CSCI 5582
Artificial Intelligence

Lecture 17
Jim Martin

Today 10/31

• HMM Training (EM)
• Break
• Machine Learning
Urns and Balls

- Π
 - Urn 1: 0.9; Urn 2: 0.1

- A
<table>
<thead>
<tr>
<th></th>
<th>Urn 1</th>
<th>Urn 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urn 1</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Urn 2</td>
<td>0.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>

- B
<table>
<thead>
<tr>
<th></th>
<th>Urn 1</th>
<th>Urn 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>Blue</td>
<td>0.3</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Let’s assume the input (observables) is Blue Blue Red (BBR)

Since both urns contain red and blue balls any path through this machine could produce this output.
Urns and Balls

Blue Blue Red

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Calculation</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$(0.90.3)(0.60.3)(0.6*0.7)$</td>
<td>0.0204</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>$(0.90.3)(0.60.3)(0.4*0.4)$</td>
<td>0.0077</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>$(0.90.3)(0.40.6)(0.3*0.7)$</td>
<td>0.0136</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>$(0.90.3)(0.40.6)(0.7*0.4)$</td>
<td>0.0181</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>$(0.10.6)(0.30.7)(0.6*0.7)$</td>
<td>0.0052</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$(0.10.6)(0.30.7)(0.4*0.4)$</td>
<td>0.0020</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$(0.10.6)(0.70.6)(0.3*0.7)$</td>
<td>0.0052</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>$(0.10.6)(0.70.6)(0.7*0.4)$</td>
<td>0.0070</td>
</tr>
</tbody>
</table>

Urns and Balls

- Baum-Welch Re-estimation (EM for HMMs)
 - What if I told you I lied about the numbers in the model (π, A, B).
 - Can I get better numbers just from the input sequence?
Urns and Balls

• Yup
 - Just count up and prorate the number of times a given transition was traversed while processing the inputs.
 - Use that number to re-estimate the transition probability

Urns and Balls

• But... we don’t know the path the input took, we’re only guessing
 - So prorate the counts from all the possible paths based on the path probabilities the model gives you

• But you said the numbers were wrong
 - Doesn’t matter; use the original numbers then replace the old ones with the new ones.
Let's re-estimate the Urn1->Urn2 transition and the Urn1->Urn1 transition (using Blue Blue Red as training data).

Urn Example

![Urn Diagram]

Urn Example

Let's re-estimate the Urn1->Urn2 transition and the Urn1->Urn1 transition (using Blue Blue Red as training data).

Urns and Balls

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>(0.90.3)(0.60.3)(0.6*0.7)=0.0204</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 2</td>
<td>(0.90.3)(0.60.3)(0.4*0.4)=0.0077</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2 1</td>
<td>(0.90.3)(0.40.6)(0.3*0.7)=0.0136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2 2</td>
<td>(0.90.3)(0.40.6)(0.7*0.4)=0.0181</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 1 1</td>
<td>(0.10.6)(0.30.7)(0.6*0.7)=0.0052</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 1 2</td>
<td>(0.10.6)(0.30.7)(0.4*0.4)=0.0020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 2 1</td>
<td>(0.10.6)(0.70.6)(0.3*0.7)=0.0052</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 2 2</td>
<td>(0.10.6)(0.70.6)(0.7*0.4)=0.0070</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Urns and Balls

• That’s
 - (.0077*1)+(.0136*1)+(.0181*1)+(.0020*1)
 = .0414
• Of course, that’s not a probability, it needs to be divided by the probability of leaving Urn 1 total.
• There’s only one other way out of Urn 1... go from Urn 1 to Urn 1

