# CSCI 5832 <br> Natural Language Processing <br> Lecture 8 <br> Jim Martin 

## Today 2/8

- Review N-Grams
- Entropy/Models
- Parts of Speech and Tagging


## N-Gram Models

- Assigning probabilities to sequences by
- Using the chain rule to decompose the problem
- Make some conditional independence assumptions to simplify things
- Use smoothing and backoff to massage the counts into something that works.



## Good-Turing

- But the basic Good-Turing approach is pretty broken when it comes to...
- The other bigger buckets
- And how to redistribute the mass among the zero counts


## Katz-Backoff:Trigram Case

$P_{\text {katz }}\left(w_{i} \mid w_{i-2} w_{i-1}\right)= \begin{cases}P^{*}\left(w_{i} \mid w_{i-2} w_{i-1}\right), & \text { if } C\left(w_{i-2} w_{i-1} w_{i}\right)>0 \\ \alpha\left(w_{i-1} w_{i}\right) P^{*}\left(w_{i} \mid w_{i-1}\right), & \text { else if } C\left(w_{i-1} w_{i}\right)>0 \\ \alpha\left(w_{i}\right) P^{*}\left(w_{i}\right), & \text { otherwise. }\end{cases}$

## What Makes a Good Model?

- Two answers:
- Models that make your end application run better
- In vivo evaluation
- Models that predict well the nature of unseen representative texts...


## Information Theory

- Who is going to win the World Series next year?
- Well there are 30 teams. Each has a chance, so there's a $1 / 30$ chance for any team...? No.
- Rockies? Big surprise, lots of information
- Yankees? No surprise, not much information


## Information Theory

- How much uncertainty is there when you don't know the outcome of some event (answer to some question)?
- How much information is to be gained by knowing the outcome of some event (answer to some question)?


## Information Theory

- This stuff is usually explained either in terms of betting or in terms of communication codes.
- Number of bits needed to communicate messages on average
- Neither of which is terribly illuminating for language applications.


## Aside on logs

- Base doesn't matter. Unless I say otherwise, I mean base 2.
- Probabilities lie between 0 an 1. So $\log$ probabilities are negative and range from 0 $(\log 1)$ to -infinity $(\log 0)$.
- The - is a pain so at some point we'll make it 90 away by multiplying by -1 .


## Entropy

- Let's start with a simple case, the probability of word sequences with a unigram model
- Example
- $S=$ "One fish two fish red fish blue fish"
- $P(S)=P($ One $) P(f i s h) P(t w o) P(f i s h) P($ red $) P(f i s h) P(b l u e) P(f i s h)$
- Log $P(S)=\log P($ One $)+\log P(f i s h)+\ldots \log P(f i s h)$


## Entropy cont.

- In general that's

- But note that
- the order doesn' $\dagger$ matter
- that words can occur multiple times
- and that they always contribute the same each time



## Entropy cont.

- One fish two fish red fish blue fish
- Fish fish fish fish one two red blue


## Entropy cont.

- Now let's divide both sides by N, the length of the sequence:

- That's basically a per word average of the log probabilities


## Entropy

- Now assume the sequence is really really long.
- Moving the N into the summation you get

- Rewriting and getting rid of the minus sign



## Entropy

- Think about this in terms of uncertainty or surprise.
- The more likely a sequence is, the lower the entropy. Why?


## Entropy

- Note that that sum is over the types of the elements of the model being used (unigrams, bigrams, trigrams, etc.), not the words in the sequence.


## Model Evaluation

- Remember the name of the game is to come up with statistical models that capture something useful in some body of text or speech.
- There are precisely a gazzilion ways to do this
- N -grams of various sizes
- Smoothing
- Backoff...


## Model Evaluation

- Given a collection of text and a couple of models, how can we tell which model is best?
- Intuition... the model that assigns the highest probability (lowest entropy) to a set of withheld text
- Withheld text? Text drawn from the same distribution (corpus), but not used in the creation of the model being evaluated.


## Model Evaluation

- The more you're surprised at some event that actually happens, the worse your model was.
- We want models that minimize your surprise at observed outcomes.
- Given two models and some training data and some withheld test data... which is better?
- The model where you're not surprised to see the test data.


## Break

- Quiz is Thursday.
- Next HW details coming soon.
- Shifting to Chapter 5


## Parts of Speech

- Start with eight basic categories
- Noun, verb, pronoun, preposition, adjective, adverb, article, conjunction
- These categories are based on morphological and distributional properties (not semantics)
- Some cases are easy, others are murky


## Parts of Speech

- What are some possible parts of speech for building?


## Parts of Speech

- A quarantine in the Boca Raton building contaminated by deadly anthrax is set to be lifted.
- Dialogue is one of the powerful tools to building an understanding across differences and thereby leading to negotiation. It is an easy way to recognise ...
- The building project, which would be spread out over five years with schools most in need getting work first, would cost taxpayers with a ...
- Building for Independence, as its name indicates, demonstrates exactly what Canada's New Government is doing to support Canadians who are homeless or at ...
- The last time house building reached such high levels was in 1989 when over 191800 new homes were built.
- State lawmakers are considering building up a trust fund for schools so it will earn more money in the coming decades. ...


