
1

2/27/07 CSCI 5832 Spring 2006 1

CSCI 5832
Natural Language Processing

Lecture 12
Jim Martin

2/27/07 CSCI 5832 Spring 2006 2

Today: 2/27

• Review
• Treebanks
• Parsing
• Break
• More on projects

2

2/27/07 CSCI 5832 Spring 2006 3

Avoiding Repeated Work

• Parsing is hard, and slow. It’s wasteful
to redo stuff over and over and over.

• Grammars are ambiguous both locally and
globally exacerbating the parsing
problems.

2/27/07 CSCI 5832 Spring 2006 4

flight

3

2/27/07 CSCI 5832 Spring 2006 5

flight

flight

2/27/07 CSCI 5832 Spring 2006 6

4

2/27/07 CSCI 5832 Spring 2006 7

2/27/07 CSCI 5832 Spring 2006 8

Ambiguity

• For that example, the problem was local
ambiguity; at the point a decision was
being made the information needed to
make the right decision wasn’t there.

• What about global ambiguity?

5

2/27/07 CSCI 5832 Spring 2006 9

Ambiguity

2/27/07 CSCI 5832 Spring 2006 10

Ambiguity

• Local ambiguity means that we have to deal with
multiple plausible choices during the parsing
process.

• Global ambiguity means that the grammar can’t
tell us which of several (many?) possible parses is
the correct one.

• To deal with these problems we’re going to…
– Pursue all possible choices in parallel
– Store (but not necessarily return) all globally consistent

parse trees.

6

2/27/07 CSCI 5832 Spring 2006 11

Grammars

• Before you can parse you need a grammar.
• So where do grammars come from?

– Grammar Engineering
• Lovingly hand-crafted decades-long efforts by humans

to write grammars (typically in some particular grammar
formalism of interest to the linguists developing the
grammar).

– TreeBanks
• Semi-automatically generated sets of parse trees for

the sentences in some corpus. Typically in a generic
lowest common denominator formalism (of no particular
interest to any modern linguist).

2/27/07 CSCI 5832 Spring 2006 12

TreeBank Grammars

• Reading off the grammar…
• The grammar is the set of rules (local

subtrees) that occur in the annotated
corpus

• They tend to avoid recursion (and
elegance and parsimony)
– Ie. they tend to the flat and redundant

• Penn TreeBank (III) has about 17500
grammar rules under this definition.

7

2/27/07 CSCI 5832 Spring 2006 13

TreeBanks

2/27/07 CSCI 5832 Spring 2006 14

TreeBanks

8

2/27/07 CSCI 5832 Spring 2006 15

Sample Rules

2/27/07 CSCI 5832 Spring 2006 16

Example

9

2/27/07 CSCI 5832 Spring 2006 17

TreeBanks

• TreeBanks provide a grammar (of a sort).
• As we’ll see they also provide the training data

for various ML approaches to parsing.
• But they can also provide useful data for more

purely linguistic pursuits.
– You might have a theory about whether or not something

can happen in particular language.
– Or a theory about the contexts in which something can

happen.
– TreeBanks can give you the means to explore those

theories. If you can formulate the questions in the
right way and get the data you need.

2/27/07 CSCI 5832 Spring 2006 18

Tgrep

• You might for example like to grep
through a file filled with trees.

10

2/27/07 CSCI 5832 Spring 2006 19

TreeBanks

• Finally, you should have noted a bit of a
circular argument here.

• Treebanks provide a grammar because we
can read the rules of the grammar out
of the treebank.

• But how did the trees get in there in the
first place? There must have been a
grammar theory in there someplace…

2/27/07 CSCI 5832 Spring 2006 20

TreeBanks

• Typically, not all of the sentences are
hand-annotated by humans.

• They’re automatically parsed and then
hand-corrected.

11

2/27/07 CSCI 5832 Spring 2006 21

Break

• Plan is to have everybody in a group and
all the groups with projects by Friday.

• We have a pretty good start on that
already.

• Google semeval 2007 and CONLL to get
ideas on some interesting tasks.

