
1

2/7/08 1

CSCI 5832
Natural Language Processing

Jim Martin
Lecture 7

2/7/08
2

Today 2/5

• Review LM basics
 Chain rule
 Markov Assumptions

• Why should you care?
• Remaining issues

 Unknown words
 Evaluation
 Smoothing
 Backoff and Interpolation

2/7/08
3

Language Modeling

• We want to compute
P(w1,w2,w3,w4,w5…wn), the probability
of a sequence

• Alternatively we want to compute
P(w5|w1,w2,w3,w4,w5): the probability of
a word given some previous words

• The model that computes P(W) or
P(wn|w1,w2…wn-1) is called the language
model.

2

2/7/08
4

Computing P(W)

• How to compute this joint probability:

 P(“the”,”other”,”day”,”I”,”was”,”walking”,”along”
,”and”,”saw”,”a”,”lizard”)

• Intuition: let’s rely on the Chain Rule of
Probability

2/7/08
5

The Chain Rule

• Recall the definition of conditional probabilities

• Rewriting:

• More generally
• P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)
• In general
• P(x1,x2,x3,…xn) =

P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1…xn-1)

2/7/08
6

The Chain Rule

• P(“the big red dog was”)=

• P(the)*P(big|the)*P(red|the big)*P(dog|the big
red)*P(was|the big red dog)

3

2/7/08
7

Very Easy Estimate

• How to estimate?
 P(the | its water is so transparent that)

P(the | its water is so transparent that)
=
Count(its water is so transparent that the)

 Count(its water is so transparent that)

2/7/08
8

Very Easy Estimate

• According to Google those counts are 5/9.
 Unfortunately... 2 of those are to these

slides... So its really
 3/7

2/7/08
9

Unfortunately

• There are a lot of possible sentences
• In general, we’ll never be able to get

enough data to compute the statistics for
those long prefixes

• P(lizard|the,other,day,I,was,walking,along,a
nd, saw,a)

4

2/7/08
10

Markov Assumption

• Make the simplifying assumption
 P(lizard|the,other,day,I,was,walking,along,and

,saw,a) = P(lizard|a)
• Or maybe

 P(lizard|the,other,day,I,was,walking,along,and
,saw,a) = P(lizard|saw,a)

• Or maybe... You get the idea.

2/7/08
11

So for each component in the product replace with the
approximation (assuming a prefix of N)

 Bigram version

Markov Assumption

2/7/08
12

Estimating bigram probabilities

• The Maximum Likelihood Estimate

5

2/7/08
13

An example

• <s> I am Sam </s>
• <s> Sam I am </s>
• <s> I do not like green eggs and ham </s>

2/7/08
14

Maximum Likelihood Estimates

• The maximum likelihood estimate of some parameter of
a model M from a training set T
 Is the estimate that maximizes the likelihood of the training set T

given the model M
• Suppose the word Chinese occurs 400 times in a corpus

of a million words (Brown corpus)
• What is the probability that a random word from some

other text from the same distribution will be “Chinese”
• MLE estimate is 400/1000000 = .004

 This may be a bad estimate for some other corpus
• But it is the estimate that makes it most likely that

“Chinese” will occur 400 times in a million word corpus.

2/7/08
15

Berkeley Restaurant Project
Sentences

• can you tell me about any good cantonese
restaurants close by

• mid priced thai food is what i’m looking for
• tell me about chez panisse
• can you give me a listing of the kinds of food that

are available
• i’m looking for a good place to eat breakfast
• when is caffe venezia open during the day

6

2/7/08
16

Raw Bigram Counts

• Out of 9222 sentences: Count(col | row)

2/7/08
17

Raw Bigram Probabilities

• Normalize by unigrams:

• Result:

2/7/08
18

Bigram Estimates of Sentence
Probabilities

• P(<s> I want english food </s>) =
p(i|<s>) x p(want|I) x p(english|want)

x p(food|english) x p(</s>|food)
 =.000031

7

2/7/08
19

Kinds of knowledge?

