
1

1/23/07 CSCI 5832 Spring 2007 1

CSCI 5832
Natural Language Processing

Lecture 2
Jim Martin

1/23/07 CSCI 5832 Spring 2007 2

Today 1/18

• Knowledge of language
• Ambiguity
• Models and algorithms
• Generative paradigm
• Finite-state methods

2

1/23/07 CSCI 5832 Spring 2007 3

Categories of Knowledge

• Phonology
• Morphology
• Syntax
• Semantics
• Pragmatics
• Discourse

 Each kind of knowledge has associated
with it an encapsulated set of
processes that make use of it.
Interfaces are defined that allow the
various levels to communicate.
This usually leads to a pipeline
architecture.

1/23/07 CSCI 5832 Spring 2007 4

Ambiguity

• I made her duck

3

1/23/07 CSCI 5832 Spring 2007 5

Dealing with Ambiguity

• Four possible approaches:
– Tightly coupled interaction among

processing levels; knowledge from other
levels can help decide among choices at
ambiguous levels.

– Pipeline processing that ignores ambiguity
as it occurs and hopes that other levels can
eliminate incorrect structures.

1/23/07 CSCI 5832 Spring 2007 6

Dealing with Ambiguity

• Probabilistic approaches based on making
the most likely choices

• Don’t do anything, maybe it won’t matter
– We’ll leave when the duck is ready to eat.
– The duck is ready to eat now.
– Does the ambiguity matter?

4

1/23/07 CSCI 5832 Spring 2007 7

Models and Algorithms

• By models I mean the formalisms that are
used to capture the various kinds of linguistic
knowledge we need.

• Algorithms are then used to manipulate the
knowledge representations needed to tackle
the task at hand.

1/23/07 CSCI 5832 Spring 2007 8

Models

• State machines
• Rule-based approaches
• Logical formalisms
• Probabilistic models

5

1/23/07 CSCI 5832 Spring 2007 9

Algorithms

• Many of the algorithms that we’ll study will
turn out to be transducers; algorithms that
take one kind of structure as input and
output another.

• Unfortunately, ambiguity makes this process
difficult. This leads us to employ algorithms
that are designed to handle ambiguity of
various kinds

1/23/07 CSCI 5832 Spring 2007 10

Algorithms

• In particular..
– State-space search

• To manage the problem of making choices
during processing when we lack the information
needed to make the right choice

– Dynamic programming
• To avoid having to redo work during the course

of a state-space search
‒ CKY, Earley, Minimum Edit Distance, Viterbi,
Baum-Welch

6

1/23/07 CSCI 5832 Spring 2007 11

State Space Search

• States represent pairings of partially
processed inputs with partially constructed
representations.

• Goals are inputs paired with completed
representations that satisfy some criteria.

• As with most interesting problems the spaces
are normally too large to exhaustively
explore.
– We need heuristics to guide the search
– Criteria to trim the space

1/23/07 CSCI 5832 Spring 2007 12

Dynamic Programming

• Don’t do the same work over and over.
• Avoid this by building and making use of

solutions to sub-problems that must be
invariant across all parts of the space.

7

1/23/07 CSCI 5832 Spring 2007 13

Administrative Stuff

• Mailing list
– If you’re registered you’re on it with your CU

account.

1/23/07 CSCI 5832 Spring 2007 14

Administrative Stuff

• The book…
• Just return the old books. We’ll try to go all

with the new draft chapters.

8

1/23/07 CSCI 5832 Spring 2007 15

First Assignment

• Two parts
1. Answer the following question:

• How many words do you know?
2. Write a python program that takes a newspaper

article (plain text that I provide) and returns the
number of:
• Words
• Sentences
• Paragraphs

1/23/07 CSCI 5832 Spring 2007 16

First Assignment Details

• For the first part I want…
– Your answer (ie. An actual number) and a short

explanation of how you arrived at the answer
• For the second part, just bring a hardcopy to

class and email me your answers to the test
text that I will send out shortly before the HW
is due.

