
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Today 1/31

- Probability
- Basic probability
- Conditional probability
- Bayes Rule
- Language Modeling (N-grams)
- N-gram Intro
- The Chain Rule
- Smoothing: Add-1

1/31/08

Probability Basics

- Experiment (trial)
- Repeatable procedure with well-defined possible outcomes
- Sample Space (S)
- the set of all possible outcomes
- finite or infinite
- Example
- coin toss experiment
- possible outcomes: $\mathrm{S}=\{$ heads, tails $\}$
- Example
- die toss experiment
- possible outcomes: $S=\{1,2,3,4,5,6\}$

1/3108
Slides from Sandiway Fong

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

More Definitions

- Events
- an event is any subset of outcomes from the sample space
- Example
- Die toss experiment
- Let A represent the event such that the outcome of the die toss experiment is divisible by 3
- $A=\{3,6\}$
- A is a subset of the sample space $S=\{1,2,3,4,5,6\}$
- Example
- Draw a card from a deck
- suppose sample space $S=\{$ heart,spade,club,diamond $\}$ (four suits)
let A represent the event of drawing a heart
let B represent the event of drawing a red card
- $A=\{$ heart $\}$
- $B=$ \{heart,diamond $\}$

Probability Basics

Some definitions

- Counting
- suppose operation o_{i} can be performed in n_{i} ways, then
- a sequence of k operations $\mathrm{o}_{1} \mathrm{O}_{2} \ldots \mathrm{o}_{\mathrm{k}}$
- can be performed in $n_{1} \times n_{2} \times \ldots \times n_{k}$ ways
- Example
- die toss experiment, 6 possible outcomes
- two dice are thrown at the same time
- number of sample points in sample space $=6 \times 6=36$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Definition of Probability

- The probability law assigns to an event a number between 0 and 1 called $P(A)$
- Also called the probability of A
- This encodes our knowledge or belief about the collective likelihood of all the elements of A
- Probability law must satisfy certain properties

1/31/08
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Probability Axioms

- Nonnegativity
- $P(A)>=0$, for every event A
- Additivity
- If A and B are two disjoint events, then the probability of their union satisfies:
- $P(A \cup B)=P(A)+P(B)$
- Normalization
- The probability of the entire sample space S is equal to 1 , I.e. $P(S)=1$.

1/31/08

An example

- An experiment involving a single coin toss
- There are two possible outcomes, H and T
- Sample space S is $\{\mathrm{H}, \mathrm{T}\}$
- If coin is fair, should assign equal probabilities to 2 outcomes
- Since they have to sum to 1
- $P(\{H\})=0.5$
- $P(\{T\})=0.5$
- $P(\{H, T\})=P(\{H\})+P(\{T\})=1.0$
$1 / 3108$

Another example
:---
- Outcome is a 3-long string of H or T
- $\mathrm{S}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTTT}\}$
- Assume each outcome is equiprobable
- "Uniform distribution"
- What is probability of the event that exactly 2 heads
occur?
- A $=\{H H T, H T H, T H H\}$
- $\mathrm{P}(\mathrm{A})=\mathrm{P}(\{\mathrm{HHT}\})+\mathrm{P}(\{\mathrm{HTH}\})+\mathrm{P}(\{\mathrm{THH}\})$
- $=1 / 8+1 / 8+1 / 8$
- $=3 / 8$
$1 / 31108$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Probability definitions

"
\qquad

- In summary:
$P(E)=\underline{\text { number of outcomes corresponding to event } E}$
total number of outcomes

Probability of drawing a spade from 52 well-shuffled playing cards:

\qquad
\qquad

1/3108

Probabilities of two events

- If two events A and B are independent then
- $P(A$ and $B)=P(A) \times P(B)$
- If we flip a fair coin twice
- What is the probability that they are both heads?
- If draw a card from a deck, then put it \qquad back, draw a card from the deck again
- What is the probability that both drawn cards are hearts? \qquad
\qquad

