Natural Language Processing
CSCI 5832
Jim Martin
Lecture 8
2708

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Today 2/7

- Finish remaining LM issues
- Smoothing
- Backoff and Interpolation
- Parts of Speech
- POS Tagging
- HMMs and Viterbi

Laplace smoothing

\qquad \square \qquad

- Also called add-one smoothing
- Just add one to all the counts! \qquad
- Very simple
- MLE estimate: $\quad P\left(w_{i}\right)=\frac{c_{i}}{N}$
- Laplace estimate: $\quad P_{\text {Laplace }}\left(w_{i}\right)=\frac{c_{i}+1}{N+V}$
- Reconstructed counts: $\quad c_{i}^{*}=\left(c_{i}+1\right) \frac{N}{N+V}$
$27 / 108$
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Laplace-smoothed bigrams								
$P^{*}\left(w_{n} \mid w_{n-1}\right)=\frac{C\left(w_{n-1} w_{n}\right)+1}{C\left(w_{n-1}\right)+V}$								
	i	want	10	eat	chinese	food	lunch	spend
i	0.0015 0.0013	${ }^{0.21}$	${ }_{0}^{0.00025}$	${ }_{0}^{0.0025}$	${ }^{0.00025}$	0.00025 0.0029	${ }^{0.00025}$	${ }_{\substack{0.000775 \\ 0.0084}}^{\substack{\text { a }}}$
${ }_{\text {want }}^{\text {to }}$	${ }_{0}^{0.000078}$	${ }^{0} 0.000026$	${ }_{0}^{0.20013}$	${ }_{0}^{0.00084}$	${ }^{0.00078}$	${ }_{0.00026}^{0.0029}$	${ }^{0.00025}$	${ }_{0}^{0.0055}$
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
${ }_{\text {chinese }}^{\text {cheod }}$	-0.0012 0.0063		${ }^{0.00062}{ }_{0}^{0.0063}$	${ }_{\text {colo }}^{0.00062}$	co.0.0062	${ }^{0.052}{ }_{0}^{0.002}$	${ }^{0.0012} \begin{aligned} & \text { 0.0039 }\end{aligned}$	${ }^{0.0006}{ }_{0}^{0.0003}$
${ }_{\text {lol }}^{\text {lood }}$	${ }_{0}^{0.0017}$						${ }_{0}^{0.000059}$	${ }^{0} 0.0000356$
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Reconstituted counts								
	$c^{*}\left(w_{n-1} w_{n}\right)=\frac{\left[C\left(w_{n-1} w_{n}\right)+1\right] \times C\left(w_{n-1}\right)}{C\left(w_{n-1}\right)+V}$							
	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16
277108								

Big Changes to Counts

C(count to) went from 608 to 238 !

- P (to|want) from 66 to .26 ! \qquad
- Discount d=c*/c
- d for "chinese food" $=.10!!!$ A 10x reduction
- So in general, Laplace is a blunt instrument
- Could use more fine-grained method (add-k)
- Despite its flaws Laplace (add-k) is however still used to smooth other probabilistic models in NLP, especially
- For pilot studies
- in domains where the number of zeros isn't so huge

Better Discounting Methods

- Intuition used by many smoothing algorithms
- Good-Turing
- Kneser-Ney
- Witten-Bell
- Is to use the count of things we've seen once to help estimate the count of things we've never seen

Good-Turing

\qquad
\qquad

- Imagine you are fishing
- There are 8 species: carp, perch, whitefish, trout, \qquad salmon, eel, catfish, bass
- You have caught
- 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel $=18$ fish (tokens)
$=6$ species (types)
- How likely is it that you'll next see another trout?

277108
"

- Now how likely is it that next species is new (i.e. catfish or bass)
There were 18 distinct events... 3 of those represent singleton species
3/18
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Good-Turing

\qquad

- But that $3 / 18 \mathrm{~s}$ isn't represented in our probability mass. Certainly not the one we
\qquad used for estimating another trout \qquad
\qquad
\qquad
\qquad

