

Today: March 13

- Review CFG Parsing
- Probabilistic CFGs
- Basic model
- Lexicalized model

Dynamic Programming Approaches

- Earley
- Top-down, no filtering, no restriction on grammar form
- CYK
- Bottom-up, no filtering, grammars restricted to ChomskyNormal Form (CNF)
- Details are not important...
- Bottom-up vs. top-down
- With or without filters
- With restrictions on grammar form or not

Disambiguation

- Of course, to get the joke we need both parses.
- But in general we'll assume that there's one right parse.
- To get that we need knowledge: world knowledge, knowledge of the writer, the context, etc...
- Or maybe not..

Disambiguation

- Instead let's make some assumptions and see how well we do...

Probabilistic CFGs

- The probabilistic model
- Assigning probabilities to parse trees
- Getting the probabilities for the model
- Parsing with probabilities
- Slight modification to dynamic programming approach
- Task is to find the max probability tree for an input

Probability Model

- Attach probabilities to grammar rules
- The expansions for a given non-terminal sum to 1

VP -> Verb . 55
VP -> Verb NP . 40
VP -> Verb NP NP . 05

- Read this as P(Specific rule | LHS)

Probability Model (1)

- A derivation (tree) consists of the bag of grammar rules that are in the tree
- The probability of a tree is just the product of the probabilities of the rules in the derivation.

$$
P(T, S)=\prod_{\text {node } \in T} P(\text { rule }(n))
$$

Probability Model (1.1)

- The probability of a word sequence (sentence) is the probability of its tree in the unambiguous case.
- It's the sum of the probabilities of the trees in the ambiguous case.
- Since we can use the probability of the tree(s) as a proxy for the probability of the sentence...
- PCFGs give us an alternative to \mathbf{N}-Gram models as a kind of language model.

Rule Probabilities

	Rules	P		Rules	P
S	\rightarrow VP	.05	S	\rightarrow VP	.05
VP	\rightarrow Verb NP	.20	VP	\rightarrow Verb NP NP	.10
NP	\rightarrow Det Nominal	.20	NP	\rightarrow Det Nominal	.20
Nominal \rightarrow Nominal Noun	.20	NP	\rightarrow Nominal	.15	
Nominal \rightarrow Noun	.75	Nominal \rightarrow Noun	.75		
			Nominal \rightarrow Noun	.75	
Verb \rightarrow book	.30	Verb	\rightarrow book	.30	
Det	\rightarrow the	.60	Det	\rightarrow the	.60
Noun \rightarrow dinner	.10	Noun	\rightarrow dinner	.10	
Noun	\rightarrow flights	.40	Noun	\rightarrow flights	.40

2.2 * 10-6
6.1 * 10-7

Getting the Probabilities

- From an annotated database (a treebank)

- So for example, to get the probability for a particular VP rule just count all the times the rule is used and divide by the number of VPs overall.
$P(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\sum_{\gamma} \operatorname{Count}(\alpha \rightarrow \gamma)}=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}$

Smoothing

- Using this method do we need to worry about smoothing these probabilities?

Inside/Outside

- If we don't have a treebank, but we do have a grammar can we get reasonable probabilities?
- Yes. Use a prob parser to parse a large corpus and then get the counts as above.
- But
- In the unambiguous case we're fine
- In ambiguous cases, weight the counts of the rules by the probabilities of the trees they occur in.

Inside/Outside

- But...
- Where do those probabilities come from?
- Make them up. And then re-estimate them.
- This sounds a lot like....

Assumptions

- We're assuming that there is a grammar to be used to parse with.
- We're assuming the existence of a large robust dictionary with parts of speech
- We're assuming the ability to parse (i.e. a parser)
- Given all that... we can parse probabilistically

Typical Approach

- Use CKY as the backbone of the algorithm
- Assign probabilities to constituents as they are completed and placed in the table
- Use the max probability for each constituent going up

What's that last bullet mean?

- Say we're talking about a final part of a parse
- S - $\boldsymbol{\gamma}_{0} \mathbf{N P}_{\mathrm{i}} \mathbf{V P}_{\mathrm{j}}$

The probability of this S is...
$\mathbf{P}(\mathbf{S}->\mathbf{N P} \mathbf{V P}) * \mathbf{P}(\mathbf{N P}) * \mathbf{P}(\mathbf{V P})$

The green stuff is already known if we're using some kind of sensible DP approach.

