
1

This lecture shows three linked list operation in detail. The operations
are:

1. Adding a new node at the head of a linked list.

2. Adding a new node in the middle of a linked list.

3. Removing a node from a linked list.

The best time for this lecture is just after the students have been
introduced to linked lists (Section 5.1), and before the complete linked
list toolkit has been covered (Section 5.2).

❐ Chapter 5 introduces the often-
used data structure of linked lists.

❐ This presentation shows how to
implement the most common
operations on linked lists.

Linked Lists in Action

CHAPTER 5
Data Structures and Other Objects

2

Here is a typical struct declaration that can be used to implement a
linked list of integers, as described in Section 5.1 of the text.

Note that we have used a struct rather than a class. In a struct,
members are public unless you specify otherwise. C++ programmers
tend to use a struct only when all the members are public.

❐ For this presentation, each node in the
linked list is a struct, as shown here.

data

link

10

data

link

15

data

link

7

null

struct Node
{
 typedef int Item;
 Item data;
 Node *link;
};

Declarations for Linked Lists

3

Within the struct, there is a type definition for a type called called "Item".
The purpose of the Item data type is to tell us what kind of data resides
in each of the nodes on the linked list. For example, if we want to
create a linked list of real numbers, then we would declare typedef
double Item; In this example, we want a linked list of integers, so we
have declared typedef int Item;

As you can see, the Item data type is used in the node declaration as
the data type of a member variable called data. In the picture, I have
drawn three nodes which might be part of a linked list of integers. The
data portions of these nodes contain the integers 10, 15 and 7.

data

link

7

❐ The data portion of each node is a type
called Item, defined by a typedef.

link

null

struct Node
{
 typedef int Item;
 Item data;
 Node *link;
};

data

link

15

Declarations for Linked Lists

data10

4

Also inside each Node is a second member variable called link. The
purpose of the link member variable is to contain a pointer to the next
Node in the sequence of nodes.

Question: What appears in the link field of the final node in a linked list
such as this?

Answer: A special pointer value called null, which means "This pointer
doesn't point to anything." This makes sense because there is no node
after the final node.

❐ Each Node also contains a link field
which is a pointer to another Node.

data15

data7

struct Node
{
 typedef int Item;
 Item data;
 Node *link;
};

Declarations for Linked Lists

data10

link

link

null

link

5

When a linked list is implemented, we generally keep track of the first
node by using a special pointer called the "head pointer". The head
pointer points to the first node in the linked list.

It is important to remember that head_ptr is not actually a node. It is
just a single pointer, which points to the first actual node.

Declarations for Linked Lists

❐ A program can keep track of the front
node by using a pointer variable such
as head_ptr in this example.

❐ Notice that head_ptr is not a Node --
it is a pointer
to a Node. data

link

10

data

link

15

data

link

7

null
head_ptr

6

Also remember that it is possible for a linked list to have no nodes at all.
This situation is called the "empty list".

Even with the empty list, we still have a head pointer, but the head
pointer has no nodes to point to. So, instead of pointing to something,
the head pointer of the empty list contains that special value, null.

Declarations for Linked Lists

❐ A program can keep track of the front
node by using a pointer variable such
as head_ptr.

❐ Notice that head_ptr is not a Node --
it is a pointer to a Node.

❐ We represent the empty list by storing
null in the Head pointer.

head_ptr
null

7

In this lecture, I'll show you the workings of three functions to
manipulate linked lists. The first function is called head_insert. The
purpose of the function is to insert a new entry at the front of a linked
list. The first parameter is the head point of the linked list declared here
as:

 Node*& head_ptr

Notice that this is a pointer to a Node (Node*), but it is also a reference
parameter (indicated by the “&”). The reason for the reference
parameter is that the function will make the head pointer point to a new
node (containing the new entry)--and we want the change to affect the
actual head pointer back in the calling program.

The new entry itself is the the second parameter, declared here as:

 const Node::Item& entry

This is a const reference parameter because the function uses the new
entry (for the data part of a new node), but the function does not
change the value of the parameter. In a prototype of a function such as
this, we must use the entire data type (Node::Item) and not just Item.

In order to develop the function, we'll trace through a small example. In
the example the new entry (number 13) is being added to a list which
already has three entries (10, 15 and 7).

void list_head_insert(Node*& head_ptr, const Node::Item& entry);

Inserting a Node at the Front

We want to add a new entry, 13,
to the front of the linked list
shown here.

