
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Today 2/5

- Review LM basics
- Chain rule
- Markov Assumptions
- Why should you care? \qquad
- Remaining issues
- Unknown words
- Evaluation \qquad
- Smoothing
- Backoff and Interpolation \qquad
\qquad

Language Modeling

\qquad
\qquad

- We want to compute

P(w1,w2,w3,w4,w5...wn), the probability \qquad of a sequence

- Alternatively we want to compute $\mathrm{P}(\mathrm{w} 5 \mid \mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4, \mathrm{w} 5)$: the probability of a word given some previous words
\qquad
\qquad
- The model that computes $\mathrm{P}(\mathrm{W})$ or $P(w n \mid w 1, w 2 \ldots w n-1)$ is called the language model.
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Chain Rule

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Chain Rule

\qquad
\qquad
$P\left(w_{1}^{n}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1}^{2}\right) \ldots P\left(w_{n} \mid w_{1}^{n-1}\right)$
$=\prod_{k=1}^{n} P\left(w_{k} \mid w_{1}^{k-1}\right)$

- $P($ "the big red dog was")=
- $P(\text { the })^{*} P(\text { big } \mid \text { the })^{*} P($ red \mid the big $) * ~ P($ dog \mid the big red) ${ }^{*} P$ (was|the big red dog)

27108

Very Easy Estimate
How to estimate? $\bullet P$ (the \| its water is so transparent that) P (the \| its water is so transparent that) $=$ Count(its water is so transparent that the) Count(its water is so transparent that) 2 2708

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad slides... So its really
-3/7 \qquad
\qquad
\qquad
\qquad

Unfortunately
- There are a lot of possible sentences
- In general, we'll never be able to get
enough data to compute the statistics for
those long prefixes
- P(lizard\|the,other,day,I,was,walking,along,a
nd, saw,a)
27108

Markov Assumption	
	- Make the simplifying assumption - P(lizard\|the,other,day,l,was, walking,along,and ,saw,a) $=\mathrm{P}($ lizard $\mid a)$ - Or maybe - P(lizard\|the,other,day,I, was, walking,along, and ,saw,a) $=P($ lizard\|saw,a) - Or maybe... You get the idea.
27108	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
So for each component in the product replace with the approximation (assuming a prefix of N)

Bigram version
띠․, |
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Estimating bigram probabilities

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Maximum Likelihood Estimates

\square

- The maximum likelihood estimate of some parameter of a model M from a training set T
- Is the estimate that maximizes the likelihood of the training set T given the model M
- Suppose the word Chinese occurs 400 times in a corpus of a million words (Brown corpus)
- What is the probability that a random word from some other text from the same distribution will be "Chinese"
- MLE estimate is $400 / 1000000=.004$
- This may be a bad estimate for some other corpus
- But it is the estimate that makes it most likely that "Chinese" will occur 400 times in a million word corpus. 277108

Berkeley Restaurant Project

 Sentences- can you tell me about any good cantonese restaurants close by \qquad
- mid priced thai food is what i'm looking for
- tell me about chez panisse \qquad
- can you give me a listing of the kinds of food that are available \qquad
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day \qquad
\qquad

Raw Bigram Counts								
- Out of 9222 sentences: Count(col \| row)								
	1	want	to	eat	chinese	food	lunch	spend
1	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0
27/108								

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bigram Estimates of Sentence Probabilities

Kinds of knowledge?	
- P (english\|want) $=.0011$	- World
- $\mathrm{P}($ chinese\|want) $=.0065$	knowledge
- $\mathrm{P}($ to\| want) $=.66$	-Syntax
- $\mathrm{P}($ eat \| to) $=.28$	
- P (food \| to) $=0$	
- $\mathrm{P}($ want \mid spend $)=0$	
- $\mathrm{P}(\mathrm{i}\|<\mathrm{s}\rangle$) $=.25$	-Discourse

