CSCI 5582
Artificial Intelligence

Lecture 12
Jim Martin

Today 10/12

• Review
• Basic probability
• Break
• Belief Networks
Review

• Where we are...
 - Agents can use search to find useful actions based on looking into the future
 - Agents can use logic to complement search to represent and reason about
 • Unseen parts of the current environment
 • Past environments
 • Future environments
 - And they can play a mean game of chess

Where we aren’t

• Agents can’t
 - Deal well with uncertain situations (not clear people are all that great at this)
 - Learn
 - See, speak, hear, move, or feel
Exercise

• You go to the doctor and for insurance reasons they perform a test for a horrible disease
• You test positive
• The doctor says the test is 99% accurate
• Do you worry?

An Exercise

• It depends; let’s say...
 - The disease occurs 1 in 10000 folks
 - And that the 99% means that 99 times out a 100 when you give the test to someone without the disease it will return negative
 - And that when you have the disease it always says you are positive
 - Do you worry?
An Exercise

• The test’s false positive rate is 1/100
• Only 1/10000 people have the disease
• If you gave the test to 10000 random people you would have
 - 100 false positives
 - 1 true positive
• Do you worry?

CSCI 5582 Fall 2006

An Exercise

• Do you worry?
 - Yes, I always worry
 - Yes, my chances of having the disease are 100x they were before I went to the doctor
 • Went from 1/10000 to 1/100 (approx)
 - No, I live with a lot of other 1/100 bad things without worrying

CSCI 5582 Fall 2006
Another Example

• You hear on the news...
 - People who attend grad school to get a masters degree have a 10x increased chance of contracting schistosomiasis
• Do you worry?
 - Depends on where you go to grad school

Back to Basics

• Prior (or unconditional) probability
 - Written as $P(A)$
 - For now think of A as a proposition that can turn out to be True or False
 - $P(A)$ is your belief that A is true given that you know nothing else relevant to A
Also

- Just as with logic we can create complex sentences with a partially compositional semantics (sort of)...

\[P(A \land B), P(A \lor B), P(\neg A \lor B) \ldots \]

Basics

- Conditional (or posterior) probabilities
- Written as \(P(A|B) \)
- Pronounced as the probability of \(A \) given \(B \)
- Think of it as your belief in \(A \) given that you know absolutely that \(B \) is true.
And

- \(P(A|B) \)… your belief in \(A \) given that you know \(B \) is true
- **AND** \(B \) is all you know that is relevant to \(A \)

Conditionals Defined

- **Conditionals**
 \[
P(A | B) = \frac{P(A \land B)}{P(B)}
\]

- **Rearranging**
 \[
P(A \land B) = P(A | B)P(B)
\]

- **And also**
 \[
P(A \land B) = P(B | A)P(A)
\]
Conditionals Defined

- Inference means updating your beliefs as evidence comes in
 - $P(A)$... belief in A given that you know nothing else of relevance
 - $P(A|B)$... belief in A once you know B and nothing else relevant
 - $P(A|B^\complement C)$ belief in A once you know B and C and nothing else relevant
Also

- What you’d expect... we can have
 \[P(A|B^C) \text{ or } P(A^D|E) \text{ or } P(A^B|C^D) \]
 etc...

Joint Semantics

- Joint probability distribution... the equivalent of truth tables in logic
- Given a complete truth table you can answer any question you want
- Given the joint probability distribution over N variables you can answer any question you might want to that involve those variables
Joint Semantics

- With logic you don’t always need the whole truth table; you can use inference methods and compositional semantics
 - I.e. if I know the truth values for A and B, I can retrieve the value of A^B
- With probability, you need the joint to do inference unless you’re willing to make some assumptions

<table>
<thead>
<tr>
<th></th>
<th>Toothache=True</th>
<th>Toothache=False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity = True</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>Cavity = False</td>
<td>0.01</td>
<td>0.89</td>
</tr>
</tbody>
</table>

- What’s the probability of having a cavity and a toothache?
- What’s the probability of having a toothache?
- What’s the probability of not having a cavity?
- What’s the probability of having a toothache or a cavity?
Note

• Adding up across a row is really a form of reasoning by cases…
• Consider calculating $P(\text{Cavity})$…
 - We know that in this world you either have a toothache or you don’t. I.e toothaches partition the world.
 - So…

Partitioning

$$P(\text{Cavity}) = P(\text{Cavity} \land \text{Toothache}) + P(\text{Cavity} \land \neg \text{Toothache})$$
Combining Evidence

• Suppose you know the values for
 - $P(A|B)=0.2$
 - $P(A|C)=0.05$
 - Then you learn B is true
 • What's your belief in A?
 - Then you learn C is true
 • What's your belief in A?
Details...

• Where do all the numbers come from?
 - Mostly counting
 - Sometimes theory
 - Sometimes guessing
 - Sometimes all of the above

Numbers

• \(P(A) \) \[\frac{\text{Count(All As)}}{\text{Count(All Events)}} \]

• \(P(A^\cap B) \) \[\frac{\text{Count(All A and B together)}}{\text{Count(All Events)}} \]

• \(P(A|B) \) \[\frac{\text{Count(All A and B Together)}}{\text{Count(All Bs)}} \]
Break

• HW Questions?

Bayes

• We know...
 \[P(A \cap B) = P(A | B)P(B) \]
 and
 \[P(A \cap B) = P(B | A)P(A) \]

• So rearranging things
 \[P(A | B)P(B) = P(B | A)P(A) \]
 \[P(A | B) = \frac{P(B | A)P(A)}{P(B)} \]
Bayes

• Memorize this

\[P(A | B) = \frac{P(B | A)P(A)}{P(B)} \]

Bayesian Diagnosis

• Given a set of symptoms choose the best disease (the disease most likely to give rise to those symptoms)
 - I.e. Choose the disease the gives the highest \(P(\text{Disease} | \text{Symptoms}) \) for all possible diseases
• But you probably can’t assess that…
• So maximize this...

\[P(\text{Disease} | \text{Symptoms}) = \frac{P(\text{Symptoms} | \text{Disease})P(\text{Disease})}{P(\text{Symptoms})} \]
Meningitis

\[P(S \mid M) = 0.5 \]
\[P(M) = 0.00002 \]
\[P(S) = 0.05 \]

so...

\[
P(M \mid S) = \frac{P(S \mid M) P(M)}{P(S)}
\]
\[
= \frac{0.5 \times 0.00002}{0.05}
\]
\[
= 0.0002
\]

Differential Diagnosis

• Why on earth would anyone know \(P(S) \)?
• And do you need to know it?
 – Asking for the most probable disease given some symptoms doesn’t entail knowing the probability of the diseases.

 \[
 \text{Argmax}_D P(D \mid S) = P(S \mid D) P(D)/P(S) \]

 is the same as

 \[
 \text{Argmax}_D P(D \mid S) = P(S \mid D) P(D)
 \]
Well

• What if you needed the exact probability

\[P(S) = P(S \land M) + P(S \land \neg M) \]

\[= P(S \mid M)P(M) + P(S \mid \neg M)P(\neg M) \]

Next Time

• Graphical models or Belief Nets
 - Chapter 14

• Quiz is postponed 1 Week
 - Now on 10/26
 - Covers 7, 8, 9, 13 and 14