10

15

7

null
head_ptr

entry

13

8

The first step of the head_insert function is to create a new node. In
order to create the new node, we need a local variable which I have
called insert_ptr, which is a pointer to a node. Think of insert_ptr as
being a "temporary insertion pointer" because we won't need it any
more once the new node is actually placed in the list.

The idea is to get insert_ptr to point to the newly-created node when
this node is first created. Do you remember enough from Chapter 4 to
know the C++ statement which will create the new node and point
insert_ptr at this new node?

Inserting a Node at the Front

❶ Create a new node, pointed to
by a local variable insert_ptr .

10

15

7

null
head_ptr

entry

13

insert_ptr

void list_head_insert(Node*& head_ptr, const Node::Item& entry);

9

Here is the C++ statement:

 insert_ptr = new Node;

The statement creates a new node, and points the local variable
insert_ptr at this newly-created node.

Inserting a Node at the Front

❶ insert_ptr = new Node;

10

15

7

null
head_ptr

entry

13

insert_ptr

void list_head_insert(Node*& head_ptr, const Node::Item& entry);

10

Once the new node has been created, we need to place values in the
new node's member variables. The first member variable is the new
node's data field, where we are supposed to place a copy of the entry.

Another question: Can you write the C++ statement which will copy the
value of entry into the data field of the new node?

The answer is on the next slide...

Inserting a Node at the Front

❶ insert_ptr = new Node;

❷ Place the data in the new
node's data field.

10

15

7

null
head_ptr

entry

13

insert_ptr
13

void list_head_insert(Node*& head_ptr, const Node::Item& entry);

11

...or at least most of the answer is on this slide! The assignment
statement written here is copying entry into some location. What goes
on the left side of the assignment statement? Your answer should refer
to the data member variable of the newly-created node.

Inserting a Node at the Front

❶ insert_ptr = new Node;

❷ insert_ptr->data = entry;

10

15

7

null
head_ptr

entry

13

insert_ptr
13?

What expression appears
on the left side of the
assignment statement ?

void list_head_insert(Node*& head_ptr, const Node::Item& entry);

12

Here is the full answer. The expression on the left of the assignment
statement is:

 insert_ptr->data

You can read an expression like this from left-to-right. The expression
means

1. Start at the pointer named insert_ptr;

2. The -> is the “member selection operator,” used to select a member
of the object that insert_ptr points to.

3. The particular member we selected is the member called data.

Inserting a Node at the Front

❶ insert_ptr = new Node;

❷ insert_ptr->data = entry;

10

15

7

null
head_ptr

entry

13

insert_ptr
13

What expression appears
on the left side of the
assignment statement ?

void list_head_insert(Node*& head_ptr, const Node::Item& entry);

13

The third step of head_insert is to connect the new node to the rest of
the existing list. In other words, we will place a pointer into the link
member variable of the new node.

Another question: Can you write the assignment statement to place this
pointer into the link member variable of the newly-created node?

Inserting a Node at the Front

10

15

7

null
head_ptr

entry

13

insert_ptr
13

❶ insert_ptr = new Node;

❷ insert_ptr->data = entry;
❸ Connect the new node to the

front of the list.

void list_head_insert(Node*& head_ptr, const Node::Item& entry);

14

Here is half of the assignment statement:

 insert_ptr->link = ____________

How do you fill in this blank? We want the pointer to be a pointer to the
first node of the old linked list. And head_ptr is already a pointer to the
first node of the old linked list. So...

Inserting a Node at the Front

10

15

7

null
head_ptr

entry

13

insert_ptr
13

What expression appears
on the right side of the
assignment statement ?

❶ insert_ptr = new Node;

❷ insert_ptr->data = entry;
➌ insert_ptr->link = head_ptr;?

void list_head_insert(Node*& head_ptr, const Node::Item& entry);

15

...here is the complete assignment statement:

 insert_ptr->link = head_ptr;

In English you can say "Make the link member variable of the new node
point to the same thing that the head pointer is pointing to."

Inserting a Node at the Front

10

15

7

null
head_ptr

entry

13

insert_ptr
13

What expression appears
on the right side of the
assignment statement ?

❶ insert_ptr = new Node;

❷ insert_ptr->data = entry;
➌ insert_ptr->link = head_ptr;

void list_head_insert(Node*& head_ptr, const Node::Item& entry);

16

The head_insert function needs one last step: Making the head pointer
point to the newly-created node. Again, this will be an assignment
statement. Can you write the statement before I move to the next
slide?

