
1

1/24/08 1

CSCI 5832
Natural Language

Processing

Lecture 3
Jim Martin

1/24/08
2

Today 1/22

• Regexs, FSAs and languages
 Determinism and Non-Determinism

• Combining FSAs
• English Morphology

1/24/08
3

Finite State Automata

• Regular expressions can be viewed as a textual way
of specifying the structure of finite-state automata.

• FSAs and their probabilistic relatives are at the core
of what we’ll be doing all semester.

• They also conveniently (?) correspond closely to
what linguists say we need for morphology and
parts of syntax.
 Coincidence?

2

1/24/08
4

FSAs as Graphs

• Let’s start with the sheep language from
the text
 /baa+!/

1/24/08
5

Sheep FSA

• We can say the following things about
this machine
 It has 5 states
 b, a, and ! are in its alphabet
 q0 is the start state
 q4 is an accept state
 It has 5 transitions

1/24/08
6

More Formally

• You can specify an FSA by
enumerating the following things.
 The set of states: Q
 A finite alphabet: Σ
 A start state
 A set of accept/final states
 A transition function that maps QxΣ to Q

3

1/24/08
7

Generative Formalisms

• Formal Languages are sets of strings
composed of symbols from a finite set of
symbols.

• Finite-state automata define formal
languages (without having to enumerate all
the strings in the language)

• The term Generative is based on the view
that you can run the machine as a generator
to get strings from the language.

1/24/08
8

Generative Formalisms

• FSAs can be viewed from two
perspectives:
 Acceptors that can tell you if a string is in

the language
 Generators to produce all and only the

strings in the language

1/24/08
9

Three Views

• Three equivalent formal ways to look
at what we’re up to (not including
tables) Regular Expressions

Regular GrammarsFinite State Automata

4

1/24/08
10

But note

• There are other machines that
correspond to this same language

• More on this one later

1/24/08
11

About Alphabets

• Don’t take that word to narrowly; it
just means we need a finite set of
symbols in the input.

• These symbols can and will stand for
bigger objects that can have internal
structure.

1/24/08
12

Dollars and Cents

5

1/24/08
13

QxΣ → Q

• The guts of FSAs
can ultimately be
represented as
tables

∅∅∅∅4
∅4∅∅3
∅∅2,3∅2
∅∅2∅1
∅∅∅10
e!abState

1/24/08
14

Recognition

• Recognition is the process of determining if a
string should be accepted by a machine

• Or… it’s the process of determining if a string is in
the language defined by the machine

• Or… it’s the process of determining if a regular
expression matches a string

• Those all amount to the same thing in the end

1/24/08
15

Recognition

• Traditionally, (Turing’s idea) this
recognition process is depicted with a tape.

6

1/24/08
16

Recognition

• Simply a process of starting in the
start state

• Examining the current input
• Consulting the table
• Going to a new state and updating the

tape pointer.
• Until you run out of tape.

1/24/08
17

D-Recognize

1/24/08
18

Key Points

• Deterministic means that at each point in
processing there is always one unique thing
to do (there are no choices to be made).

• D-recognize is a simple table-driven
interpreter

• The algorithm is universal for all
unambiguous regular languages.
 To change the machine, you just change the

table.

7

1/24/08
19

Key Points

• Crudely therefore… matching strings with
regular expressions (ala Perl, grep, etc.) is
a matter of
 translating the regular expression into a

machine (a table) and
 passing the table to an interpreter

1/24/08
20

Recognition as Search

• You can view this algorithm as a trivial kind
of state-space search.

• States are pairings of tape positions and
state numbers.

• Operators are compiled into the table
• Goal state is a pairing with the end of tape

position and a final accept state
• Its trivial because?

1/24/08
21

Non-Determinism

8

1/24/08
22

Non-Determinism

• Yet another technique
 Epsilon transitions
 Key point: these transitions do not

examine or advance the tape during
recognition

1/24/08
23

Equivalence

• Non-deterministic machines can be
converted to deterministic ones with
a fairly simple construction

• That means that they have the same
power; non-deterministic machines
are not more powerful than
deterministic ones in terms of the
languages they can and can not
accept

1/24/08
24

ND Recognition

• Two basic approaches (used in all
major implementations of Regular
Expressions)

1. Either take a ND machine and convert it
to a D machine and then do recognition
with that.

2. Or explicitly manage the process of
recognition as a state-space search
(leaving the machine as is).

9

1/24/08
25

Implementations

1/24/08
26

Non-Deterministic
Recognition: Search

• In a ND FSA there exists at least one path
through the machine for a string that is in
the language defined by the machine.

• But not all paths directed through the
machine for an accept string lead to an
accept state.

• No paths through the machine lead to an
accept state for a string not in the
language.

1/24/08
27

Non-Deterministic
Recognition

• So success in a non-deterministic
recognition occurs when a path is
found through the machine that ends
in an accept state.

• Failure occurs when all of the possible
paths lead to failure.

10

1/24/08
28

Example

b a a a ! \

q0 q1 q2 q2 q3 q4

1/24/08
29

Example

1/24/08
30

Example

11

1/24/08
31

Example

1/24/08
32

Example

1/24/08
33

Example

12

1/24/08
34

Example

1/24/08
35

Example

1/24/08
36

Example

13

1/24/08
37

Key Points

• States in the search space are pairings
of tape positions and states in the
machine.

• By keeping track of as yet unexplored
states, a recognizer can systematically
explore all the paths through the
machine given an input.

1/24/08
38

ND-Recognize

1/24/08
39

Infinite Search

• If you’re not careful such searches can
go into an infinite loop.

• How?

14

1/24/08
40

Why Bother?

• Non-determinism doesn’t get us more
formal power and it causes headaches
so why bother?
 More natural (understandable) solutions

1/24/08
41

Compositional Machines

• Formal languages are just sets of strings
• Therefore, we can talk about various set

operations (intersection, union,
concatenation)

• This turns out to be a useful exercise

1/24/08
42

Union

15

1/24/08
43

Concatenation

1/24/08
44

Negation

• Construct a machine M2 to accept all
strings not accepted by machine M1
and reject all the strings accepted by
M1
 Invert all the accept and not accept states

in M1
• Does that work for non-deterministic

machines?

1/24/08
45

Intersection

• Accept a string that is in both of two
specified languages

• An indirect construction…
 A^B = ~(~A or ~B)

16

1/24/08
46

Motivation

• Consider the expression
 Let’s have a meeting on Thursday, Jan 26th

 Writing an FSA to recognize English date
expressions is not terribly hard.

 Except for the part about rejecting invalid dates.
 Write two FSAs: one for the form of the dates,

and one for the calendar arithmetic part
 Intersect the two machines

1/24/08
47

Next Time

• Finish Chapter 3