• P(english|want) = .0011
• P(chinese|want) = .0065
• P(to|want) = .66
• P(eat | to) = .28
• P(food | to) = 0
• P(want | spend) = 0
• P (i | <s>) = .25

• World
knowledge

•Syntax

•Discourse

2/7/08
20

The Shannon Visualization
Method

• Generate random sentences:
• Choose a random bigram <s>, w according to its probability
• Now choose a random bigram (w, x) according to its probability
• And so on until we choose </s>
• Then string the words together
• <s> I
 I want

 want to
 to eat
 eat Chinese

 Chinese food
 food </s>

2/7/08
21

Shakespeare

8

2/7/08
22

Shakespeare as corpus

• N=884,647 tokens, V=29,066
• Shakespeare produced 300,000 bigram types

out of V2= 844 million possible bigrams: so,
99.96% of the possible bigrams were never seen
(have zero entries in the table)

• Quadrigrams worse: What's coming out looks
like Shakespeare because it is Shakespeare

2/7/08
23

The Wall Street Journal is Not
Shakespeare

2/7/08
24

Why?

• Why would anyone want the probability of
a sequence of words?

• Typically because of

9

2/7/08
25

Unknown words: Open versus
closed vocabulary tasks

• If we know all the words in advanced
 Vocabulary V is fixed
 Closed vocabulary task

• Often we don’t know this
 Out Of Vocabulary = OOV words
 Open vocabulary task

• Instead: create an unknown word token <UNK>
 Training of <UNK> probabilities

 Create a fixed lexicon L of size V
 At text normalization phase, any training word not in L changed to <UNK>
 Now we train its probabilities like a normal word

 At decoding time
 If text input: Use UNK probabilities for any word not in training

2/7/08
26

Evaluation

• We train parameters of our model on a training
set.

• How do we evaluate how well our model works?
• We look at the models performance on some new

data
• This is what happens in the real world; we want to

know how our model performs on data we haven’t
seen

• So a test set. A dataset which is different than our
training set

2/7/08
27

Evaluating N-gram models

• Best evaluation for an N-gram
Put model A in a speech recognizer
Run recognition, get word error rate

(WER) for A
Put model B in speech recognition, get

word error rate for B
Compare WER for A and B
Extrinsic evaluation

10

2/7/08
28

Difficulty of extrinsic (in-vivo)
evaluation of N-gram models

• Extrinsic evaluation
 This is really time-consuming
 Can take days to run an experiment

• So
 As a temporary solution, in order to run experiments
 To evaluate N-grams we often use an intrinsic

evaluation, an approximation called perplexity
 But perplexity is a poor approximation unless the test

data looks just like the training data
 So is generally only useful in pilot experiments

(generally is not sufficient to publish)
 But is helpful to think about.

2/7/08
29

Perplexity

• Perplexity is the probability of the test
set (assigned by the language model),
normalized by the number of words:

• Chain rule:

• For bigrams:

• Minimizing perplexity is the same as maximizing
probability
 The best language model is one that best predicts

an unseen test set

2/7/08
30

A Different Perplexity Intuition

• How hard is the task of recognizing digits
‘0,1,2,3,4,5,6,7,8,9’: pretty easy

• How hard is recognizing (30,000) names at Microsoft.
Hard: perplexity = 30,000

• Perplexity is the weighted equivalent branching factor
provided by your model

Slide from Josh Goodman

11

2/7/08
31

Lower perplexity = better model

• Training 38 million words, test 1.5 million
words, WSJ

2/7/08
32

Lesson 1: the perils of
overfitting

• N-grams only work well for word prediction
if the test corpus looks like the training
corpus
 In real life, it often doesn’t
 We need to train robust models, adapt to test

set, etc

2/7/08
33

Lesson 2: zeros or not?

• Zipf’s Law:
 A small number of events occur with high frequency
 A large number of events occur with low frequency
 You can quickly collect statistics on the high frequency events
 You might have to wait an arbitrarily long time to get valid statistics on

low frequency events
• Result:

 Our estimates are sparse! no counts at all for the vast bulk of things
we want to estimate!

 Some of the zeroes in the table are really zeros But others are simply
low frequency events you haven't seen yet. After all, ANYTHING
CAN HAPPEN!

 How to address?
• Answer:

 Estimate the likelihood of unseen N-grams!

12

2/7/08
34

Smoothing is like Robin Hood:
Steal from the rich and give to the poor (in

probability mass)

2/7/08
35

Laplace smoothing

• Also called add-one smoothing
• Just add one to all the counts!
• Very simple

• MLE estimate:

• Laplace estimate:

• Reconstructed counts:

2/7/08
36

Laplace smoothed bigram
counts

13

2/7/08
37

Laplace-smoothed bigrams

2/7/08
38

Reconstituted counts

2/7/08
39

Big Changes to Counts

• C(count to) went from 608 to 238!
• P(to|want) from .66 to .26!
• Discount d= c*/c

 d for “chinese food” =.10!!! A 10x reduction
 So in general, Laplace is a blunt instrument
 Could use more fine-grained method (add-k)

• Despite its flaws Laplace (add-k) is however still used to
smooth other probabilistic models in NLP, especially
 For pilot studies
 in domains where the number of zeros isn’t so huge.

