CSCI 5832
 Natural Language Processing

Lecture 17
Jim Martin

Today: March 15

- Review Prob Parsing
- Basic model
- Lexicalized Models
- Rule Rewriting

Probabilistic CFGs

- The probabilistic model
- Assigning probabilities to parse trees
- Getting the probabilities for the model
- Parsing with probabilities
- Slight modification to dynamic programming approach
- Task is to find the max probability tree for an input

Basic Probability Model

- A derivation (tree) consists of the bag of grammar rules that are in the tree
- The probability of a tree is just the product of the probabilities of the rules in the derivation.

$$
P(T, S)=\prod_{\text {node } \in T} P(\text { rule }(n))
$$

Probability Model (1.1)

- The probability of a word sequence (sentence) is the probability of its tree in the unambiguous case.
- It's the sum of the probabilities of the trees in the ambiguous case.
- Since we can use the probability of the tree(s) as a proxy for the probability of the sentence...
- PCFGs give us an alternative to N -Gram models as a kind of language model.

Getting the Probabilities

- From an annotated database (a treebank)
- So for example, to get the probability for a particular VP rule just count all the times the rule is used and divide by the number of VPs overall.
$P(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\sum_{\gamma} \operatorname{Count}(\alpha \rightarrow \gamma)}=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}$

Prob CKY

- Alter CKY so that the probabilities of constituents are stored on the way up...
- Probability of a new constituent A derived from the rule A $>\mathrm{BC}$ is:
- $\mathrm{P}(\mathrm{A}->\mathrm{BC}) * \mathrm{P}(\mathrm{B}) * \mathrm{P}(\mathrm{C})$
- Where $\mathrm{P}(\mathrm{B})$ and $\mathrm{P}(\mathrm{C})$ are already in the table
- But what we store is the MAX probability over all the A rules.

Problems with PCFGs

- The probability model we're using is just based on the rules in the derivation...
- Doesn't use the words in any real way
- Doesn't take into account where in the derivation a rule is used
- Doesn't really work
- Most probable parse isn't usually the right one (the one in the treebank test set).

Solution 1

- Add lexical dependencies to the scheme...
- Infiltrate the predilections of particular words into the probabilities in the derivation
- I.e. Condition the rule probabilities on the actual words

Heads

- To do that we're going to make use of the notion of the head of a phrase
- The head of an NP is its noun
- The head of a VP is its verb
- The head of a PP is its preposition
(It's really more complicated than that but this will do.)

How?

- We used to have
- VP -> V NP PP P(rule|VP)
- That's the count of this rule divided by the number of VPs in a treebank
- Now we have
- VP(dumped)-> V(dumped) NP(sacks)PP(into)
$-\mathrm{P}\left(\mathrm{r} \mid \mathrm{VP}{ }^{\wedge}\right.$ dumped is the verb ${ }^{\wedge}$ sacks is the head of the $\mathrm{NP} \wedge$ into is the head of the PP)
- Not likely to have significant counts in any treebank

Declare Independence

- When stuck, exploit independence and collect the statistics you can...
- We'll focus on capturing two things
- Verb subcategorization
- Particular verbs have affinities for particular VPs
- Objects affinities for their predicates (mostly their mothers and grandmothers)
- Some objects fit better with some predicates than others

Subcategorization

- Condition particular VP rules on their head... so
r: VP -> V NP PP P(r|VP)
Becomes
$P\left(r \mid V P^{\wedge}\right.$ dumped $)$
What's the count?
How many times was this rule used with dump, divided by the number of VPs that dump appears in total

Preferences

- Verb subcategorization captures the affinity between VP heads (verbs) and the VP rules they go with.
- That is the affinity between a node and one of its daughter nodes.
- What about the affinity between VP heads and the heads of the other daughters of the VP
- Back to our examples...

Preferences

- The issue here is the attachment of the PP. So the affinities we care about are the ones between dumped and into vs. sacks and into.
- So count the places where dumped is the head of a constituent that has a PP daughter with into as its head and normalize
- Vs. the situation where sacks is a constituent with into as the head of a PP daughter.

Preferences (2)

- Consider the VPs
- Ate spaghetti with gusto
- Ate spaghetti with marinara
- Here the heads of the PPs are the same (with) so that won't help.
- But the affinity of gusto for eat is much larger than its affinity for spaghetti
- On the other hand, the affinity of marinara for spaghetti is much higher than its affinity for ate (we hope).

Preferences (2)

- Note the relationship here is more distant and doesn't involve a headword since gusto and marinara aren't the heads of the PPs.

Ate spaghetti with gusto Ate spaghetti with marinara

Note

- In case someone hasn't pointed this out yet, this lexicalization stuff is a thinly veiled attempt to incorporate semantics into the syntactic parsing process...
- Duhh..,. Picking the right parse requires the use of semantics.

Rule Rewriting

- An alternative to using these kinds of probabilistic lexical dependencies is to rewrite the grammar so that the rules do capture the regularities we want.
- By splitting and merging the non-terminals in the grammar.
- Example: split NPs into different classes...
- Our CFG rules for NPs don't condition on where the rule is applied (they're context-free remember)
- But we know that not all the rules occur with equal frequency in all contexts.

	Pronoun	Non-Pronoun
Subject	91%	9%
Object	34%	66%

Other Examples

- Lots of other examples like this in the TreeBank
- Many at the part of speech level
- Recall that many decisions made in annotation efforts are directed towards improving annotator agreement, not towards doing the right thing.
- Often this involves conflating distinct classes into a larger class
- TO, IN, Det, etc.

Rule Rewriting

- Three approaches
- Use linguistic intuitions to directly rewrite rules
- NP_Obj and the NP_Subj approach
- Automatically rewrite the rules using context to capture some of what we want
- Ie. Incorporate context into a context-free approach
- Search through the space of rewrites for the grammar that maximizes the probability of the training set

Local Context Approach

- Condition the rules based on their parent nodes
- This splitting based on tree-context captures some of the linguistic intuitions

Parent Annotation

- Now we have non-terminals $\mathrm{NP}^{\wedge} \mathrm{S}^{2}$ and $\mathrm{NP}^{\wedge} \mathrm{VP}$ that should capture the subject/object and pronoun/full NP cases.

Parent Annotation

- Recall what's going on here. We're in effect rewriting the treebank, thus rewriting the grammar.
- And changing the probabilities since they're being derived from different counts...
- And if we're splitting what's happening to the counts?

Auto Rewriting

- If this is such a good idea we may as well apply a learning approach to it.
- Start with a grammar (perhaps a treebank grammar)
- Search through the space of splits/merges for the grammar that in some sense maximizes parsing performance on the training/development set.

Auto Rewriting

- Basic idea...
- Split every non-terminal into two new non-terminals across the entire grammar (X becomes X1 and X2).
- Duplicate all the rules of the grammar that use X, dividing the probability mass of the original rule almost equally.
- Run EM to readjust the rule probabilities
- Perform a merge step to back off the splits that look like they don't really do any good.

Last Point

- Statistical parsers are getting quite good, but its still quite silly to expect them to come up with the correct parse given only statistically massage syntactic information.
- But its not so crazy to think that they can come up with the right parse among the top-N parses.
- Lots of current work on
- Re-ranking to make the top-N list even better.

Next Time

- Quiz

- Chapter 6: Sections 1-4, 6-8
- Skip 6.6.4, 6.7.1 and 6.8.1
- Chapter 11: Sections 1-6
- Chapter 12: All
- Chapter 13: Sections 1-6

