is the transition probability matrix A
- · Current state only depends on previous state

#### **------**

#### Markov chain for weather

- What is the probability of 4 consecutive rainy days?
- · Sequence is rainy-rainy-rainy-rainy
- I.e., state sequence is 3-3-3-3
- P(3,3,3,3) =

2/7/08

•  $\pi_1 a_{11} a_{11} a_{11} a_{11} = 0.2 \times (0.6)^3 = 0.0432$ 

#### HMM for Ice Cream

- · You are a climatologist in the year 2799
- · Studying global warming
- You can't find any records of the weather in Baltimore, MA for summer of 2007
- But you find Jason Eisner's diary
- Which lists how many ice-creams Jason ate every date that summer
- · Our job: figure out how hot it was

#### **Hidden Markov Model**

- For Markov chains, the output symbols are the same as the states.
- See hot weather: we're in state hot
- But in part-of-speech tagging (and other things) • The output symbols are words
- But the hidden states are part-of-speech tags
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don't know which state we are in.