14

2/7/08
40

Better Discounting Methods

• Intuition used by many smoothing
algorithms
 Good-Turing
 Kneser-Ney
 Witten-Bell

• Is to use the count of things we’ve seen
once to help estimate the count of things
we’ve never seen

2/7/08
41

Good-Turing

• Imagine you are fishing
 There are 8 species: carp, perch, whitefish, trout,

salmon, eel, catfish, bass
• You have caught

 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel
= 18 fish (tokens)

 = 6 species (types)
• How likely is it that you’ll next see another trout?

2/7/08
42

Good-Turing

• Now how likely is it that next species is
new (i.e. catfish or bass)

3/18

There were 18 distinct events... 3 of
those represent singleton species

15

2/7/08
43

Good-Turing

• But that 3/18s isn’t represented in our
probability mass. Certainly not the one we
used for estimating another trout.

2/7/08
44

Good-Turing Intuition

• Notation: Nx is the frequency-of-frequency-x
 So N10=1, N1=3, etc

• To estimate total number of unseen species
 Use number of species (words) we’ve seen once
 c0

* =c1 p0 = N1/N
• All other estimates are adjusted (down) to give

probabilities for unseen

Slide from Josh Goodman

2/7/08
45

Good-Turing Intuition

• Notation: Nx is the frequency-of-frequency-x
 So N10=1, N1=3, etc

• To estimate total number of unseen species
 Use number of species (words) we’ve seen once
 c0

* =c1 p0 = N1/N p0=N1/N=3/18

• All other estimates are adjusted (down) to give
probabilities for unseen

P(eel) = c*(1) = (1+1) 1/ 3 = 2/3

Slide from Josh Goodman

16

2/7/08
46

Bigram frequencies of
frequencies and GT re-estimates

2/7/08
47

Backoff and Interpolation

• Another really useful source of knowledge
• If we are estimating:

 trigram p(z|xy)
 but c(xyz) is zero

• Use info from:
 Bigram p(z|y)

• Or even:
 Unigram p(z)

• How to combine the trigram/bigram/unigram
info?

2/7/08
48

Backoff versus interpolation

• Backoff: use trigram if you have it,
otherwise bigram, otherwise unigram

• Interpolation: mix all three

17

2/7/08
49

Interpolation

• Simple interpolation

• Lambdas conditional on context:

2/7/08
50

How to set the lambdas?

• Use a held-out corpus
• Choose lambdas which maximize the

probability of some held-out data
 I.e. fix the N-gram probabilities
 Then search for lambda values
 That when plugged into previous equation
 Give largest probability for held-out set
 Can use EM to do this search

2/7/08
51

GT smoothed bigram probs

18

2/7/08
52

OOV words: <UNK> word

• Out Of Vocabulary = OOV words
• We don’t use GT smoothing for these

 Because GT assumes we know the number of unseen events
• Instead: create an unknown word token <UNK>

 Training of <UNK> probabilities
 Create a fixed lexicon L of size V
 At text normalization phase, any training word not in L changed to

<UNK>
 Now we train its probabilities like a normal word

 At decoding time
 If text input: Use UNK probabilities for any word not in training

2/7/08
53

Practical Issues

• We do everything in log space
 Avoid underflow
 (also adding is faster than multiplying)

2/7/08
54

Language Modeling Toolkits

• SRILM
• CMU-Cambridge LM Toolkit

19

2/7/08
55

Google N-Gram Release

2/7/08
56

Google N-Gram Release

• serve as the incoming 92
• serve as the incubator 99
• serve as the independent 794
• serve as the index 223
• serve as the indication 72
• serve as the indicator 120
• serve as the indicators 45
• serve as the indispensable 111
• serve as the indispensible 40
• serve as the individual 234

2/7/08
57

Summary

• Probability
 Basic probability
 Conditional probability
 Bayes Rule

• Language Modeling (N-grams)
 N-gram Intro
 The Chain Rule

 Perplexity
 Smoothing:

 Add-1
 Good-Turing

20

2/7/08
58

Next Time

• On to Chapter 5