Inserting a Node at the Front

10

15

7

null
head_ptr

entry

13

insert_ptr
13

❶ insert_ptr = new Node;

❷ insert_ptr->data = entry;
➌ insert_ptr->link = head_ptr;

❹ Make the head_ptr point to the
new head of the linked list.

void list_head_insert(Node*& head_ptr, const Node::Item& entry);

17

The assignment statement is:

 head_ptr = insert_ptr;

In English this means: "Make the head pointer point to the same place
that insert_ptr is pointing." Or in other words: "Make the head pointer
point to the newly-created node."

Inserting a Node at the Front

10

15

7

null
head_ptr

entry

13

insert_ptr
13

❶ insert_ptr = new Node;

❷ insert_ptr->data = entry;
➌ insert_ptr->link = head_ptr;

➍ head_ptr = insert_ptr;

void list_head_insert(Node*& head_ptr, const Node::Item& entry);

18

When the head_insert function returns, the linked list will have a new
node (containing 13).

Notice that when the function finishes, the local variable named
insert_ptr no longer exists. But the newly created node does still exist,
and the head pointer points to the newly created node.

One warning: You may have read about the dispose function in C++,
which is used to destroy nodes. Never call dispose when you are
adding a new node to a linked list! The only time that dispose is called
is when you want to have fewer nodes, not when you want to have
more nodes.

Inserting a Node at the Front

❶ insert_ptr = new Node;
❷ insert_ptr->data = entry;
➌ insert_ptr->link = head_ptr;
➍ head_ptr = insert_ptr;

10

15

7

null
head_ptr

13

When the function returns, the
linked list has a new node at the
front, containing 13.

void list_head_insert(Node*& head_ptr, const Node::Item& entry);

19

Here's the complete declaration of the head_insert function. Can you
find these things:

-- the declaration of the local variable, insert_ptr

-- the place where the new node is actually created?

By the way, the word "created" is probably too strong a word. No new
memory is actually created. What does happen is that a portion of
memory is set aside for the new operator to use. This portion of
memory is called the "heap". Whenever the new operator is called, part
of the heap is provided for your new node.

void list_head_insert(Node*& head_ptr, const Node::Item& entry)
{
 Node *insert_ptr;

 insert_ptr = new Node;

 insert_ptr->data = entry;

 insert_ptr->link = head_ptr;
 head_ptr = insert_ptr;

}

Inserting a Node at the Front

20

Before we finish the example, we should check one last thing. Does
the function work correctly if the list is initially empty? In other words, if
the head pointer is null, will the function manage to correctly add the
first node of the list?

We can check with an example...

void list_head_insert(Node*& head_ptr, const Node::Item& entry)
{
 Node *insert_ptr;

 insert_ptr = new Node;

 insert_ptr->data = entry;

 insert_ptr->link = head_ptr;
 head_ptr = insert_ptr;

}

Inserting a Node at the Front

Does the function work

correctly for the empty
list ?

21

...as shown here. In this example, the head pointer is null, and the new
entry is 13.

void list_head_insert(Node*& head_ptr, const Node::Item& entry)
{
 Node *insert_ptr;

 insert_ptr = new Node;

 insert_ptr->data = entry;

 insert_ptr->link = head_ptr;
 head_ptr = insert_ptr;

}

Inserting a Node at the Front

head_ptr
entry

13 null

Does the function work

correctly for the empty
list ?

22

The first two statements of the function allocate a new node, and place
the number 13 in the data field of the new node.

void list_head_insert(Node*& head_ptr, const Node::Item& entry)
{
 Node *insert_ptr;

 insert_ptr = new Node;

 insert_ptr->data = entry;

 insert_ptr->link = head_ptr;
 head_ptr = insert_ptr;

}

Inserting a Node at the Front

head_ptr
entry

13 null
insert_ptr

13

23

The third statement of the function copies the value null from the head
pointer to the link field of the new node, as shown in this slide.

void list_head_insert(Node*& head_ptr, const Node::Item& entry)
{
 Node *insert_ptr;

 insert_ptr = new Node;

 insert_ptr->data = entry;

 insert_ptr->link = head_ptr;
 head_ptr = insert_ptr;

}

Inserting a Node at the Front

head_ptr
entry

13 null
insert_ptr

13

null

24

The function's fourth statement makes the head pointer point to the new
node.

