\qquad
CSCI 5832
Natural Language
Processing

	Lecture 4
	Jim Martin

Today 1/24

- English Morphology
- FSAs and Morphology
- Break
- FSTs

Transition

- Finite-state methods are particularly useful in dealing with a lexicon
- Lots of devices, some with limited memory, need access to big lists of words
- And they need to perform fairly sophisticated tasks with those lists
- So we'll switch to talking about some facts about words and then come back to computational methods

Today 1/24
- English Morphology
- FSAs and Morphology
- Break
- FSTs
12408

Transition
- Finite-state methods are particularly useful in
dealing with a lexicon
- Lots of devices, some with limited memory, need
access to big lists of words
- And they need to perform fairly sophisticated
tasks with those lists
- So we'll switch to talking about some facts about
words and then come back to computational
methods
12408

\qquad

English Morphology

- Morphology is the study of the ways that words are built up from smaller meaningful units called morphemes
- We can usefully divide morphemes into two classes
- Stems: The core meaning-bearing units
- Affixes: Bits and pieces that adhere to stems to change their meanings and grammatical functions

1/24/08
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

English Morphology

"
\qquad

- We can also divide morphology up into two broad classes \qquad
- Inflectional
- Derivational \qquad
\qquad
\qquad
\qquad

Word Classes

- By word class, we have in mind familiar notions like noun and verb \qquad
- We'll go into the gory details in Chapter 5
- Right now we're concerned with word classes because the way that stems and affixes combine is based to a large degree on the word class of the stem
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Nouns and Verbs (English)

- Nouns are simple
- Markers for plural and possessive \qquad
- Verbs are only slightly more complex
- Markers appropriate to the tense of the verb

Regulars and Irregulars

\qquad \square \qquad

- Ok, so it gets a little complicated by the fact that some words misbehave (refuse to \qquad follow the rules)
- Mouse/mice, goose/geese, ox/oxen
\qquad
- Go/went, fly/flew
- The terms regular and irregular are used to refer to words that follow the rules and those that don't
\qquad
\qquad

Regular and Irregular Verbs

- Regulars...
- Walk, walks, walking, walked, walked
- Irregulars
- Eat, eats, eating, ate, eaten
- Catch, catches, catching, caught, caught
- Cut, cuts, cutting, cut, cut

Inflectional Morphology

- So inflectional morphology in English is fairly straightforward
- But is complicated by the fact that are irregularities

Derivational Morphology

- Derivational morphology is the messy stuff
that no one ever taught you.
- Quasi-systematicity
- Irregular meaning change
- Changes of word class
12408

Derivational Examples		
• Converting verbs and adjectives to nouns		
computerize	computerization	
-ation	appoint	appointee
-er	kill	killer
-ness	fuzzy	fuzziness
$1 / 24 / 08$		

Derivational Examples

Compute
- Many paths are possible...
- Start with compute
• Computer -> computerize -> computerization
- Computer -> computerize -> computerizable
- But not all paths/operations are equally good (or
even allowable)
- Clue -> clueable

Morpholgy and FSAS
- We'd like to use the machinery provided
by FSAs to capture facts about
morphology
- le. Accept strings that are in the language
- And reject strings that are not
- And do it in a way that doesn't require us to in
effect list all the words in the language
$1 / 24 / 08$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Start Simple
- Regular singular nouns are ok
- Regular plural nouns have an -s on the
end
- Irregulars are ok as is
12408

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Homework
• How big is your vocabulary?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Homework
- Strings are an easy and not very good
way to represent texts
- Normally, we want lists of sentences that
consist of lists of tokens, that ultimately
may point to strings representing words
(lexemes)
- Lists are central to Python and will make
your life easy if you let them
120

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Parsing/Generation
vs. Recognition

- We can now run strings through these machines to
recognize strings in the language
- Accept words that are ok
- Reject words that are not
- But recognition is usually not quite what we need
- Often if we find some string in the language we might like to find the structure in it (parsing)
- Or we have some structure and we want to produce a surface form (production/generation)
- Example
- From "cats" to "cat $+\mathrm{N}+\mathrm{PL}$ " \qquad
\qquad

Finite State Transducers

- The simple story
- Add another tape
- Add extra symbols to the transitions
- On one tape we read "cats", on the other we
write "cat $+\mathrm{N}+\mathrm{PL}$ "
12408

Applications

- The kind of parsing we're talking about is normally called morphological analysis
- It can either be
- An important stand-alone component of an application (spelling correction, information retrieval)
- Or simply a link in a chain of processing

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ambiguity

- Recall that in non-deterministic recognition multiple paths through a machine may lead to an accept state.
- Didn't matter which path was actually traversed
- In FSTs the path to an accept state does matter since differ paths represent different parses and different outputs will result

1/24/08

Ambiguity
- What's the right parse (segmentation) for
• Unionizable
• Union-ize-able
- Un-ion-ize-able
- Each represents a valid path through the
derivational morphology machine.
12408

\qquad

Multi-Tape Machines

\qquad

- To deal with this we can simply add more tapes and use the output of one tape machine as the input to the next
- So to handle irregular spelling changes we'll add intermediate tapes with intermediate symbols
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Generativity
- Nothing really privileged about the
directions.
- We can write from one and read from the
other or vice-versa.
- One way is generation, the other way is
analysis

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multi-Level Tape Machines

Lexical	f	\bigcirc	+N + +Pl				
Intermediate	f	o	x	\wedge	s	\#	
Surface	f	0	x	e	s		

- We use one machine to transduce between the lexical and the intermediate level, and another to handle the spelling changes to the surface tape \qquad

1/24/08

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Note
- A key feature of this machine is that it
doesn't do anything to inputs to which it
doesn't apply.
- Meaning that they are written out
unchanged to the output tape.
- Turns out the multiple tapes aren't really
needed; they can be compiled away.
129408

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Overall Scheme

- We now have one FST that has explicit information about the lexicon (actual words, their spelling, facts about word classes and regularity).
- Lexical level to intermediate forms
- We have a larger set of machines that capture orthographic/spelling rules.
- Intermediate forms to surface forms

1/24/08

Next Time
• Finish Chapter 3 start on 4
12408