How about non-uniform

 probabilities?- A biased coin,
- twice as likely to come up tails as heads,
- is tossed twice
- What is the probability that at least one head occurs?
- Sample space $=\{h h, h t, t h, t t\}$
- Sample points/probability for the event:
- ht $1 / 3 \times 2 / 3=2 / 9$
hh $1 / 3 \times 1 / 3=1 / 9$
- th $2 / 3 \times 1 / 3=2 / 9 \quad \mathrm{tt} 2 / 3 \times 2 / 3=4 / 9$
- Answer: $5 / 9=\approx 0.56$ (sum of weights in red)

1/31/08

Moving toward language

-What's the probability of drawing a 2 from a deck of 52 cards with four 2s? \qquad

- What's the probability of a random word (from a random dictionary page) being a verb? \qquad

1/31/08

Probability and part of speech

 tags- What's the probability of a random word (from a random dictionary page) being a verb?
- How to compute each of these
- All words = just count all the words in the dictionary
- \# of ways to get a verb: number of words which are verbs!
- If a dictionary has 50,000 entries, and 10,000 are verbs.... $\mathrm{P}(\mathrm{V})$ is $10000 / 50000=1 / 5=.20$

\qquad
\qquad
\qquad
\qquad
\qquad

Conditional Probability

- A way to reason about the outcome of an experiment based on partial information
- In a word guessing game the first letter for the word is a "t". What is the likelihood that the second letter is an " h "?
- How likely is it that a person has a disease given that a medical test was negative?
- A spot shows up on a radar screen. How likely is it that it corresponds to an aircraft?

1/31/08
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

More precisely

- Given an experiment, a corresponding sample space S, and a probability law
- Suppose we know that the outcome is within some given event B
- We want to quantify the likelihood that the outcome also belongs to some other given event A.
- We need a new probability law that gives us the conditional probability of A given B
- $P(A \mid B)$

1/31/08

An intuition

\qquad
\square
\qquad

- A is "it's snowing now".
- $P(A)$ in normally arid Colorado is .01
- B is "it was snowing ten minutes ago"
- $P(A \mid B)$ means "what is the probability of it snowing now if it was snowing 10 minutes ago"
- $P(A \mid B)$ is probably way higher than $P(A)$
- Perhaps $P(A \mid B)$ is .10
- Intuition: The knowledge about B should change (update) our estimate of the probability of A.

1/3108

Conditional probability					

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Independence
What is $\mathrm{P}(\mathrm{A}, \mathrm{B})$ if A and B are independent?
- $\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$ iff A, B independent.
$\mathrm{P}($ heads,tails $)=\mathrm{P}($ heads $) \cdot \mathrm{P}($ tails $)=.5 \cdot .5=.25$
Note: $P(A \mid B)=P(A)$ iff A, B independent
Also: $P(B \mid A)=P(B)$ iff A, B independent
$1 / 1108$

Bayes Theorem
- Swap the conditioning
- Sometimes easier to estimate
one kind of dependence than the other
18108

Summary
- Probability
- Conditional Probability
- Independence
- Bayes Rule
$1 / 1108$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How Many Words?

\square

- I do uh main- mainly business data processing
- Fragments
- Filled pauses
- Are cat and cats the same word? \qquad
- Some terminology
- Lemma: a set of lexical forms having the same stem, \qquad major part of speech, and rough word sense
- Cat and cats = same lemma
- Wordform: the full inflected surface form.
- Cat and cats = different wordforms

1/31/08

How Many Words?

\qquad

- they picnicked by the pool then lay back on the grass and looked at the stars
- 16 tokens
- 14 types
- Brown et al (1992) large corpus
- 583 million wordform tokens
- 293,181 wordform types
- Google
- Crawl 1,024,908,267,229 English tokens
- 13,588,391 wordform types
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Language Modeling

- We want to compute
$P(w 1, w 2, w 3, w 4, w 5 \ldots w n)$, the probability of a sequence
- Alternatively we want to compute $P(w 5 \mid w 1, w 2, w 3, w 4, w 5)$: the probability of a word given some previous words
- The model that computes $\mathrm{P}(\mathrm{W})$ or $P(w n \mid w 1, w 2 \ldots w n-1)$ is called the language model.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Computing $\mathrm{P}(\mathrm{W})$

- How to compute this joint probability:
- P("the","other","day","I","was","walking","along" ,"and","saw","a","lizard")
- Intuition: let's rely on the Chain Rule of Probability

