
1

1/23/07 CSCI 5832 Spring 2006 1

CSCI 5832
Natural Language

Processing
Lecture 3
Jim Martin

1/23/07 CSCI 5832 Spring 2006 2

Today 1/23

• Review FSA
– Determinism and Non-Determinism

• Combining FSA
• English Morphology



2

1/23/07 CSCI 5832 Spring 2006 3

Review

• Regular expressions are just a compact
textual representation of FSAs

• Recognition is the process of determining
if a string/input is in the language
defined by some machine.
– Recognition is straightforward with

deterministic machines.

1/23/07 CSCI 5832 Spring 2006 4

D-Recognize



3

1/23/07 CSCI 5832 Spring 2006 5

Three Views

• Three equivalent formal ways to look at
what we’re up to (not including tables)

Regular Expressions

Regular LanguagesFinite State Automata

1/23/07 CSCI 5832 Spring 2006 6

Regular Languages

• More on these in a couple of weeks

S → b a a A

A → a A

A → !



4

1/23/07 CSCI 5832 Spring 2006 7

Non-Determinism

1/23/07 CSCI 5832 Spring 2006 8

Non-Determinism cont.

• Yet another technique
– Epsilon transitions
– Key point: these transitions do not examine

or advance the tape during recognition



5

1/23/07 CSCI 5832 Spring 2006 9

Equivalence

• Non-deterministic machines can be converted to
deterministic ones with a fairly simple
construction

• That means that they have the same power; non-
deterministic machines are not more powerful
than deterministic ones in terms of the languages
they can accept

• It also means that one way to do recognition with
a non-deterministic machine is to turn it into a
deterministic one.

1/23/07 CSCI 5832 Spring 2006 10

Non-Deterministic Recognition

• In a ND FSA there exists at least one
path through the machine for a string
that is in the language defined by the
machine.

• But not all paths directed through the
machine for an accept string lead to an
accept state.

• No paths through the machine lead to an
accept state for a string not in the
language.



6

1/23/07 CSCI 5832 Spring 2006 11

Non-Deterministic Recognition

• So success in a non-deterministic
recognition occurs when a path is found
through the machine that ends in an
accept.

• Failure occurs when all of the possible
paths lead to failure.

1/23/07 CSCI 5832 Spring 2006 12

Example

b a a a ! \

q0 q1 q2 q2 q3 q4



7

1/23/07 CSCI 5832 Spring 2006 13

Example

1/23/07 CSCI 5832 Spring 2006 14

Example



8

1/23/07 CSCI 5832 Spring 2006 15

Example

1/23/07 CSCI 5832 Spring 2006 16

Example



9

1/23/07 CSCI 5832 Spring 2006 17

Example

1/23/07 CSCI 5832 Spring 2006 18

Example



10

1/23/07 CSCI 5832 Spring 2006 19

Example

1/23/07 CSCI 5832 Spring 2006 20

Example



11

1/23/07 CSCI 5832 Spring 2006 21

Key Points

• States in the search space are pairings
of tape positions and states in the
machine.

• By keeping track of as yet unexplored
states, a recognizer can systematically
explore all the paths through the
machine given an input.

1/23/07 CSCI 5832 Spring 2006 22

ND-Recognize



12

1/23/07 CSCI 5832 Spring 2006 23

Infinite Search

• If you’re not careful such searches can
go into an infinite loop.

• How?

1/23/07 CSCI 5832 Spring 2006 24

Why Bother?

• Non-determinism doesn’t get us more
formal power and it causes headaches so
why bother?
– More natural (understandable) solutions



13

1/23/07 CSCI 5832 Spring 2006 25

Compositional Machines

• Formal languages are just sets of strings
• Therefore, we can talk about various set

operations (intersection, union, concatenation)
• This turns out to be a useful exercise

1/23/07 CSCI 5832 Spring 2006 26

Union



14

1/23/07 CSCI 5832 Spring 2006 27

Concatenation

1/23/07 CSCI 5832 Spring 2006 28

Negation

• Construct a machine M2 to accept all
strings not accepted by machine M1 and
reject all the strings accepted by M1
– Invert all the accept and not accept states

in M1
• Does that work for non-deterministic

machines?



15

1/23/07 CSCI 5832 Spring 2006 29

Intersection

• Accept a string that is in both of two
specified languages

• An indirect construction…
– A^B = ~(~A or ~B)

1/23/07 CSCI 5832 Spring 2006 30

Motivation

• Let’s have a meeting on Thursday, Jan
26th.
– Writing an FSA to recognize English date

expressions is not terribly hard.
– Except for the part about rejecting invalid

dates.
– Write two FSAs: one for the form of the

dates, and one for the calendar arithmetic
part

– Intersect the two machines



16

1/23/07 CSCI 5832 Spring 2006 31

Administration

• Homework questions?
• Anything else?