Good-Turing Intuition

- Notation: N_{x} is the frequency-of-frequency-x
- So $\mathrm{N}_{10}=1, \mathrm{~N}_{1}=3$, etc \qquad
- To estimate total number of unseen species
- Use number of species (words) we've seen once \qquad
- $\mathrm{c}_{0}{ }^{*}=\mathrm{c}_{1} \quad \mathrm{p}_{0}=\mathrm{N}_{1} / \mathrm{N}$
- All other estimates are adjusted (down) to give \qquad probabilities for unseen

$$
c^{*}=(c+1) \frac{N_{c+1}}{N_{c}}
$$

$2 / 7 / 08$
Slide from Josh Goodman

	Good-Turing Intuition
	Notation: N_{x} is the frequency-of-frequency-x - So $\mathrm{N}_{10}=1, \mathrm{~N}_{1}=3$, etc To estimate total number of unseen species - Use number of species (words) we've seen once - $\mathrm{c}_{0}{ }^{*}=\mathrm{c}_{1} \quad \mathrm{p}_{0}=\mathrm{N}_{1} / \mathrm{N} \quad \mathrm{p}_{0}=\mathrm{N}_{1} / \mathrm{N}=3 / 18$ $P_{G T}^{*}\left(\right.$ things with frequency zero in training) $=\frac{N_{1}}{N}$ All other estimates are adjusted (down) to give probabilities for unseen $\mathrm{P}(\mathrm{eel})=\mathrm{c}^{*}(1)=(1+1) 1 / 3=2 / 3$ \qquad $c^{*}=(c+1) \frac{N_{c+1}}{N_{c}}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

GT smoothed bigram probs

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Backoff and Interpolation

- Another really useful source of knowledge
- If we are estimating:
- trigram p(z|xy)
- but $c(x y z)$ is zero
- Use info from:
- Bigram p(z|y)
- Or even:
- Unigram p(z)
- How to combine the trigram/bigram/unigram info?

277108
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Backoff versus interpolation

"
\qquad

- Backoff: use trigram if you have it, otherwise bigram, otherwise unigram \qquad
- Interpolation: mix all three \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How to set the lambdas?

- Use a held-out corpus
- Choose lambdas which maximize the probability of some held-out data
- I.e. fix the N -gram probabilities
- Then search for lambda values
- That when plugged into previous equation
- Give largest probability for held-out set
- Can use EM to do this search

Language Modeling Toolkits

• SRILM
• CMU-Cambridge LM Toolkit
27108

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Google N-Gram Release

- serve as the incoming 92
- serve as the incubator 99
- serve as the independent 794
- serve as the index 223
- serve as the indication 72
- serve as the indicator 120
- serve as the indicators 45
- serve as the indispensable 111
- serve as the indispensible 40
- serve as the individual 234
$217 / 08$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Break
- Moving quiz to Thursday (2/14)
- Readings
- Chapter 2: All
- Chapter 3:
- Skip 3.4.1 and 3.12
- Chapter 4
- Skip 4.7, 4.9, 4.10 and 4.11
- Chapter 5
• Read 5.1 through 5.5
27108

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outline

- Probability

- Part of speech tagging
- Parts of speech
- Tag sets
- Rule-based tagging
- Statistical tagging
- Simple most-frequent-tag baseline
- Important Ideas
- Training sets and test sets
- Unknown words
- Error analysis
- HMM tagging
$217 / 08$

Part of Speech tagging

- Part of speech tagging
- Parts of speech
-What's POS tagging good for anyhow?
- Tag sets
- Rule-based tagging
- Statistical tagging
- Simple most-frequent-tag baseline
- Important Ideas
- Training sets and test sets
- Unknown words
- HMM tagging

27108

POS examples

- N	noun chair, bandwidth, pacing	
- V	verb \quad study, debate, munch	
- ADJ	adjective purple, tall, ridiculous	
- ADV	adverb unfortunately, slowly	
- P	preposition of, by, to	
- PRO	pronoun I, me, mine	
- DET	determiner the, a, that, those	
2708		

	POS Tagging example		
	WORD	tag	
	the	DET	
	koala	N	
	put	V	
	the	DET	
	keys	N	
	on	P	
	the	DET	
	table	N	
27108			${ }^{31}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What is POS tagging good for?

- First step of a vast number of practical tasks
- Speech synthesis
- How to pronounce "lead"?
- INsult inSULT
- OBject obJECT
- OVERflow overFLOW

CONtent conTENT

- Parsing
conTENT
- Need to know if a word is an N or V before you can parse
\qquad
- Information extraction
- Finding names, relations, etc. \qquad
- Machine Translation

27708

Open and Closed Classes

\qquad

- Closed class: a relatively fixed membership
- Prepositions: of, in, by,
\qquad
- Auxiliaries: may, can, will had, been, ...
- Pronouns: I, you, she, mine, his, them, ..
- Usually function words (short common words which play a role in grammar)
- Open class: new ones can be created all the time
- English has 4: Nouns, Verbs, Adjectives, Adverbs
- Many languages have these 4, but not all!
\qquad
\qquad
\qquad
\qquad

