
1

3/18/07 CSCI 5832 Spring 2007 1

CSCI 5832
Natural Language Processing

Lecture 17
Jim Martin

3/18/07 CSCI 5832 Spring 2007 2

Today: March 15

• Review Prob Parsing
– Basic model

• Lexicalized Models
• Rule Rewriting

2

3/18/07 CSCI 5832 Spring 2007 3

Probabilistic CFGs

• The probabilistic model
– Assigning probabilities to parse trees

• Getting the probabilities for the model
• Parsing with probabilities

– Slight modification to dynamic programming approach
– Task is to find the max probability tree for an input

3/18/07 CSCI 5832 Spring 2007 4

Basic Probability Model

• A derivation (tree) consists of the bag of grammar
rules that are in the tree

• The probability of a tree is just the product of the
probabilities of the rules in the derivation.

3

3/18/07 CSCI 5832 Spring 2007 5

Probability Model (1.1)

• The probability of a word sequence (sentence) is
the probability of its tree in the unambiguous case.

• It’s the sum of the probabilities of the trees in the
ambiguous case.

• Since we can use the probability of the tree(s) as a
proxy for the probability of the sentence…
– PCFGs give us an alternative to N-Gram models as a

kind of language model.

3/18/07 CSCI 5832 Spring 2007 6

Getting the Probabilities

• From an annotated database (a treebank)
– So for example, to get the probability for a particular

VP rule just count all the times the rule is used and
divide by the number of VPs overall.

4

3/18/07 CSCI 5832 Spring 2007 7

Prob CKY

• Alter CKY so that the probabilities of constituents are
stored on the way up…
– Probability of a new constituent A derived from the rule A -

> BC is:
• P(A-> B C) * P(B) * P(C)
• Where P(B) and P(C) are already in the table
• But what we store is the MAX probability over all the A rules.

3/18/07 CSCI 5832 Spring 2007 8

Problems with PCFGs

• The probability model we’re using is just based on
the rules in the derivation…
– Doesn’t use the words in any real way
– Doesn’t take into account where in the derivation a rule

is used
– Doesn’t really work

• Most probable parse isn’t usually the right one (the one in the
treebank test set).

5

3/18/07 CSCI 5832 Spring 2007 9

Solution 1

• Add lexical dependencies to the scheme…
– Infiltrate the predilections of particular words into the

probabilities in the derivation
– I.e. Condition the rule probabilities on the actual words

3/18/07 CSCI 5832 Spring 2007 10

Heads

• To do that we’re going to make use of the notion
of the head of a phrase
– The head of an NP is its noun
– The head of a VP is its verb
– The head of a PP is its preposition
(It’s really more complicated than that but this will do.)

6

3/18/07 CSCI 5832 Spring 2007 11

Example (right)
Attribute grammar

3/18/07 CSCI 5832 Spring 2007 12

Example (wrong)

7

3/18/07 CSCI 5832 Spring 2007 13

How?

• We used to have
– VP -> V NP PP P(rule|VP)

• That’s the count of this rule divided by the number of VPs in a
treebank

• Now we have
– VP(dumped)-> V(dumped) NP(sacks)PP(into)
– P(r|VP ^ dumped is the verb ^ sacks is the head of the

NP ^ into is the head of the PP)
– Not likely to have significant counts in any treebank

3/18/07 CSCI 5832 Spring 2007 14

Declare Independence

• When stuck, exploit independence and collect the
statistics you can…

• We’ll focus on capturing two things
– Verb subcategorization

• Particular verbs have affinities for particular VPs

– Objects affinities for their predicates (mostly their
mothers and grandmothers)

• Some objects fit better with some predicates than others

8

3/18/07 CSCI 5832 Spring 2007 15

Subcategorization

• Condition particular VP rules on their head… so
 r: VP -> V NP PP P(r|VP)
Becomes

P(r | VP ^ dumped)

What’s the count?
How many times was this rule used with dump, divided

by the number of VPs that dump appears in total

3/18/07 CSCI 5832 Spring 2007 16

Preferences

• Verb subcategorization captures the affinity
between VP heads (verbs) and the VP rules they
go with.
– That is the affinity between a node and one of its

daughter nodes.
• What about the affinity between VP heads and the

heads of the other daughters of the VP
• Back to our examples…

9

3/18/07 CSCI 5832 Spring 2007 17

Example (right)

3/18/07 CSCI 5832 Spring 2007 18

Example (wrong)

10

3/18/07 CSCI 5832 Spring 2007 19

Preferences
• The issue here is the attachment of the PP. So the

affinities we care about are the ones between
dumped and into vs. sacks and into.

