CSCI 5832
Natural Language Processing

Lecture 13
Jim Martin

3/1/07 CSCI 5832 Spring 2007

Today: 3/1

* Review/Finish CKY
+ Earley parsing

3/1/07 CSCI 5832 Spring 2007

CKY Algorithm

function CKY-PARSE(words, grammar) returns table

for j«— from 1 to LENGTH(words) do
table[j— 1,71+ {4 | A — words|j] € grammar}
for i— from j — 2 downto 0 do
fork—i+1to j—1do
table[i j]+— table[ij] U
{44 — BC € grammar,

B € rableli,k],
C € tablelk,j] }

3/1/07 CSCI 5832 Spring 2007

CKY Table

0.0]

B4
=

- 1 [
L o > T I
0 fiien) [iie2) iz

3/1/07

b |

Example

Book the flight through Houston
[§.VP,Vero| BVeX2 [S. VP
Nominal,

Noun
0.1] [0,2] 0.3] 0.4] [0,5]
Det INP INP
[1.2] [1,3] [1.4] [1.5]
Neminal, INominal
Noun
[2.3] 24] |[25]
rep PP
3.4 [3.5]
NP,
Proper=
Noun
4.5]
3/1/07

CSCI 5832 Spring 2007

 J

Other Ways to Do It?

* Are there any other sensible ways to fill
the table that still guarantee that the

cells we need are already filled?

3/1/07

CSCI 5832 Spring 2007

Other Ways to Do I1?

3/1/07 CSCI 5832 Spring 2007 7

Sample Grammar

S — NPVP Det — that | this| a

S — Aux NP VP Noun — book | flight| meal | money

S — VP Verb — book | include | prefer

NP — Pronoun Pronoun — I| she | me

NP — Proper-Noun Proper-Noun — Houston | TWA

NP — Det Nominal Aux — does

Nominal — Noun Preposition — from | to | on | near | through

Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP

VP — Verb PP

VP — VP PP

PP — Preposition NP

3/1/07 CSCI 5832 Spring 2007 8

CNF Conversion

S — NPVP
S — Aux NP VP
S — VP

NP — Pronoun

NP — Proper-Noun

NP — Det Nominal
Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP

S — NP VP

S — X1vVpP

X1 — Aux NP

S — book | include | prefer
S — Verb NP

S — X2PP

S — Verb PP

S — VPPP

NP — 1| she| me

NP — TWA | Houston

NP — Det Nominal

Nominal — book | flight | meal | money
Nominal — Nominal Noun

Nominal — Nominal PP

VP — Verb VP — book | include | prefer
VP — Verb NP VP — Verb NP
VP — Verb NP PP VP — X2 PP
X2 — Verb NP
VP — Verb PP VP — Verb PP
VP — VP PP VP — VP PP
PP — Preposition NP PP — Preposition NP
3/1/07 CSCI 5832 Spring 2007 9
Book the flight through Houston
[S,VP, Vert S,VP, X2
INominal,
Noun
0.1] [02] |[0.3] 0.4] 0,5]
Det NP
1.2] [1.3 1.4] [1.5]
mominal.
oun
1
[23] |[24] [[25]
Prep
3,4] [3.5]
NP,
Proper-
Noun
4.5]
3/1/07 CSCI 5832 Spring 2007 10

Example
Fill the Last Column

Book the flight through Houston

[S,VP Verk S,VP. X2
Nominal,
Noun
0.1] [02] [[0,3] 0.4] 0,5]
Det NP
[1.2] [1.3] [1.4] [1.5]
Nominal,
Noun
2
[23] |[24] |[2.5]
Prep€—PP
[3.4]
NP,
Proper-
Noun
4,5]
3/1/07 CSCI 5832 Spring 2007 11

Example
Fill the Last Column

Book the flight through Houston

[S,VP,Vert S,VP,X2

INominal,

INoun

0.1] [0.2] [0.3] 0.4] 0,5]
Det NP

1.2] 1.3 1.4] [1.5]

ominal=i§ lominal
INoun
3
23 |24 |¥
Prep PP
3,4] [3,5]
[
Proper-
Noun
4.5]

3/1/07 CSCI 5832 Spring 2007 12

Example
Fill the Last Column

Book the flight through Houston

[S,VP Verl S,VP, X2
Nominal,
Noun
0.1] [0.2] [0.3] 0,4] 0,5]
Det <@—iNpP
[1.2] [1.3] [1.4]
Nominal, Nominal
Noun
4
[2.3] [24] |[25]
Prep PP
[3.4] [3.5]
NP,
Proper-
Noun
4.5]
3/1/07 CSCI 5832 Spring 2007 13