The Chain Rule

\qquad

\quad Recall the definition of conditional probabilities

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Very Easy Estimate
• How to estimate?
P (the \| its water is so transparent that)
P (the \| its water is so transparent that)
$=$
Count(its water is so transparent that the)
Count(its water is so transparent that)
${ }_{1 / 3108}$

Very Easy Estimate
- According to Google those counts are $5 / 9$.
- Unfortunately... 2 of those are to these
slides... So its really
- $3 / 7$

Unfortunately
- There are a lot of possible sentences
- In general, we'll never be able to get
enough data to compute the statistics for
those long prefixes
- P(lizard\|the,other,day,I,was,walking,along,a
nd, saw,a)
$1 / 1108$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Markov Assumption

-
- Make the simplifying assumption
- P(lizard|the,other,day,I,was,walking,along,and ,saw,a) $=\mathrm{P}($ lizard $\mid a)$
- Or maybe
- P(lizard|the,other,day,I,was,walking,along,and ,saw,a) $=$ P(lizard|saw,a)
- Or maybe... You get the idea.

Estimating bigram probabilities

\qquad
"

- The Maximum Likelihood Estimate

1/31/08

An example

- <s> I am Sam </s>
- <s> Sam I am </s>
- <s> I do not like green eggs and ham </s>
$P(\mathrm{I}|<\mathrm{s}\rangle)=\frac{2}{3}=.67 \quad P(\mathrm{Sam}|<\mathrm{s}\rangle)=\frac{1}{3}=.33 \quad P(\mathrm{am} \mid \mathrm{I})=\frac{2}{3}=.67$
$P(</ \mathrm{s}\rangle \mid \mathrm{Sam})=\frac{1}{2}=0.5 \quad P(\mathrm{Sam} \mid \mathrm{am})=\frac{1}{2}=.5 \quad P(\mathrm{do} \mid \mathrm{I})=\frac{1}{3}=.33$

$$
P\left(w_{n} \mid w_{n-N+1}^{n-1}\right)=\frac{C\left(w_{n-N+1}^{n-1} w_{n}\right)}{C\left(w_{n-N+1}^{n-1}\right)}
$$

1/3108
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- can you tell me about any good cantonese restaurants close by \qquad
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Raw Bigram Counts								
- Out of 9222 sentences: Count(col \| row)								
	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0		0	0
1/3108								

Raw Bigram Probabilities

\qquad
\square
\qquad

- Normalize by unigrams:

1	want	to	eat	chinese	food	lunch	spend	
2533	927	2417	746	158	1093	341	278	
	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

1/31/08

Bigram Estimates of Sentence

Probabilities

Kinds of knowledge?

- $\mathrm{P}($ english \mid want $)=.0011$ - World
- $\mathrm{P}($ chinese|want $)=.0065$ knowledge
- $\mathrm{P}($ to|want $)=.66$
- $\mathrm{P}($ eat | to $)=.28$
-Syntax
- $P($ food \mid to $)=0$
- $P($ want \mid spend $)=0$
- $P(i \mid<s>)=.25$
-Discourse
/31/08

\qquad
\qquad
\qquad
\qquad
\qquad

 say, tis done.
watch. A great banque
- Will you not tell me who I am
- Indeed the shont and the long. Marry, 'tis a noble Lepidus
\qquad

Shakespeare as corpus

- $\mathrm{N}=884,647$ tokens, $\mathrm{V}=29,066$
- Shakespeare produced 300,000 bigram types out of $\mathrm{V}^{2}=844$ million possible bigrams: so, 99.96% of the possible bigrams were never seen (have zero entries in the table)
- Quadrigrams worse: What's coming out looks like Shakespeare because it is Shakespeare

1/31/08
The Wall Street Journal is Not Shakespeare

unigram: Months the my and issue of year foreign new exchange's september
were recession exchange new endorsed a acquire to six executives
bigram: Last December through the way to preserve the Hudson corporation
N. B. E. C. Taylor would seem to complete the major central planners one
point five percent of U. S. E. has already old M. X. corporation of living on
information such as more frequently fishing to keep her
trigram: They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions

Next Time
- Finish Chapter 4 - Next issues - How do you tell how good a model is? - What to do with zeroes? - Start on Chapter 5