Max

- I said the $\mathbf{P (N P)}$ is known.
- What if there are multiple NPs for the span of text in question (0 to i)?
- Take the max (where?)

Probabilistic CKY (buggy)

function Probabilistic-CKY(words,grammar) returns most probable parse and its probability
for $j \leftarrow$ from 1 to LENGTH(words) do for all $\{A \mid A \rightarrow$ words $[j] \in$ grammar $\}$ table $[j-1, j, A] \leftarrow P(A \rightarrow$ words $[j])$ for $i \leftarrow$ from $j-2$ downto 0 do for $k \leftarrow i+1$ to $j-1$ do for all $\{A \mid A \rightarrow B C \in$ grammar,
and table $[i, k, B]>0$ and table $[k, j, C]>0\}$
if $($ table $[i, j, A]>P(A \rightarrow B C) \times$ table $[i, k, B] \times$ table $[k, j, C])$ then table $[i, j, A] \leftarrow P(A \rightarrow B C) \times$ table $[i, k, B] \times$ table $[k, j, C]$ back $[i, j, A] \leftarrow\{j, B, C\}$
return BUILD_TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

Break

- Faculty Search Colloquia

- 1 B 22
- Tues and Thursdays 3:30-5:00 for the next N weeks
- All systems, PL and SE folks
- Lunch
- You should go

Problems with PCFGs

- The probability model we're using is just based on the rules in the derivation...
- Doesn't use the words in any real way
- Doesn't take into account where in the derivation a rule is used
- Doesn't really work
- Most probable parse isn't usually the right one (the one in the treebank test set).

Solution 1

- Add lexical dependencies to the scheme...
- Infiltrate the predilections of particular words into the probabilities in the derivation
- I.e. Condition the rule probabilities on the actual words

Heads

- To do that we're going to make use of the notion of the head of a phrase
- The head of an NP is its noun
- The head of a VP is its verb
- The head of a PP is its preposition
(It's really more complicated than that but this will do.)

How?

- We used to have
- VP -> V NP PP

$\mathbf{P}($ rule|VP)

- That's the count of this rule divided by the number of VPs in a treebank
- Now we have
- VP(dumped)-> V(dumped) NP(sacks)PP(in)
$-P\left(r \mid V P{ }^{\wedge}\right.$ dumped is the verb ${ }^{\wedge}$ sacks is the head of the $\mathrm{NP}{ }^{\wedge}$ in is the head of the PP)
- Not likely to have significant counts in any treebank

Declare Independence

- When stuck, exploit independence and collect the statistics you can...
- We'll focus on capturing two things
- Verb subcategorization
- Particular verbs have affinities for particular VPs
- Objects affinities for their predicates (mostly their mothers and grandmothers)
- Some objects fit better with some predicates than others

Subcategorization

- Condition particular VP rules on their head... so
r: VP -> V NP PP P(r|VP)
Becomes
$\mathbf{P}\left(\mathbf{r} \mid \mathrm{VP}{ }^{\wedge}\right.$ dumped)

What's the count?
How many times was this rule used with dump, divided by the number of VPs that dump appears in total

Preferences

- Subcat captures the affinity between VP heads (verbs) and the VP rules they go with.
- What about the affinity between VP heads and the heads of the other daughters of the VP
- Back to our examples...

Preferences

- The issue here is the attachment of the PP. So the affinities we care about are the ones between dumped and into vs. sacks and into.
- So count the places where dumped is the head of a constituent that has a PP daughter with into as its head and normalize
- Vs. the situation where sacks is a constituent with into as the head of a PP daughter.

Preferences (2)

- Consider the VPs
- Ate spaghetti with gusto
- Ate spaghetti with marinara
- The affinity of gusto for eat is much larger than its affinity for spaghetti
- On the other hand, the affinity of marinara for spaghetti is much higher than its affinity for ate

Preferences (2)

- Note the relationship here is more distant and doesn't involve a headword since gusto and marinara aren't the heads of the PPs.
 Ate spaghetti with gusto

Ate spaghetti with marinara

Next Time

- Finish up 13.
- Rule re-writing approaches
- Evaluation