• So count the places where dumped is the head of a
constituent that has a PP daughter with into as its
head and normalize

• Vs. the situation where sacks is a constituent with
into as the head of a PP daughter.

3/18/07 CSCI 5832 Spring 2007 20

Preferences (2)

• Consider the VPs
– Ate spaghetti with gusto
– Ate spaghetti with marinara

• Here the heads of the PPs are the same (with) so that won’t
help.

• But the affinity of gusto for eat is much larger than its affinity
for spaghetti

• On the other hand, the affinity of marinara for spaghetti is
much higher than its affinity for ate (we hope).

11

3/18/07 CSCI 5832 Spring 2007 21

Preferences (2)
• Note the relationship here is more distant and

doesn’t involve a headword since gusto and
marinara aren’t the heads of the PPs.

Vp (ate) Vp(ate)

Vp(ate) Pp(with)
Pp(with)

Np(spag)

npvv
Ate spaghetti with marinaraAte spaghetti with gusto

np

3/18/07 CSCI 5832 Spring 2007 22

Note

• In case someone hasn’t pointed this out yet, this
lexicalization stuff is a thinly veiled attempt to
incorporate semantics into the syntactic parsing
process…
– Duhh..,. Picking the right parse requires the use of

semantics.

12

3/18/07 CSCI 5832 Spring 2007 23

Rule Rewriting

• An alternative to using these kinds of probabilistic
lexical dependencies is to rewrite the grammar so
that the rules do capture the regularities we want.
– By splitting and merging the non-terminals in the grammar.
– Example: split NPs into different classes…

3/18/07 CSCI 5832 Spring 2007 24

NPs

• Our CFG rules for NPs don’t condition on where
the rule is applied (they’re context-free remember)

• But we know that not all the rules occur with
equal frequency in all contexts.

13

3/18/07 CSCI 5832 Spring 2007 25

Other Examples

• Lots of other examples like this in the TreeBank
– Many at the part of speech level
– Recall that many decisions made in annotation efforts

are directed towards improving annotator agreement,
not towards doing the right thing.

• Often this involves conflating distinct classes into a larger
class

– TO, IN, Det, etc.

3/18/07 CSCI 5832 Spring 2007 26

Rule Rewriting

• Three approaches
– Use linguistic intuitions to directly rewrite rules

• NP_Obj and the NP_Subj approach

– Automatically rewrite the rules using context to capture
some of what we want

• Ie. Incorporate context into a context-free approach

– Search through the space of rewrites for the grammar
that maximizes the probability of the training set

14

3/18/07 CSCI 5832 Spring 2007 27

Local Context Approach

• Condition the rules based on their parent nodes
– This splitting based on tree-context captures some of

the linguistic intuitions

3/18/07 CSCI 5832 Spring 2007 28

Parent Annotation

• Now we have non-terminals NP^S and NP^VP that should
capture the subject/object and pronoun/full NP cases.

15

3/18/07 CSCI 5832 Spring 2007 29

Parent Annotation

• Recall what’s going on here. We’re in effect rewriting the
treebank, thus rewriting the grammar.

• And changing the probabilities since they’re being derived
from different counts…
– And if we’re splitting what’s happening to the counts?

3/18/07 CSCI 5832 Spring 2007 30

Auto Rewriting

• If this is such a good idea we may as well apply a
learning approach to it.

• Start with a grammar (perhaps a treebank
grammar)

• Search through the space of splits/merges for the
grammar that in some sense maximizes parsing
performance on the training/development set.

16

3/18/07 CSCI 5832 Spring 2007 31

Auto Rewriting

• Basic idea…
– Split every non-terminal into two new non-terminals

across the entire grammar (X becomes X1 and X2).
– Duplicate all the rules of the grammar that use X, dividing

the probability mass of the original rule almost equally.
– Run EM to readjust the rule probabilities
– Perform a merge step to back off the splits that look like

they don’t really do any good.

3/18/07 CSCI 5832 Spring 2007 32

Last Point

• Statistical parsers are getting quite good, but its
still quite silly to expect them to come up with the
correct parse given only statistically massage
syntactic information.

• But its not so crazy to think that they can come up
with the right parse among the top-N parses.

• Lots of current work on
– Re-ranking to make the top-N list even better.

17

3/18/07 CSCI 5832 Spring 2007 33

Next Time

• Quiz
– Chapter 6: Sections 1-4, 6-8

• Skip 6.6.4, 6.7.1 and 6.8.1

– Chapter 11: Sections 1-6
– Chapter 12: All
– Chapter 13: Sections 1-6