Open class words

- Nouns
- Proper nouns (Boulder, Granby, Eli Manning)
- English capitalizes these
- Common nouns (the rest).
- Count nouns and mass nouns
- Count: have plurals, get counted: goatgoats, one goat, two goats
- Adverbs: tend to modify things
- Unfortunately, John walked home extremely slowly yesterday
- Directional/locative adverbs (here,home, downhill
- Degree adverbs (extremely, very, somewhat)
- Manner adverbs (slowly, slinkily, delicately)
- Verbs:
- In English, have morphological affixes (eat/eats/eaten)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Prepositions from CELEX \qquad

of	540,085	through	14,964	worth	1,563	pace	12
in	331,235	after	13,670	toward	1,390	nigh	9
for	142,421	between	13,275	plus	750	re	4
to	125,691	under	9,525	till	686	mid	3
with	124,965	per	6,515	amongst	525	o'er	2
on	109,129	among	5,090	via	351	but	0
at	100,169	within	5,030	amid	222	ere	0
by	77,794	towards	4,700	underneath	164	less	0
from	74,843	above	3,056	versus	113	midst	0
about	38,428	near	2,026	amidst	67	o'	0
than	20,210	off	1,695	sans	20	thru	0
over	18,071	past	1,575	circa	14	vice	0

\qquad
\qquad
\qquad
\qquad
\qquad

27/108

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conjunctions								
	and	514,946	yet	5,040	considering	174	forasmuch as 0	
	that	134,773	since	4,843	lest	131	however 0	
	but	96,889	where	3,952	albeit	104	immediately 0	
	or	76,563	nor	3,078	providing	96	in as far as 0	
	as	54,608	once	2,826	whereupon	85	in so far as 0	
	if	53,917	unless	2,205	seeing		inasmuch as 0	
	when	37,975	why	1,333	directly		insomuch as 0	
	because	23,626	now	1,290	ere		insomuch that 0	
	so	12,933	neither	1,120	notwithstanding		like 0	
	before	10,720	whenever	913	according as		neither nor 0	
	though	10,329	whereas	867	as if		now that 0	
	than	9,511	except	864	as long as		only 0	
	while	8,144		686	as though		provided that 0	
	after	7,042	provided	594	both and		providing that 0	
	whether	5,978	whilst	351	but that	0	seeing as 0	
	for	5,935	suppose	281	but then	0	seeing as how 0	
	although	5,424	\cos	188	but then again	0	seeing that 0	
	until	5,072	supposing	185	either or	0	without 0	38
$27 / 108$								

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

POS tagging: Choosing a tagset

\qquad

- There are so many parts of speech, potential distinctions
we can draw
- To do POS tagging, need to choose a standard set of
tags to work with
- Could pick very coarse tagets
- N, V, Adj, Adv.
- More commonly used set is finer grained, the "UPenn
TreeBank tagset", 45 tags
- PRP\$, WRB, WP\$, VBG
- Even more fine-grained tagsets exist
$27 / 108$

Penn TreeBank POS Tag set

	Tag	Description	Example	Tag	Description	Example	
	CC	Coordin. Conjunation	and, but, or	SYM	Symbol	+,\%, \&	
	CD	Cardinal number	one, two, tirce	TO	"to"		
	DT	Determiner	a, the	UH	Interjection	ah. oop	
	FW	Forecign word	mea culpa	VBD	Verb, past tense		
	${ }^{\text {in }}$	Prepositiousub-conj	of, in, by	VBG	Verb, gerund	cating	
	J	Adjective	yellow	vBN	Verb, past paricicipe	eaten	
	${ }^{\text {JJR }}$	Adj. comparative	bigger	VBP	Verb, non. 3 sg pres	eat	
	JJS	Adj. superlative	wildest 1.2. One	VBZ	Vecb, 359 pres		
	LS	${ }_{\text {Modal }}^{\text {Listem marker }}$	$\begin{aligned} & \text { 1.2. One } \\ & \text { can, should } \end{aligned}$	$\begin{aligned} & \text { WDT } \\ & \text { wP } \end{aligned}$	Wh.peronouns	which, that what, who	
	NN	Noun, sing. or maso	llama	wP\$	Possosise wh-	whose	
	NNS	Noun, plural	${ }^{\text {llamas }}$	WRB	Wh.adverb	${ }_{\text {h }}$ \% w, where	
	${ }_{\text {NNP }}$	Proper noun, singular Proper noun, plural	$\xrightarrow[\text { Carolinas }]{\text { IBM }}$	\$	Dollar sign Pound sign		
	PDT	Predeterminer	all, both	.	Leff quote	(or")	
	POS	Possessive ending		"	Right quote	(or")	
	${ }^{\text {PRP }}$	Personal proonu	${ }^{\text {I , youl, he }}$	(Left parentesis	([, (, , , <)	
	PRP\$	Possessive pronoun	your, one's quickl, never)	Right parentesis Comma	(1,), \}, >	
	${ }_{\text {RBR }}$	${ }^{\text {Adverb, comparaive }}$	faster		Seniene--final puric		
	${ }_{\text {RBP }}^{\text {RB }}$	Adverb, superlative	fastest		Mids-sentence P	(: $; \ldots-$ -	40
27/108	RP	Paticicle	up,off				