9

1/23/07 CSCI 5832 Spring 2007 17

First Assignment

• In doing this assignment you should think
ahead… having access to the words,
sentences and paragraphs will be useful in
future assignments.

1/23/07 CSCI 5832 Spring 2007 18

Talk Tomorrow

Bill Dolan
• Manager of NLP Research at
• “Paraphrase as an Emergent Property of the Web”

– Noon, Muenzinger D430
• Light refreshments will be served
‒ Get there early and you can pile up enough cheese,
crackers and veggies to make a lunch.

10

1/23/07 CSCI 5832 Spring 2007 19

Getting Going

• The next two or three lectures will cover
– Finite state automata
– Finite state transducers
– English morphology

1/23/07 CSCI 5832 Spring 2007 20

Regular Expressions and Text
Searching

• Everybody does it
– Emacs, vi, perl, grep, etc..

• Regular expressions are a compact textual
representation of a set of strings representing
a language.

11

1/23/07 CSCI 5832 Spring 2007 21

Example

• Find me all instances of the word “the” in a
text.
– /the/

– /[tT]he/

– /\b[tT]he\b/

1/23/07 CSCI 5832 Spring 2007 22

Errors

• The process we just went through was
based on two fixing kinds of errors
– Matching strings that we should not have

matched (there, then, other)
• False positives (Type I)

– Not matching things that we should have
matched (The)

• False negatives (Type II)

12

1/23/07 CSCI 5832 Spring 2007 23

Errors
• We’ll be telling the same story for many

tasks, all semester. Reducing the error rate
for an application often involves two
antagonistic efforts:
– Increasing accuracy, or precision, (minimizing

false positives)
– Increasing coverage, or recall, (minimizing

false negatives).

1/23/07 CSCI 5832 Spring 2007 24

Finite State Automata

• Regular expressions can be viewed as a
textual way of specifying the structure of
finite-state automata.

• FSAs and their probabilistic relatives are at
the core of what we’ll be doing all semester.

• They also conveniently (?) correspond to
exactly what linguists say we need for
morphology and parts of syntax.
– Coincidence?

13

1/23/07 CSCI 5832 Spring 2007 25

FSAs as Graphs

• Let’s start with the sheep language from the
text
– /baa+!/

1/23/07 CSCI 5832 Spring 2007 26

Sheep FSA

• We can say the following things about this
machine
– It has 5 states
– b, a, and ! are in its alphabet
– q0 is the start state
– q4 is an accept state
– It has 5 transitions

14

1/23/07 CSCI 5832 Spring 2007 27

But note

• There are other machines that correspond to
this language

• More on this one later

1/23/07 CSCI 5832 Spring 2007 28

More Formally

• You can specify an FSA by enumerating the
following things.
– The set of states: Q
– A finite alphabet: Σ
– A start state
– A set of accept/final states
– A transition function that maps QxΣ to Q

15

1/23/07 CSCI 5832 Spring 2007 29

About Alphabets

• Don’t take that word to narrowly; it just means
we need a finite set of symbols in the input.

• These symbols can and will stand for bigger
objects that can have internal structure.

1/23/07 CSCI 5832 Spring 2007 30

Dollars and Cents

16

1/23/07 CSCI 5832 Spring 2007 31

Yet Another View

• The guts of FSAs are
ultimately represented
as tables

1/23/07 CSCI 5832 Spring 2007 32

Recognition

• Recognition is the process of determining if a
string should be accepted by a machine

• Or… it’s the process of determining if a string
is in the language we’re defining with the
machine

• Or… it’s the process of determining if a
regular expression matches a string

• Those all amount the same thing in the end

17

1/23/07 CSCI 5832 Spring 2007 33

Recognition

• Traditionally, (Turing’s idea) this process is
depicted with a tape.

1/23/07 CSCI 5832 Spring 2007 34

Recognition

• Simply a process of starting in the start state
• Examining the current input
• Consulting the table
• Going to a new state and updating the tape

pointer.
• Until you run out of tape.

