
1

3/18/07 CSCI 5832 Spring 2007 1

CSCI 5832
Natural Language Processing

Lecture 16
Jim Martin

3/18/07 CSCI 5832 Spring 2007 2

Today: March 13

• Review CFG Parsing
• Probabilistic CFGs

– Basic model
– Lexicalized model

2

3/18/07 CSCI 5832 Spring 2007 3

Dynamic Programming Approaches

• Earley
– Top-down, no filtering, no restriction on grammar form

• CYK
– Bottom-up, no filtering, grammars restricted to Chomsky-

Normal Form (CNF)
• Details are not important...

– Bottom-up vs. top-down
– With or without filters
– With restrictions on grammar form or not

3/18/07 CSCI 5832 Spring 2007 4

Back to Ambiguity

3

3/18/07 CSCI 5832 Spring 2007 5

Disambiguation

• Of course, to get the joke we need both parses.
• But in general we’ll assume that there’s one

right parse.
• To get that we need knowledge: world

knowledge, knowledge of the writer, the
context, etc…

• Or maybe not..

3/18/07 CSCI 5832 Spring 2007 6

Disambiguation

• Instead let’s make some assumptions and see
how well we do…

4

3/18/07 CSCI 5832 Spring 2007 7

Example

3/18/07 CSCI 5832 Spring 2007 8

Probabilistic CFGs

• The probabilistic model
– Assigning probabilities to parse trees

• Getting the probabilities for the model
• Parsing with probabilities

– Slight modification to dynamic programming
approach

– Task is to find the max probability tree for an input

5

3/18/07 CSCI 5832 Spring 2007 9

Probability Model

• Attach probabilities to grammar rules
• The expansions for a given non-terminal sum to

1
VP -> Verb .55
VP -> Verb NP .40
VP -> Verb NP NP .05
– Read this as P(Specific rule | LHS)

3/18/07 CSCI 5832 Spring 2007 10

Probability Model (1)

• A derivation (tree) consists of the bag of
grammar rules that are in the tree

• The probability of a tree is just the product of
the probabilities of the rules in the derivation.

6

3/18/07 CSCI 5832 Spring 2007 11

Probability Model (1.1)

• The probability of a word sequence (sentence)
is the probability of its tree in the unambiguous
case.

• It’s the sum of the probabilities of the trees in
the ambiguous case.

• Since we can use the probability of the tree(s)
as a proxy for the probability of the sentence…
– PCFGs give us an alternative to N-Gram models as

a kind of language model.

3/18/07 CSCI 5832 Spring 2007 12

Example

7

3/18/07 CSCI 5832 Spring 2007 13

Rule Probabilities

2.2 * 10-6 6.1 * 10-7

3/18/07 CSCI 5832 Spring 2007 14

Getting the Probabilities

• From an annotated database (a treebank)
– So for example, to get the probability for a

particular VP rule just count all the times the rule is
used and divide by the number of VPs overall.

8

3/18/07 CSCI 5832 Spring 2007 15

Smoothing

• Using this method do we need to worry about
smoothing these probabilities?

3/18/07 CSCI 5832 Spring 2007 16

Inside/Outside

• If we don’t have a treebank, but we do have a
grammar can we get reasonable probabilities?

• Yes. Use a prob parser to parse a large corpus
and then get the counts as above.

• But
– In the unambiguous case we’re fine
– In ambiguous cases, weight the counts of the rules

by the probabilities of the trees they occur in.

9

3/18/07 CSCI 5832 Spring 2007 17

Inside/Outside

• But…
• Where do those probabilities come from?
• Make them up. And then re-estimate them.
• This sounds a lot like….

3/18/07 CSCI 5832 Spring 2007 18

Assumptions

• We’re assuming that there is a grammar to be used to
parse with.

• We’re assuming the existence of a large robust
dictionary with parts of speech

• We’re assuming the ability to parse (i.e. a parser)
• Given all that… we can parse probabilistically

10

3/18/07 CSCI 5832 Spring 2007 19

Typical Approach

• Use CKY as the backbone of the algorithm
• Assign probabilities to constituents as they are

completed and placed in the table
• Use the max probability for each constituent

going up

3/18/07 CSCI 5832 Spring 2007 20

What’s that last bullet mean?

• Say we’re talking about a final part of a parse
– S->0NPiVPj

The probability of this S is…
P(S->NP VP)*P(NP)*P(VP)

The green stuff is already known if we’re using some kind
of sensible DP approach.