1/23/07 CSCI 5832 Spring 2006 32

Assignment 1

• Strings are an easy and not very good
way to represent texts

• Normally, we want lists of sentences
that consist of lists of tokens, that
ultimately may point to strings
representing words (lexemes)

• Lists are central to Python and will make
your life easy if you let them



17

1/23/07 CSCI 5832 Spring 2006 33

Transition

• Finite-state methods are particularly
useful in dealing with a lexicon.

• Lots of devices, some with limited
memory, need access to big lists of
words.

• So we’ll switch to talking about some
facts about words and then come back to
computational methods

1/23/07 CSCI 5832 Spring 2006 34

English Morphology

• Morphology is the study of the ways
that words are built up from smaller
meaningful units called morphemes

• We can usefully divide morphemes into
two classes
– Stems: The core meaning-bearing units
– Affixes: Bits and pieces that adhere to

stems to change their meanings and
grammatical functions



18

1/23/07 CSCI 5832 Spring 2006 35

English Morphology

• We can also divide morphology up into
two broad classes
– Inflectional
– Derivational

1/23/07 CSCI 5832 Spring 2006 36

Word Classes

• By word class, we have in mind familiar
notions like noun and verb

• We’ll go into the gory details in Ch 5
• Right now we’re concerned with word

classes because the way that stems and
affixes combine is based to a large
degree on the word class of the stem



19

1/23/07 CSCI 5832 Spring 2006 37

Inflectional Morphology

• Inflectional morphology concerns the
combination of stems and affixes where
the resulting word
– Has the same word class as the original
– Serves a grammatical/semantic purpose that

is
• Different from the original
• But nevertheless transparently related to the

original

1/23/07 CSCI 5832 Spring 2006 38

Nouns and Verbs (English)

• Nouns are simple
– Markers for plural and possessive

• Verbs are only slightly more complex
– Markers appropriate to the tense of the

verb



20

1/23/07 CSCI 5832 Spring 2006 39

Regulars and Irregulars

• Ok so it gets a little complicated by the
fact that some words misbehave (refuse
to follow the rules)
– Mouse/mice, goose/geese, ox/oxen
– Go/went, fly/flew

• The terms regular and irregular will be
used to refer to words that follow the
rules and those that don’t.

1/23/07 CSCI 5832 Spring 2006 40

Regular and Irregular Verbs

• Regulars…
– Walk, walks, walking, walked, walked

• Irregulars
– Eat, eats, eating, ate, eaten
– Catch, catches, catching, caught, caught
– Cut, cuts, cutting, cut, cut



21

1/23/07 CSCI 5832 Spring 2006 41

Derivational Morphology

• Derivational morphology is the messy
stuff that no one ever taught you.
– Quasi-systematicity
– Irregular meaning change
– Changes of word class

1/23/07 CSCI 5832 Spring 2006 42

Derivational Examples

• Verb/Adj to Noun

fuzzinessfuzzy-ness
killerkill-er
appointeeappoint-ee

computerizationcomputerize-ation



22

1/23/07 CSCI 5832 Spring 2006 43

Derivational Examples

• Noun/Verb to Adj

CluelessClue-less

EmbraceableEmbrace-able

ComputationalComputation-al

1/23/07 CSCI 5832 Spring 2006 44

Compute

• Many paths are possible…
• Start with compute

– Computer -> computerize -> computerization
– Computation -> computational
– Computer -> computerize -> computerizable
– Compute -> computee



23

1/23/07 CSCI 5832 Spring 2006 45

Simple Rules

1/23/07 CSCI 5832 Spring 2006 46

Adding in the Words



24

1/23/07 CSCI 5832 Spring 2006 47

Derivational Rules

1/23/07 CSCI 5832 Spring 2006 48

Parsing/Generation
vs. Recognition

• Recognition is usually not quite what we
need.
– Usually if we find some string in the language we

need to find the structure in it (parsing)
– Or we have some structure and we want to

produce a surface form (production/generation)
• Example

– From “cats” to “cat +N +PL”



25

1/23/07 CSCI 5832 Spring 2006 49

Finite State Transducers

• The simple story
– Add another tape
– Add extra symbols to the transitions

– On one tape we read “cats”, on the other
we write “cat +N +PL”

1/23/07 CSCI 5832 Spring 2006 50

Next Time

• On to Chapter 3



26

1/23/07 CSCI 5832 Spring 2006 51

FSAs and the Lexicon

• First we’ll capture the morphotactics
– The rules governing the ordering of affixes

in a language.
• Then we’ll add in the actual words