2/27/07 CSCI 5832 Spring 2006 22

Parsing

• We’re going to cover from Chapter 12
– CKY (today)
– Earley (Thursday)

• Both are dynamic programming solutions
that run in O(n**3) time.
– CKY is bottom-up
– Earley is top-down

12

2/27/07 CSCI 5832 Spring 2006 23

Sample Grammar

2/27/07 CSCI 5832 Spring 2006 24

Dynamic Programming

• DP methods fill tables with partial
results and
– Do not do too much avoidable repeated work
– Solve exponential problems in polynomial time

(sort of)
– Efficiently store ambiguous structures with

shared sub-parts.

13

2/27/07 CSCI 5832 Spring 2006 25

CKY Parsing

• First we’ll limit our grammar to epsilon-
free, binary rules (more later)

• Consider the rule A -> BC
– If there is an A in the input then there must

be a B followed by a C in the input.
– If the A spans from i to j in the input then

there must be some k st. i<k<j
• Ie. The B splits from the C someplace.

2/27/07 CSCI 5832 Spring 2006 26

CKY

• So let’s build a table so that an A
spanning from i to j in the input is placed
in cell [i,j] in the table.

• So a non-terminal spanning an entire
string will sit in cell [0, n]

• If we build the table bottom up we’ll
know that the parts of the A must go
from i to k and from k to j

14

2/27/07 CSCI 5832 Spring 2006 27

CKY

• Meaning that for a rule like A -> B C we
should look for a B in [i,k] and a C in
[k,j].

• In other words, if we think there might
be an A spanning i,j in the input… AND

• A -> B C is a rule in the grammar THEN
• There must be a B in [i,k] and a C in

[k,j] for some i<k<j

2/27/07 CSCI 5832 Spring 2006 28

CKY

• So to fill the table loop over the cell[i,j]
values in some systematic way
– What constraint should we put on that?

– For each cell loop over the appropriate k
values to search for things to add.

15

2/27/07 CSCI 5832 Spring 2006 29

CKY Table

2/27/07 CSCI 5832 Spring 2006 30

CKY Algorithm

16

2/27/07 CSCI 5832 Spring 2006 31

CKY Parsing

• Is that really a parser?

2/27/07 CSCI 5832 Spring 2006 32

Note

• We arranged the loops to fill the table a
column at a time, from left to right,
bottom to top.
– This assures us that whenever we’re filling a

cell, the parts needed to fill it are already
in the table (to the left and below)

17

2/27/07 CSCI 5832 Spring 2006 33

Example

2/27/07 CSCI 5832 Spring 2006 34

Other Ways to Do It?

• Are there any other sensible ways to fill
the table that still guarantee that the
cells we need are already filled?

18

2/27/07 CSCI 5832 Spring 2006 35

Other Ways to Do It?

2/27/07 CSCI 5832 Spring 2006 36

Sample Grammar

19

2/27/07 CSCI 5832 Spring 2006 37

Problem

• What if your grammar isn’t binary?
– As in the case of the TreeBank grammar?

• Convert it to binary… any arbitrary CFG
can be rewritten into Chomsky-Normal
Form automatically.

• What does this mean?
– The resulting grammar accepts (and rejects)

the same set of strings as the original
grammar.

– But the resulting derivations (trees) are
different.

2/27/07 CSCI 5832 Spring 2006 38

Problem

• More specifically, rules have to be of
the form
A -> B C
Or
A -> w

That is rules can expand to either 2 non-
terminals or to a single terminal.

20

2/27/07 CSCI 5832 Spring 2006 39

Binarization Intuition

• Eliminate chains of unit productions.
• Introduce new intermediate non-terminals into the

grammar that distribute rules with length > 2 over
several rules. So…
S -> A B C

• Turns into
S -> X C
X - A B

Where X is a symbol that doesn’t occur anywhere else in
the the grammar.

2/27/07 CSCI 5832 Spring 2006 40

CNF Conversion

21

2/27/07 CSCI 5832 Spring 2006 41

Example

2/27/07 CSCI 5832 Spring 2006 42

Example

22

2/27/07 CSCI 5832 Spring 2006 43

Example

2/27/07 CSCI 5832 Spring 2006 44

Example

23

2/27/07 CSCI 5832 Spring 2006 45

Example