Example
Fill the Last Column

Book the flight ~ through Houston

[S.VP Verh< - VP
Nominal, SP’_‘ ‘5 vp
Noun X2 $z’ 2
01] |02 [03] [0.4] S,
Det N INF
P
121 |[1.3] |11.4]
Nominal, Naminal
5 Noun "I
[2.3] [2.4]
Prep PP
341 [3.5]
NP,
Proper-
Noun
4.5]

3/1/07 CSCI 5832 Spring 2007 14

CKY Notes

- Since it's bottom up, CKY populates the
table with a lot of phantom constituents.
- Segments that by themselves are constituents

but cannot really occur in the context in which
they are being suggested.

- To avoid this we can switch to a top-down
control strategy or

- We can add some kind of filtering that blocks
constituents where they can not happen in a
final analysis.

3/1/07 CSCI 5832 Spring 2007 15

Earley Parsing

- Allows arbitrary CFGs

+ Top-down control

* Fills a table in a single sweep over the
input words
- Table is length N+1; N is number of words

- Table entries represent
+ Completed constituents and their locations
* In-progress constituents
* Predicted constituents

3/1/07 CSCI 5832 Spring 2007 16

States

+ The table-entries are called states and are
represented with dotted-rules.

S->"VP A VP is predicted
NP -> Det * Nominal An NP is in progress
VP -> V NP * A VP has been found
3/1/07 CSCI 5832 Spring 2007 17
States/Locations
* It would be nice to know where these things are in the
input so...
S ->e VP [0,0] A VP is predicted at the
start of the sentence
NP -> Det e Nominal [1,2] An NP is in progress:; the

Det goes from 1 to 2

VP -> VNP e [0,3] A VP has been found starting at O and
ending at 3

3/1/07 CSCI 5832 Spring 2007 18

States/Locations

S ->e VP [0,0] * A VP is predicted at the
start of the sentence

NP -> Det @ Nominal - An NP is in progress; the
[1,2] Det goes from 1 to 2

VP -> VNP e [0,3] - A VP has been found
starting at O and ending

at 3

3/1/07 CSCI 5832 Spring 2007 19

Graphically

VP ->VNP.

S->.VP

NP -> Det . Nominal

Boock ® that @ flight @
0 1 2 3

3/1/07 CSCI 5832 Spring 2007 20

10

Earley

+ As with most dynamic programming
approaches, the answer is found by
looking in the table in the right place.

 In this case, there should be an S state
in the final column that spans from O to
n and is complete.

« If that's the case you're done.
-S->oe[0,n]

3/1/07 CSCI 5832 Spring 2007 21

Earley

+ So sweep through the table from O to n...

- New predicted states are created by
starting top-down from S

- New incomplete states are created by
advancing existing states as new constituents
are discovered

- New complete states are created in the same
way.

3/1/07 CSCI 5832 Spring 2007 22

11

Earley

* More specifically...
1. Predict all the states you can upfront

2. Read a word
1. Extend states based on matches
2. Generate new predictions
3. 6o to step 2

3. Look at n to see if you have a winner

3/1/07 CSCI 5832 Spring 2007

23

Earley Code

function EARLEY-PARSE(words, grammar) returns chart

ADDTOCHART((y — S, [0,0]). chart[0])
for i — from O to LENGTH(words) do
for each state in chart[i] do
if INCOMPLETE ?(state) and
NEXT-CAT(szare) is not a part of speech then
PREDICTOR(state)
elseif INCOMPLETE ?(state) and
NEXT-CAT(srare) is a part of speech then
SCANNER(stare)
else
COMPLETER(stare)
end
end
return(chart)

3/1/07 CSCI 5832 Spring 2007

24

12

Earley Code

procedure PREDICTOR((A — a e B S, [i,j])
for each (B — y) in GRAMMAR-RULES-FOR(B, grammar) do
ADDTOCHART((B — ey, [}, j]),chart[j])
end

procedure SCANNER((A — a e B, [i,j])
if B € PARTS-OF-SPEECH(word/j]) then
ADDTOCHART((B — word|[j] e, [j,j+ 1]).chart[j+1])

procedure COMPLETER((B — vy e, [j,k])
for each (A — « e B B, [i, j]) in chart[j] do
ADDTOCHART((A — a B e f3, [i,k]).chart[k])
end

3/1/07 CSCI 5832 Spring 2007 25

Example

* Book that flight

* We should find... an S from O to 3 that
is a completed state...