18

1/23/07 CSCI 5832 Spring 2007 35

D-Recognize

1/23/07 CSCI 5832 Spring 2007 36

Key Points

• Deterministic means that at each point in
processing there is always one unique thing
to do (no choices).

• D-recognize is a simple table-driven
interpreter

• The algorithm is universal for all
unambiguous regular languages.
– To change the machine, you just change the

table.

19

1/23/07 CSCI 5832 Spring 2007 37

Key Points

• Crudely therefore… matching strings with
regular expressions (ala Perl) is a matter of
– translating the expression into a machine (table)

and
– passing the table to an interpreter

1/23/07 CSCI 5832 Spring 2007 38

Recognition as Search

• You can view this algorithm as a
degenerate kind of state-space search.

• States are pairings of tape positions
and state numbers.

• Operators are compiled into the table
• Goal state is a pairing with the end of

tape position and a final accept state
• Its degenerate because?

20

1/23/07 CSCI 5832 Spring 2007 39

Generative Formalisms

• Formal Languages are sets of strings composed
of symbols from a finite set of symbols.

• Finite-state automata define formal languages
(without having to enumerate all the strings in the
language)

• The term Generative is based on the view that
you can run the machine as a generator to get
strings from the language.

1/23/07 CSCI 5832 Spring 2007 40

Generative Formalisms

• FSAs can be viewed from two perspectives:
– Acceptors that can tell you if a string is in the

language
– Generators to produce all and only the strings in

the language

21

1/23/07 CSCI 5832 Spring 2007 41

Non-Determinism

1/23/07 CSCI 5832 Spring 2007 42

Non-Determinism cont.

• Yet another technique
– Epsilon transitions
– Key point: these transitions do not examine or

advance the tape during recognition

ε

22

1/23/07 CSCI 5832 Spring 2007 43

Equivalence

• Non-deterministic machines can be
converted to deterministic ones with a fairly
simple construction

• That means that they have the same power;
non-deterministic machines are not more
powerful than deterministic ones in terms of
the languages they can accept

1/23/07 CSCI 5832 Spring 2007 44

ND Recognition

• Two basic approaches (used in all major
implementations of Regular Expressions)

1. Either take a ND machine and convert it to a D
machine and then do recognition with that.

2. Or explicitly manage the process of recognition
as a state-space search (leaving the machine
as is).

23

1/23/07 CSCI 5832 Spring 2007 45

Implementations

1/23/07 CSCI 5832 Spring 2007 46

Non-Deterministic Recognition:
Search

• In a ND FSA there exists at least one path
through the machine for a string that is in the
language defined by the machine.

• But not all paths directed through the
machine for an accept string lead to an
accept state.

• No paths through the machine lead to an
accept state for a string not in the language.

24

1/23/07 CSCI 5832 Spring 2007 47

Non-Deterministic Recognition

• So success in a non-deterministic recognition
occurs when a path is found through the
machine that ends in an accept.

• Failure occurs when all of the possible paths
lead to failure.

1/23/07 CSCI 5832 Spring 2007 48

Example

b a a a ! \

q0 q1 q2 q2 q3 q4

25

1/23/07 CSCI 5832 Spring 2007 49

Example

1/23/07 CSCI 5832 Spring 2007 50

Example

26

1/23/07 CSCI 5832 Spring 2007 51

Example

1/23/07 CSCI 5832 Spring 2007 52

Example

27

1/23/07 CSCI 5832 Spring 2007 53

Example

1/23/07 CSCI 5832 Spring 2007 54

Example

28

1/23/07 CSCI 5832 Spring 2007 55

Example

1/23/07 CSCI 5832 Spring 2007 56

Example

29

1/23/07 CSCI 5832 Spring 2007 57

Key Points

• States in the search space are pairings of
tape positions and states in the machine.

• By keeping track of as yet unexplored states,
a recognizer can systematically explore all
the paths through the machine given an
input.

1/23/07 CSCI 5832 Spring 2007 58

Next Time

• Finish reading Chapter 2, start on 3.
– Make sure you have the book

• Make sure you have access to Python