## Tagging

- State/NN lawmakers/NNS are/VBP considering/VBG building/VBG up/RP a/DT trust/NN fund/NN for/IN schools/NNS so/IN it/PRP will/MD earn/VB more/JJR money/NN in/IN the/DT coming/VBG decades/NNS ./.


## Parts of Speech

- Two kinds of category
- Closed class
- Prepositions, articles, conjunctions, pronouns
- Open class
- Nouns, verbs, adjectives, adverbs


## Sets of Parts of Speech: Tagsets

- There are various standard tagsets to choose from: some have a lot more tags than others
- The choice of tagset is based on the application
- Accurate tagging can be done with even large tagsets

| Penn Tagset |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Tag | Description | Example | Tag | Description | Example |
| CC | Coordin. Conjunction | and, but, or | SYM | Symbol |  |
| CD | Cardinal number | one, two, three | TO | "to" | to |
| DT | Determiner | a, the | UH | Interjection | ah, oops |
| EX | Existential 'there' | there | VB | Verb, base form | eat |
| FW | Foreign word | mea culpa | VBD | Verb, past tense | ate |
| IN | Preposition/sub-conj | of, in, by | VBG | Verb, gerund | eating |
| JJ | Adjective | yellow | VBN | Verb, past participle | eaten |
| JJR | Adj., comparative | bigger | VBP | Verb, non-3sg pres | eat |
| JJS | Adj., superlative | wildest | VBZ | Verb, 3sg pres | eats |
| LS | List item marker | 1, 2, One | WDT | Wh-determiner | which, that |
| MD | Modal | can, should | WP | Wh-pronoun | what, who |
| NN | Noun, sing. or mass | llama | WP\$ | Possessive wh- | whose |
| NNS | Noun, plural | llamas | WRB | Wh-adverb | how, where |
| NNP | Proper noun, singular | IBM | \$ | Dollar sign |  |
| NNPS | Proper noun, plural | Carolinas |  | Pound sign |  |
| PDT | Predeterminer | all, both |  | Left quote | 'or ${ }^{\text {" }}$ |
| POS | Possessive ending | 's |  | Right quote | , or " |
| PRP | Personal pronoun | I, you, he | ( | Left parenthesis | [, (, \{, < |
| PRP\$ | Possessive pronoun | your, one's |  | Right parenthesis | ], ), \}, > |
| RB | Adverb | quickly, never |  | Comma |  |
| RBR | Adverb, comparative | faster |  | Sentence-final punc | ! ? |
| RBS | Adverb, superlative | fastest |  | Mid-sentence punc | : ; ... -- |
| RP | Particle | $u p, o f f$ |  |  |  |
| Figure 5.6 Penn Treebank part-of-speech tags (including punctuation). |  |  |  |  |  |
| 2/8/07 |  | CSCI 5832 Spring 2007 |  |  |  |

## Tagging

- Part of speech tagging is the process of assigning parts of speech to each word in a sentence... Assume we have
- A tagset
- A dictionary that gives you the possible set of tags for each entry
- A text to be tagged
- A reason?


## Three Methods

- Rules
- Probabilities
- Sort of both


## Rules

- Hand-crafted rules for ambiguous words that test the context to make appropriate choices
- Early attempts fairly error-prone
- Extremely labor-intensive


## Probabilities

- We want the best set of tags for a sequence of words (a sentence)
- $W$ is a sequence of words
- $T$ is a sequence of tags


## Probabilities

- We want the best set of tags for a sequence of words (a sentence)
- $W$ is a sequence of words
- $T$ is a sequence of tags



## Tag Sequence: $P(T)$

- How do we get the probability of a specific tag sequence?
- Count the number of times a sequence occurs and divide by the number of sequences of that length. Not likely.
- Make a Markov assumption and use N-grams over tags...
- $P(T)$ is a product of the probability of $N$-grams that make it up.


## $P(T):$ Bigram Example

- <s> Det Adj Adj Noun </s>
- $P(\operatorname{Det} \mid\langle s\rangle) P(A d j \mid \operatorname{Det}) P(A d j \mid A d j) P($ Noun $\mid A d j)$


## Counts

- Where do you get the N -gram counts?
- From a large hand-tagged corpus.
- For N -grams, count all the $\mathrm{Tag}_{\mathrm{i}} \mathrm{Tag}_{i+1}$ pairs
- And smooth them to get rid of the zeroes
- Alternatively, you can learn them from an untagged corpus


## What about $P(W \mid T)$

- First its odd. It is asking the probability of seeing "The big red dog" given "Det Adj Adj Noun"
- Collect up all the times you see that tag sequence and see how often "The big red dog" shows up. Again not likely to work.


## $P(W \mid T)$

- We'll make the following assumption (because it's easy)... Each word in the sequence only depends on its corresponding tag. So...

- How do you get the statistics for that?

```
So...
```

- We start with

- And get



## HMMs

- This is an HMM

- The states in the model are the tags, and the observations are the words.
- The state to state transitions are driven by the bigram statistics
- The observed words are based solely on the state that you're in


## Performance

- This method has achieved 95-96\% correct with reasonably complex English tagsets and reasonable amounts of handtagged training data.
- Forward pointer... its also possible to train a system without hand-labeled training data