11

3/18/07 CSCI 5832 Spring 2007 21

Max

• I said the P(NP) is known.
• What if there are multiple NPs for the span of

text in question (0 to i)?
• Take the max (where?)

3/18/07 CSCI 5832 Spring 2007 22

CKY Where does the
max go?

12

3/18/07 CSCI 5832 Spring 2007 23

Probabilistic CKY (buggy)

3/18/07 CSCI 5832 Spring 2007 24

Break

• Faculty Search Colloquia
– 1 B 22
– Tues and Thursdays 3:30 - 5:00 for the next N weeks
– All systems, PL and SE folks
– Lunch
– You should go

13

3/18/07 CSCI 5832 Spring 2007 25

Problems with PCFGs

• The probability model we’re using is just based
on the rules in the derivation…
– Doesn’t use the words in any real way
– Doesn’t take into account where in the derivation a

rule is used
– Doesn’t really work

• Most probable parse isn’t usually the right one (the one in
the treebank test set).

3/18/07 CSCI 5832 Spring 2007 26

Solution 1

• Add lexical dependencies to the scheme…
– Infiltrate the predilections of particular words into

the probabilities in the derivation
– I.e. Condition the rule probabilities on the actual

words

14

3/18/07 CSCI 5832 Spring 2007 27

Heads

• To do that we’re going to make use of the
notion of the head of a phrase
– The head of an NP is its noun
– The head of a VP is its verb
– The head of a PP is its preposition
(It’s really more complicated than that but this will

do.)

3/18/07 CSCI 5832 Spring 2007 28

Example (right)
Attribute grammar

15

3/18/07 CSCI 5832 Spring 2007 29

Example (wrong)

3/18/07 CSCI 5832 Spring 2007 30

How?

• We used to have
– VP -> V NP PP P(rule|VP)

• That’s the count of this rule divided by the number of VPs
in a treebank

• Now we have
– VP(dumped)-> V(dumped) NP(sacks)PP(in)
– P(r|VP ^ dumped is the verb ^ sacks is the head of

the NP ^ in is the head of the PP)
– Not likely to have significant counts in any treebank

16

3/18/07 CSCI 5832 Spring 2007 31

Declare Independence

• When stuck, exploit independence and collect
the statistics you can…

• We’ll focus on capturing two things
– Verb subcategorization

• Particular verbs have affinities for particular VPs

– Objects affinities for their predicates (mostly their
mothers and grandmothers)

• Some objects fit better with some predicates than others

3/18/07 CSCI 5832 Spring 2007 32

Subcategorization

• Condition particular VP rules on their head…
so
 r: VP -> V NP PP P(r|VP)
Becomes

P(r | VP ^ dumped)

What’s the count?
How many times was this rule used with dump,

divided by the number of VPs that dump appears in
total

17

3/18/07 CSCI 5832 Spring 2007 33

Preferences

• Subcat captures the affinity between VP heads
(verbs) and the VP rules they go with.

• What about the affinity between VP heads and
the heads of the other daughters of the VP

• Back to our examples…

3/18/07 CSCI 5832 Spring 2007 34

Example (right)

18

3/18/07 CSCI 5832 Spring 2007 35

Example (wrong)

3/18/07 CSCI 5832 Spring 2007 36

Preferences
• The issue here is the attachment of the PP. So the

affinities we care about are the ones between
dumped and into vs. sacks and into.

• So count the places where dumped is the head of
a constituent that has a PP daughter with into as
its head and normalize

• Vs. the situation where sacks is a constituent with
into as the head of a PP daughter.

19

3/18/07 CSCI 5832 Spring 2007 37

Preferences (2)

• Consider the VPs
– Ate spaghetti with gusto
– Ate spaghetti with marinara

• The affinity of gusto for eat is much larger than its
affinity for spaghetti

• On the other hand, the affinity of marinara for
spaghetti is much higher than its affinity for ate

3/18/07 CSCI 5832 Spring 2007 38

Preferences (2)
• Note the relationship here is more distant and

doesn’t involve a headword since gusto and
marinara aren’t the heads of the PPs.

Vp (ate) Vp(ate)

Vp(ate) Pp(with)
Pp(with)

Np(spag)

npvv
Ate spaghetti with marinaraAte spaghetti with gusto

np

20

3/18/07 CSCI 5832 Spring 2007 39

Next Time

• Finish up 13.
– Rule re-writing approaches
– Evaluation