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Shakespeare as corpus

- $\mathrm{N}=884,647$ tokens, $\mathrm{V}=29,066$
- Shakespeare produced 300,000 bigram types out of $\mathrm{V}^{2}=844$ million possible bigrams: so, 99.96% of the possible bigrams were never seen (have zero entries in the table)
- Quadrigrams worse: What's coming out looks like Shakespeare because it is Shakespeare
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Wall Street Journal is Not Shakespeare

unigram: Months the my and issue of year foreign new exchange's september
were recession exchange new endorsed a acquire to six executives
bigram: Last December through the way to preserve the Hudson corporation
N. B. E. C. Taylor would seem to complete the major central planners one
point five percent of U. S. E. has already old M. X. corporation of living on
information such as more frequently fishing to keep her
trigram: They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions
$22 / 108$

Unknown words: Open versus closed vocabulary tasks

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Evaluation

- We train parameters of our model on a training set.
- How do we evaluate how well our model works?
- We look at the models performance on some new data
- This is what happens in the real world; we want to know how our model performs on data we haven't seen
- So a test set. A dataset which is different than our training set

277/08

Evaluating N-gram models

- Best evaluation for an N-gram
- Put model A in a speech recognizer
- Run recognition, get word error rate (WER) for A
- Put model B in speech recognition, get word error rate for B
- Compare WER for A and B
- Extrinsic evaluation

Difficulty of extrinsic (in-vivo) evaluation of N -gram models

- Extrinsic evaluation
- This is really time-consuming
- Can take days to run an experiment
- So
- As a temporary solution, in order to run experiments
- To evaluate N -grams we often use an intrinsic evaluation, an approximation called perplexity
- But perplexity is a poor approximation unless the test data looks just like the training data
- So is generally only useful in pilot experiments (generally is not sufficient to publish)
- But is helpful to think about.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A Different Perplexity Intuition

\qquad
\square

- How hard is the task of recognizing digits '0,1,2,3,4,5,6,7,8,9': pretty easy
- How hard is recognizing $(30,000)$ names at Microsoft. Hard: perplexity $=30,000$
- Perplexity is the weighted equivalent branching factor provided by your model
- Training 38 million words, test 1.5 million WC | N-gram Order | Unigram | Bigram | Trigram |
| :--- | :--- | :--- | :--- |
| | | | |

Perplexity	962	170	109

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lesson 1: the perils of overfitting

- N-grams only work well for word prediction if the test corpus looks like the training corpus
- In real life, it often doesn't
- We need to train robust models, adapt to test set, etc \qquad
\qquad
\qquad

Lesson 2: zeros or not?

- Zipf's Law:
- A small number of events occur with high frequency
- A large number of events occur with low frequency
- You can quickly collect statistics on the high frequency events
- You might have to wait an arbitrarily long time to get valid statistics on low frequency events
- Result:
- Our estimates are sparse! no counts at all for the vast bulk of things we want to estimate.
- Some of the zeroes in the table are really zeros But others are simply low frequency events you haven't seen yet. After all, ANYTHING CAN HAPPEN!
- How to address?
- Answer:
- Estimate the likelihood of unseen N-grams!
$27 / 108$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Laplace smoothing

- Also called add-one smoothing
- Just add one to all the counts!
- Very simple

$$
P\left(w_{i}\right)=\frac{c_{i}}{N}
$$

- MLE estimate:

$$
P_{\text {Laplace }}\left(w_{i}\right)=\frac{c_{i}+1}{N+V}
$$

- Laplace estimate:
$c_{i}^{*}=\left(c_{i}+1\right) \frac{N}{N+V}$
- Reconstructed counts:

27708

	Laplace-smoothed bigrams							
	$P^{*}\left(w_{n} \mid w_{n-1}\right)=\frac{C\left(w_{n-1} w_{n}\right)+1}{C\left(w_{n-1}\right)+V}$							
	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058
$2 / 7 / 08$ l 37								

Big Changes to Counts

- C(count to) went from 608 to 238 !
- P(to|want) from . 66 to .26 !
- Discount d= c*/c
- d for "chinese food" =.10!!! A 10x reduction
- So in general, Laplace is a blunt instrument
- Could use more fine-grained method (add-k)
- Despite its flaws Laplace (add-k) is however still used to smooth other probabilistic models in NLP, especially
- For pilot studies
- in domains where the number of zeros isn't so huge

