
1

3/1/07 CSCI 5832 Spring 2007 1

CSCI 5832
Natural Language Processing

Lecture 13
Jim Martin

3/1/07 CSCI 5832 Spring 2007 2

Today: 3/1

• Review/Finish CKY
• Earley parsing

2

3/1/07 CSCI 5832 Spring 2007 3

CKY Algorithm

3/1/07 CSCI 5832 Spring 2007 4

CKY Table

3

3/1/07 CSCI 5832 Spring 2007 5

Example

3/1/07 CSCI 5832 Spring 2007 6

Other Ways to Do It?

• Are there any other sensible ways to fill
the table that still guarantee that the
cells we need are already filled?

4

3/1/07 CSCI 5832 Spring 2007 7

Other Ways to Do It?

3/1/07 CSCI 5832 Spring 2007 8

Sample Grammar

5

3/1/07 CSCI 5832 Spring 2007 9

CNF Conversion

3/1/07 CSCI 5832 Spring 2007 10

Example
Fill the Last Column

6

3/1/07 CSCI 5832 Spring 2007 11

Example
Fill the Last Column

3/1/07 CSCI 5832 Spring 2007 12

Example
Fill the Last Column

7

3/1/07 CSCI 5832 Spring 2007 13

Example
Fill the Last Column

3/1/07 CSCI 5832 Spring 2007 14

Example
Fill the Last Column

8

3/1/07 CSCI 5832 Spring 2007 15

CKY Notes

• Since it’s bottom up, CKY populates the
table with a lot of phantom constituents.
– Segments that by themselves are constituents

but cannot really occur in the context in which
they are being suggested.

– To avoid this we can switch to a top-down
control strategy or

– We can add some kind of filtering that blocks
constituents where they can not happen in a
final analysis.

3/1/07 CSCI 5832 Spring 2007 16

Earley Parsing

• Allows arbitrary CFGs
• Top-down control
• Fills a table in a single sweep over the

input words
– Table is length N+1; N is number of words
– Table entries represent

• Completed constituents and their locations
• In-progress constituents
• Predicted constituents

9

3/1/07 CSCI 5832 Spring 2007 17

States

• The table-entries are called states and are
represented with dotted-rules.
S -> · VP A VP is predicted

NP -> Det · Nominal An NP is in progress

VP -> V NP · A VP has been found

3/1/07 CSCI 5832 Spring 2007 18

States/Locations

• It would be nice to know where these things are in the
input so…
S -> VP [0,0] A VP is predicted at the

start of the sentence

NP -> Det Nominal [1,2] An NP is in progress; the
Det goes from 1 to 2

VP -> V NP [0,3] A VP has been found starting at 0 and
ending at 3

10

3/1/07 CSCI 5832 Spring 2007 19

States/Locations

• S -> VP [0,0]

• NP -> Det Nominal
[1,2]

• VP -> V NP [0,3]

• A VP is predicted at the
start of the sentence

• An NP is in progress; the
Det goes from 1 to 2

• A VP has been found
starting at 0 and ending
at 3

3/1/07 CSCI 5832 Spring 2007 20

Graphically

11

3/1/07 CSCI 5832 Spring 2007 21

Earley

• As with most dynamic programming
approaches, the answer is found by
looking in the table in the right place.

• In this case, there should be an S state
in the final column that spans from 0 to
n and is complete.

• If that’s the case you’re done.
– S –> α [0,n]

3/1/07 CSCI 5832 Spring 2007 22

Earley

• So sweep through the table from 0 to n…
– New predicted states are created by

starting top-down from S
– New incomplete states are created by

advancing existing states as new constituents
are discovered

– New complete states are created in the same
way.

12

3/1/07 CSCI 5832 Spring 2007 23

Earley

• More specifically…
1. Predict all the states you can upfront
2. Read a word

1. Extend states based on matches
2. Generate new predictions
3. Go to step 2

3. Look at n to see if you have a winner

3/1/07 CSCI 5832 Spring 2007 24

Earley Code

13

3/1/07 CSCI 5832 Spring 2007 25

Earley Code

3/1/07 CSCI 5832 Spring 2007 26

Example

• Book that flight
• We should find… an S from 0 to 3 that

is a completed state…

14

3/1/07 CSCI 5832 Spring 2007 27

Example

3/1/07 CSCI 5832 Spring 2007 28

Add To Chart

15

3/1/07 CSCI 5832 Spring 2007 29

Example

3/1/07 CSCI 5832 Spring 2007 30

Example

16

3/1/07 CSCI 5832 Spring 2007 31

Efficiency

• For such a simple example, there seems
to be a lot of useless stuff in there.

• Why?

• It’s predicting things that aren’t consistent
with the input
•That’s the flipside to the CKY problem.

3/1/07 CSCI 5832 Spring 2007 32

Details

• As with CKY that isn’t a parser until we
add the backpointers so that each state
knows where it came from.

17

3/1/07 CSCI 5832 Spring 2007 33

Back to Ambiguity

• Did we solve it?

3/1/07 CSCI 5832 Spring 2007 34

Ambiguity

18

3/1/07 CSCI 5832 Spring 2007 35

Ambiguity

• No…
– Both CKY and Earley will result in multiple S

structures for the [0,n] table entry.
– They both efficiently store the sub-parts

that are shared between multiple parses.
– And they obviously avoid re-deriving those

sub-parts.
– But neither can tell us which one is right.

3/1/07 CSCI 5832 Spring 2007 36

Ambiguity

• In most cases, humans don’t notice
incidental ambiguity (lexical or syntactic).
It is resolved on the fly and never
noticed.

• We’ll try to model that with probabilities.
• But note something odd and important

about the Groucho Marx example…

19

3/1/07 CSCI 5832 Spring 2007 37

Next Time

• Read Section 12.5 (Partial Parsing)
• Then go back and start reading Sections 6.6,

6,7 and 6.8.
– If you have no background in stats please slog through

section 6.6 carefully.
• After that we’ll move on to probabilistic parsing

which is in the new draft Ch.13
– Which isn’t there yet. Hopefully it will be there when

we get there.