3/1/07 CSCI 5832 Spring 2007 26

13

Example

Chart[0] SO y — oS
S1 S — eNPVP
S2 S — eAux NP VP
S3 S — VP
S4 NP — e Pronoun
S5 NP — e Proper-Noun
S6 NP — e Det Nominal
S7 VP — eVerb
S8 VP — eVerb NP
S9 VP — e Verb NP PP
S10 VP — e Verb PP
S11 VP — eVPPP

3/1/07 CSCI 5832 Spring 2007

[0,0] Dummy start state

[0.0]
[0.0]
[0.0]
[0.0]
[0.0]
[0.0]
[0.0]
[0.0]
[0.0]
[0.0]
[0.0]

Predictor
Predictor
Predictor
Predictor
Predictor
Predictor
Predictor
Predictor
Predictor
Predictor
Predictor

27

Add To Chart

procedure ADDTOCHART(srate, chart-entry)
if state 1s not already in chart-entry then
PUSH-ON-END(stare, chart-entry)

end

3/1/07 CSCI 5832 Spring 2007

28

14

Example

Chart[1] S12 Verb — book e [0.1] Scanner
S13 VP — Verb e [0.1] Completer
S14 VP — Verb ¢ NP [0.1] Completer
S15 VP — Verb e NP PP [0.,1] Completer
S16 VP — Verb e PP [0,1] Completer
S17 S — VPe [0.,1] Completer
S18 VP — VP e PP [0.1] Completer
S19 NP — e Pronoun [1.1] Predictor
S20 NP — e Proper-Noun [1.1] Predictor
S21 NP — e Det Nominal [1.1] Predictor
S22 PP — e Prep NP [1.1] Predictor
3/1/07 CSCI 5832 Spring 2007 29
Example
Chart[2] S23 Det — that e [1,2] Scanner
S24 NP — Det e Nominal [1.2] Completer
S25 Nominal — e Noun [2.2] Predictor
S26 Nominal — e Nominal Noun [2,2] Predictor
S27 Nominal — e Nominal PP [2.2] Predictor
Chart[3] S28 Nowun — flight e [2.3] Scanner
S29 Nominal — Noun e [2.3] Completer
S30 NP — Det Nominal e [1.3] Completer
S31 Nominal — Nominal ¢ Noun [2,3] Completer
S32 Nominal — Nominal « PP [2,3] Completer
S33 VP — Verb NP e [0,3] Completer
S34 VP — Verb NP ¢ PP [0,3] Completer
S35 PP — e Prep NP [3.3] Predictor
S36 S — VPe [0,3] Completer
S37 VP — VP ePP [0,3] Completer
3/1/07 CSCI 5832 Spring 2007 30

15

Efficiency

* For such a simple example, there seems
to be a lot of useless stuff in there.

* Why?

« It's predicting things that aren't consistent
with the input
*That's the flipside to the CKY problem.

3/1/07 CSCI 5832 Spring 2007 31

Details

 As with CKY that isn't a parser until we
add the backpointers so that each state
knows where it came from.

3/1/07 CSCI 5832 Spring 2007 32

16

Back to Ambiguity

- Did we solve it?

3/1/07 CSCI 5832 Spring 2007 33
S S
NP VP /\
| NP VP
Pronoun .73, NP . /\
I shlor /\ . | VP PP
Det Nominal I Py i
| Verb NP in my pajamas
2 Nominal pp .
T shot Det Nominal
Noun inmy pajamas | & |
an Noun
elephant
elephant
3/1/07 CSCI 5832 Spring 2007 34

Ambiguity

* No...

Both CKY and Earley will result in multiple S
structures for the [0,n] table entry.

They both efficiently store the sub-parts
that are shared between multiple parses.

And they obviously avoid re-deriving those
sub-parts.

But neither can tell us which one is right.

3/1/07 CSCI 5832 Spring 2007 35

Ambiguity

- In most cases, humans don't notice
incidental ambiguity (lexical or syntactic).
It is resolved on the fly and never
noticed.

- We'll try to model that with probabilities.

* But note something odd and important
about the Groucho Marx example...

3/1/07 CSCI 5832 Spring 2007 36

18

Next Time

+ Read Section 12.5 (Partial Parsing)
+ Then go back and start reading Sections 6.6,
6,7 and 6.8.
- If you have no background in stats please slog through
section 6.6 carefully.
- After that we'll move on to probabilistic parsing
which is in the new draft Ch.13

- Which isn't there yet. Hopefully it will be there when
we get there.

3/1/07 CSCI 5832 Spring 2007 37

19