Urns and Balls

Urn Example

Let’s re-estimate the Urn1→Urn1 transition
Urns and Balls

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>((0.9 \times 0.3) \times (0.6 \times 0.3) \times (0.6 \times 0.7) = 0.0204)</td>
</tr>
<tr>
<td>1 1 2</td>
<td>((0.9 \times 0.3) \times (0.6 \times 0.3) \times (0.4 \times 0.4) = 0.0077)</td>
</tr>
<tr>
<td>1 2 1</td>
<td>((0.9 \times 0.3) \times (0.4 \times 0.6) \times (0.3 \times 0.7) = 0.0136)</td>
</tr>
<tr>
<td>1 2 2</td>
<td>((0.9 \times 0.3) \times (0.4 \times 0.6) \times (0.7 \times 0.4) = 0.0181)</td>
</tr>
<tr>
<td>2 1 1</td>
<td>((0.1 \times 0.6) \times (0.3 \times 0.7) \times (0.6 \times 0.7) = 0.0052)</td>
</tr>
<tr>
<td>2 1 2</td>
<td>((0.1 \times 0.6) \times (0.3 \times 0.7) \times (0.4 \times 0.4) = 0.0020)</td>
</tr>
<tr>
<td>2 2 1</td>
<td>((0.1 \times 0.6) \times (0.7 \times 0.6) \times (0.3 \times 0.7) = 0.0052)</td>
</tr>
<tr>
<td>2 2 2</td>
<td>((0.1 \times 0.6) \times (0.7 \times 0.6) \times (0.7 \times 0.4) = 0.0070)</td>
</tr>
</tbody>
</table>

Blue Blue Red

- That’s just
 - \((2 \times 0.0204) + (1 \times 0.0077) + (1 \times 0.0052) = 0.0537\)
- Again not what we need but we’re closer... we just need to normalize using those two numbers.
Urns and Balls

- The 1->2 transition probability is \(\frac{0.0414}{0.0414+0.0537} = 0.435 \)
- The 1->1 transition probability is \(\frac{0.0537}{0.0414+0.0537} = 0.565 \)
- So in re-estimation the 1->2 transition went from .4 to .435 and the 1->1 transition went from .6 to .565

As with Problems 1 and 2, you wouldn't actually compute it this way. The Forward-Backward algorithm re-estimates these numbers in the same dynamic programming way that Viterbi and Forward do.
Speech

• And... in speech recognition applications you don’t actually guess randomly and then train.
• You get initial numbers from real data: bigrams from a corpus, and phonetic outputs from a dictionary, etc.
• Training involves a couple of iterations of Baum-Welch to tune those numbers.

Break

• Start reading Chapter 18 for next time (Learning)
• Quiz 2
 - I’ll go over it as soon as the CAETE students get in done
• Quiz 3
 - We’re behind schedule. So quiz 3 will be delayed. I’ll update the schedule soon.
Where we are

• Agents can
 - Search
 - Represent stuff
 - Reason logically
 - Reason probabilistically

• Left to do
 - Learn
 - Communicate

Connections

• As we’ll see there’s a strong connection between
 - Search
 - Representation
 - Uncertainty

• You should view the ML discussion as a natural extension of these previous topics
Connections

• More specifically
 - The representation you choose defines the space you search
 - How you search the space and how much of the space you search introduces uncertainty
 - That uncertainty is captured with probabilities

Kinds of Learning

• Supervised
• Semi-Supervised
• Unsupervised
What’s to Be Learned?

• Lots of stuff
 - Search heuristics
 - Game evaluation functions
 - Probability tables
 - Declarative knowledge (logic sentences)
 - Classifiers
 - Category structures
 - Grammars

Supervised Learning: Induction

• General case:
 - Given a set of pairs \((x, f(x))\) discover the function \(f\).

• Classifier case:
 - Given a set of pairs \((x, y)\) where \(y\) is a label, discover a function that correctly assigns the correct labels to the \(x\).
Supervised Learning: Induction

- Simpler Classifier Case:
 - Given a set of pairs \((x, y)\) where \(x\) is an object and \(y\) is either a + if \(x\) is the right kind of thing or a - if it isn't. Discover a function that assigns the labels correctly.

Error Analysis: Simple Case

<table>
<thead>
<tr>
<th>Chosen</th>
<th>Correct</th>
<th>False Negative</th>
<th>False Positive</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Correct</td>
<td></td>
<td>False Positive</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>False Negative</td>
<td>Correct</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Learning as Search

• Everything is search...
 - A hypothesis is a guess at a function that can be used to account for the inputs.
 - A hypothesis space is the space of all possible candidate hypotheses.
 - Learning is a search through the hypothesis space for a good hypothesis.

Hypothesis Space

• The hypothesis space is defined by the representation used to capture the function that you are trying to learn.
• The size of this space is the key to the whole enterprise.
Kinds of Classifiers

- Tables
- Nearest neighbors
- Probabilistic methods
- Decision trees
- Decision lists
- Neural networks
- Genetic algorithms
- Kernel methods

What Are These Objects

- By object, we mean a logical representation.
 - Normally, simpler representations are used that consist of fixed lists of feature-value pairs
 - This assumption places a severe restriction on the kind of stuff that can be learned
- A set of such objects paired with answers, constitutes a training set.
The Simple Approach

- Take the training data, put it in a table along with the right answers.
- When you see one of them again retrieve the answer.