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Using the UPenn tagset

- The/DT grand/JJ jury/NN commmented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
- Prepositions and subordinating conjunctions marked IN ("although/IN I/PRP..")
- Except the preposition/complementizer "to" is just marked "TO".

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2 methods for POS tagging

1. Rule-based tagging
• (ENGTWOL)
2. Stochastic (=Probabilistic) tagging
• HMM (Hidden Markov Model) tagging
27708

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Rule-based tagging
- Start with a dictionary
- Assign all possible tags to words from the
dictionary
- Write rules by hand to selectively remove
tags
- Leaving the correct tag for each word.
27108

Start with a dictionary	
- she:	PRP
- promised:	$\mathrm{VBN}, \mathrm{VBD}$
- to	TO
- back:	$\mathrm{VB}, \mathrm{JJ}, \mathrm{RB}, \mathrm{NN}$
- the:	DT
- bill:	NN, VB

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Stage 1 of ENGTWOL Tagging

First Stage: Run words through FST morphological analyzer to get all parts of speech.

- Example: Pavlov had shown that salivation ..

Pavlov PAVLOV N NOM SG PROPER
 HAVE V PAST VFIN SVO

HAVE PCP2 SVO
shown SHOW PCP2 SVOo svo sv
that
ADV
PRON DEM SG
PRON DEM SG
DET CENTRAL DEM SG
DET CENTR
CS
N NOM SG

Stage 2 of ENGTWOL Tagging

- Second Stage: Apply NEGATIVE constraints.
- Example: Adverbial "that" rule
- Eliminates all readings of "that" except the one in - "It isn't that odd"

Given input: "that
If
${ }_{(}$(+1 A/ADV/QUANT) ;if next word is adj/adv/quantifie
(+2 SENT-LIM) ;following which is E-O-S
(NOT-1 SVOC/A) ; and the previous word is not a
verb like "consider" which
; allows adjective complements
Then eliminate non-ADV tags
Else eliminate ADV

Hidden Markov Model Tagging

- Using an HMM to do POS tagging
- Is a special case of Bayesian inference
- Foundational work in computational linguistics
- Bledsoe 1959: OCR
- Mosteller and Wallace 1964: authorship identification
- It is also related to the "noisy channel" model that's the basis for ASR, OCR and MT

277108

POS tagging as a sequence

 classification task- We are given a sentence (an "observation" or "sequence of observations")
- Secretariat is expected to race tomorrow
- What is the best sequence of tags which corresponds to this sequence of observations?
- Probabilistic view:
- Consider all possible sequences of tags
- Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words $w 1 \ldots w n$.
27708

Getting to HMM

- We want, out of all sequences of n tags $t_{1} \ldots t_{n}$ the single tag sequence such that $P\left(t_{1} \ldots t_{n} \mid w_{1} \ldots w_{n}\right)$ is highest.

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

- Hat ^ means "our estimate of the best one"
- $\operatorname{Argmax}_{x} f(x)$ means "the x such that $f(x)$ is maximized"

Getting to HMM

- This equation is guaranteed to give us the best tag sequence

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

- But how to make it operational? How to compute this value?
- Intuition of Bayesian classification:
- Use Bayes rule to transform into a set of other probabilities that are easier to compute

27108

Using Bayes Rule
$P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}$
$\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P\left(w_{1}^{n} \mid t_{1}^{n}\right) P\left(t_{1}^{n}\right)}{P\left(w_{1}^{n}\right)}$
$\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(w_{1}^{n} \mid t_{1}^{n}\right) P\left(t_{1}^{n}\right)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Likelihood and Prior

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Two Kinds of probabilities (1)