277108 ${ }^{39}$

Better Discounting Methods

- Intuition used by many smoothing algorithms
- Good-Turing
- Kneser-Ney
- Witten-Bell
- Is to use the count of things we've seen once to help estimate the count of things we've never seen

Good-Turing

- Imagine you are fishing
- There are 8 species: carp, perch, whitefish, trout, salmon, eel, catfish, bass
- You have caught
- 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel $=18$ fish (tokens)
$=6$ species (types)
- How likely is it that you'll next see another trout?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Good-Turing Intuition

- Notation: N_{x} is the frequency-of-frequency- x
- So $N_{10}=1, N_{1}=3$, etc
- To estimate total number of unseen species
- Use number of species (words) we've seen once
- $\mathrm{c}_{0}{ }^{*}=\mathrm{c}_{1} \quad \mathrm{p}_{0}=\mathrm{N}_{1} / \mathrm{N}$
- All other estimates are adjusted (down) to give probabilities for unseen

$$
c^{*}=(c+1) \frac{N_{c+1}}{N_{c}}
$$

27708

Good-Turing Intuition

- Notation: N_{x} is the frequency-of-frequency-x
- So $\mathrm{N}_{10}=1, \mathrm{~N}_{1}=3$, etc
- To estimate total number of unseen species
- Use number of species (words) we've seen once
- $\mathrm{c}_{0}{ }^{*}=\mathrm{c}_{1} \quad \mathrm{p}_{0}=\mathrm{N}_{1} / \mathrm{N} \quad \mathrm{p}_{0}=\mathrm{N}_{1} / \mathrm{N}=3 / 18$
$P_{G T}^{*}$ (things with frequency zero in training) $=\frac{N_{1}}{N}$
- All other estimates are adjusted (down) to give probabilities for unseen

$$
P(\text { eel })=c^{*}(1)=(1+1) 1 / 3=2 / 3
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
c^{*}=(c+1) \frac{N_{c+1}}{N_{c}}
$$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Backoff and Interpolation

- Another really useful source of knowledge
- If we are estimating:
- trigram p(z|xy)
- but c(xyz) is zero
- Use info from:
- Bigram p(z|y)
- Or even:
- Unigram $p(z)$
- How to combine the trigram/bigram/unigram info?

27708

Backoff versus interpolation

- Backoff: use trigram if you have it,
otherwise bigram, otherwise unigram
- Interpolation: mix all three
7708

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How to set the lambdas?

- Use a held-out corpus
- Choose lambdas which maximize the probability of some held-out data
- I.e. fix the N -gram probabilities
- Then search for lambda values
- That when plugged into previous equation
- Give largest probability for held-out set \qquad
- Can use EM to do this search
\qquad

GT smoothed bigram probs

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

OOV words: <UNK> word

\square

- Out Of Vocabulary = OOV words
- We don't use GT smoothing for these
- Because GT assumes we know the number of unseen events
- Instead: create an unknown word token <UNK>
- Training of <UNK> probabilities
- Create a fixed lexicon L of size V
- At text normalization phase, any training word not in L changed to

Now we train its probabilities like a normal word

- At decoding time
- If text input: Use UNK probabilities for any word not in training

Language Modeling Toolkits

• SRILM	
• CMU-Cambridge LM Toolkit	
27108	54

\qquad
\qquad
\qquad

Google N-Gram Release

- serve as the incoming 92
- serve as the incubator 99
- serve as the independent 794
- serve as the index 223
- serve as the indication 72
- serve as the indicator 120
- serve as the indicators 45
- serve as the indispensable 111
- serve as the indispensible 40
- serve as the individual 234
$217 / 08$

Summary	
- Probability - Basic probability - Conditional probability - Bayes Rule - Language Modeling (N-grams) - N-gram Intro - The Chain Rule - Perplexity - Smoothing: - Add-1 - Good-Turing	
27708	${ }^{57}$

Next Time
• On to Chapter 5
27708