Neighbor-Based Approaches

- Build the table, as in the table-based approach.
- Provide a distance metric that allows you compute the distance between any pair of objects.
- When you encounter something not seen before, return as an answer the label on the nearest neighbor.
Naïve-Bayes Approach

• Argmax $P(\text{Label} \mid \text{Object})$

• $P(\text{Label} \mid \text{Object}) = \frac{P(\text{Object} \mid \text{Label}) \cdot P(\text{Label})}{P(\text{Object})}$

• Where Object is a feature vector.

Naïve Bayes

• Ignore the denominator because of the argmax.

• $P(\text{Label})$ is just the prior for each class. I.e., The proportion of each class in the training set

• $P(\text{Object} \mid \text{Label}) = ???$
 - The number of times this object was seen in the training data with this label divided by the number of things with that label.
Nope

• Too sparse, you probably won’t see enough examples to get numbers that work.
• Answer
 - Assume the parts of the object are independent given the label, so $P(\text{Object} | \text{Label})$ becomes

$$
\prod P(\text{Feature} = \text{Value} | \text{Label})
$$

Naïve Bayes

• So the final equation is to $\arg\max$ over all labels

$$
P(\text{label}) \prod P(F_i = \text{Value} \mid \text{label})
$$
Training Data

<table>
<thead>
<tr>
<th>#</th>
<th>F1 (In/Out)</th>
<th>F2 (Meat/Veg)</th>
<th>F3 (Red/Green/Blue)</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In</td>
<td>Veg</td>
<td>Red</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Out</td>
<td>Meat</td>
<td>Green</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>In</td>
<td>Veg</td>
<td>Red</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>In</td>
<td>Meat</td>
<td>Red</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>In</td>
<td>Veg</td>
<td>Red</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Out</td>
<td>Meat</td>
<td>Green</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Out</td>
<td>Meat</td>
<td>Red</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>Out</td>
<td>Veg</td>
<td>Green</td>
<td>No</td>
</tr>
</tbody>
</table>

Example

- \(P(\text{Yes}) = \frac{3}{4}, P(\text{No}) = 1/4 \)
- \(P(F1=\text{In}|\text{Yes}) = 4/6 \)
- \(P(F1=\text{Out}|\text{Yes}) = 2/6 \)
- \(P(F2=\text{Meat}|\text{Yes}) = 3/6 \)
- \(P(F2=\text{Veg}|\text{Yes}) = 3/6 \)
- \(P(F3=\text{Red}|\text{Yes}) = 4/6 \)
- \(P(F3=\text{Green}|\text{Yes}) = 2/6 \)
- \(P(F1=\text{In}|\text{No}) = 0 \)
- \(P(F1=\text{Out}|\text{No}) = 1 \)
- \(P(F2=\text{Meat}|\text{No}) = 1/2 \)
- \(P(F2=\text{Veg}|\text{No}) = 1/2 \)
- \(P(F3=\text{Red}|\text{No}) = 1/2 \)
- \(P(F3=\text{Green}|\text{No}) = 1/2 \)
Example

• In, Meat, Green
 - First note that you’ve never seen this before
 - So you can’t use stats on In, Meat, Green since you’ll get a zero for both yes and no.

Example: In, Meat, Green

• \(P(\text{Yes}|\text{In, Meat, Green}) = \frac{\text{P(Yes|In|Yes)} \cdot \text{P(Meat|Yes)} \cdot \text{P(Green|Yes)} \cdot \text{P(Yes)}}{\text{P(Yes)}} \)

• \(P(\text{No}|\text{In, Meat, Green}) = \frac{\text{P(In|No)} \cdot \text{P(Meat|No)} \cdot \text{P(Green|No)} \cdot \text{P(No)}}{\text{P(No)}} \)

Remember we’re dumping the denominator since it can’t matter.
Naïve Bayes

- This technique is always worth trying first.
 - It’s easy
 - Sometimes it works well enough
 - When it doesn’t, it gives you a baseline to compare more complex methods to

\[P(label) \prod_i P(F_i = Value \mid label) \]