\qquad

- Tag transition probabilities $\mathrm{p}\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{t}_{\mathrm{i}-1}\right)$
- Determiners likely to precede adjs and nouns
- That/DT flight/NN
- The/DT yellow/JJ hat/NN
- So we expect $P($ NN|DT $)$ and $P(J J \mid D T)$ to be high
- But P(DT|JJ) to be:
- Compute $\mathrm{P}(\mathrm{NN} \mid \mathrm{DT})$ by counting in a labeled corpus:

$$
P\left(t_{i} \mid t_{i-1}\right)=\frac{C\left(t_{i-1}, t_{i}\right)}{C\left(t_{i-1}\right)}
$$

$2\left(N 108 \quad P(D T)=\frac{C(D T, N N)}{C(D T)}=\frac{56,509}{116,454}=.49\right.$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Two kinds of probabilities (2)

- Word likelihood probabilities $p\left(w_{i} \mid t_{i}\right)$
- VBZ (3sg Pres verb) likely to be "is"
- Compute P (is|VBZ) by counting in a labelec'

$$
P\left(w_{i} \mid t_{i}\right)=\frac{C\left(t_{i}, w_{i}\right)}{C\left(t_{i}\right)}
$$

$P(i s \mid V B Z)=\frac{C(V B Z, i s)}{C(V B Z)}=\frac{10,073}{21,627}=.47$

An Example: the verb "race"

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag?

Example

- $\mathrm{P}(\mathrm{NN} \mid \mathrm{TO})=.00047$
- $\mathrm{P}(\mathrm{VB} \mid \mathrm{TO})=.83$
- $\mathrm{P}($ race $\mid \mathrm{NN})=.00057$
- $P($ race $\mid V B)=.00012$
- $\mathrm{P}(\mathrm{NR} \mid \mathrm{VB})=.0027$
- $P(N R \mid N N)=.0012$
- $P(V B \mid T O) P(N R \mid V B) P($ race $\mid V B)=.00000027$
- $P($ NN|TO $) P($ NR|NN $) P($ race|NN $)=.00000000032$
- So we (correctly) choose the verb reading,

277/08

Hidden Markov Models

- What we've described with these two kinds of probabilities is a Hidden Markov Model
- Let's just spend a bit of time tying this into the model
- First some definitions.

Definitions

- A weighted finite-state automaton adds probabilities to the arcs
- The sum of the probabilities leaving any arc must sum to one
- A Markov chain is a special case of a WFST in which the input sequence uniquely determines which states the automaton will go through
- Markov chains can't represent inherently ambiguous problems
- Useful for assigning probabilities to unambiguous sequences
27108

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Markov chain = "First-order observable Markov Model"

- A set of states
- $\mathrm{Q}=\mathrm{q}_{1}, \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{N}}$ the state at time t is q_{t} \qquad
- Transition probabilities:
- a set of probabilities $A=a_{01} a_{02} \ldots a_{n 1} \ldots a_{n n}$
- Each a_{ij} represents the probability of transitioning from state i to state j
- The set of these is the transition probability matrix A
\qquad
\qquad
- Current state only depends on previous state

277108

Markov chain for weather
- What is the probability of 4 consecutive
rainy days?
- Sequence is rainy-rainy-rainy-rainy
- I.e., state sequence is 3-3-3-3
- $P(3,3,3,3)=$
$\quad \pi_{1} a_{11} a_{11} a_{11} a_{11}=0.2 \times(0.6)^{3}=0.0432$
27108

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

HMM for Ice Cream

- You are a climatologist in the year 2799
- Studying global warming
- You can't find any records of the weather in Baltimore, MA for summer of 2007
- But you find Jason Eisner's diary
- Which lists how many ice-creams Jason ate every date that summer
- Our job: figure out how hot it was
$2 / 7 / 108$

Hidden Markov Model

- For Markov chains, the output symbols are the same as the states.
- See hot weather: we're in state hot
- But in part-of-speech tagging (and other things)
- The output symbols are words
- But the hidden states are part-of-speech tags
- So we need an extension!
- A Hidden Markov Model is an extension of a

Markov chain in which the input symbols are not the same as the states.

- This means we don't know which state we are in. 277108

Hidden Markov Models

- States $\mathrm{Q}=\mathrm{q}_{1}, \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{N}} ;$

- Observations $\mathrm{O}=\mathrm{o}_{1}, \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{N}}$;
- Each observation is a symbol from a vocabulary V $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{v}}\right\}$
- Transition probabilities
- Transition probability matrix $\mathrm{A}=\left\{\mathrm{a}_{\mathrm{ij}}\right\}$

- Observation likelihoods
- Output probability matrix $B=\left\{b_{i}(k)\right\}$
- Special initial probability vector π

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