void list_head_insert(Node*& head_ptr, const Node::Item& entry)
{
 Node *insert_ptr;

 insert_ptr = new Node;

 insert_ptr->data = entry;

 insert_ptr->link = head_ptr;
 head_ptr = insert_ptr;

}

Inserting a Node at the Front

head_ptr
entry

13
insert_ptr

13

null

25

So, as you can see, when the function finally returns, there is one node
in the linked list, and the head pointer correctly points to the new node.
In other words, our function works just fine, even if we are adding the
first node to a previously empty list.

void list_head_insert(Node*& head_ptr, const Node::Item& entry)
{
 Node *insert_ptr;

 insert_ptr = new Node;

 insert_ptr->data = entry;

 insert_ptr->link = head_ptr;
 head_ptr = insert_ptr;

}

Inserting a Node at the Front

head_ptr

13

null

When the function
returns, the linked list

has one node,
containing 13.

26

This slide is just a warning: Always make sure that your linked list
functions work sensibly with the empty list. If you run into a function
that fails for the empty list, then you will need to modify the function by
adding some special code to deal with a null head pointer.

Caution!

❐ Always make sure that
your linked list
functions work
correctly with an
empty list.

EMPTY LIST

27

That's the end of our head_insert function. There are two more linked
list functions that we'll look at today. Actually, we'll just look at typical
pseudocode for the next two functions. The first of these functions is a
function for inserting a new node at a place other than the front of a
linked list.

Actually, the pattern that we'll follow will be capable of inserting a new
node at any location in a linked list: Maybe at the front, maybe in the
middle, maybe at the end. For example, you might be keeping the
nodes sorted from smallest integer to largest integer. Or perhaps there
is some other method to your insertions. The pseudocode that I'll
describe will work for any method that you might think of. Really!

Pseudocode for Inserting Nodes

❐ Nodes are often inserted at places other than the
front of a linked list.

❐ There is a general pseudocode that you can follow
for any insertion function. . .

28

The first step of the pseudocode is to determine whether the new node
will be inserted as the first node of the linked list. If so, then you can
simply call the head_insert function which we already wrote, as shown
here.

Pseudocode for Inserting Nodes

❶ Determine whether the new node will be the first node in
the linked list. If so, then there is only one step:

head_insert(head_ptr, entry);

29

There are three parts to calling the function we already wrote. First, of
course, is the function name: head_insert.

Pseudocode for Inserting Nodes

➊ Determine whether the new node will be the first node in
the linked list. If so, then there is only one step:

Th
e

fu
nc

tio
n

w
e

al
re

ad
y

w
ro

te
head_insert(head_ptr, entry);

30

Next is the first argument, which is the pointer to the head of the linked
list.

Pseudocode for Inserting Nodes

❶ Determine whether the new node will be the first node in
the linked list. If so, then there is only one step:

head_insert(head_ptr, entry);

A pointer
to the

head of
the list

31

And finally is the data for the new node.

So, this function call will add the new data at the front of an existing
linked list.

Pseudocode for Inserting Nodes

❶ Determine whether the new node will be the first node in
the linked list. If so, then there is only one step:

head_insert(head_ptr, entry);

The data to put

in the new node

32

On the other hand, if the new data does not belong at the front of the
linked list, then you will start by setting up a pointer that I call
previous_ptr. This pointer must be set up to point to the node which is
just before the new node's position.

Pseudocode for Inserting Nodes

❷ Otherwise (if the new node will not be first):
❐ Start by setting a pointer named previous_ptr to point to the

node which is just before the new node's position.

33

As an example, suppose that we want to add 13 to this list, and we
want to keep all the entries in order from largest to smallest. We don't
want to put 13 first on this list, because 13 is smaller than 15. So, we
proceed to set up the previous_ptr to point to the node which is just
before the position where 13 should be inserted.

In this example, previous_ptr would be set up to point to the first node
of the linked list (containing 15). The 13 will be inserted as the new
second node of the list (after the 15, but before the 10).

Pseudocode for Inserting Nodes

15

10

7

null
head_ptr

❷ Otherwise (if the new node will not be first):
❐ Start by setting a pointer named previous_ptr to point to the

node which is just before the new node's position.

In this example, the
new node will be
the second node

previous_ptr

34

In order to insert the new node at the proper place, we need to examine
the link field which is in the node pointed to by previous_ptr. This link
field is highlighted in the picture.

Question: What is the name of this link field? Can you write the answer
before I move to the next slide?

Pseudocode for Inserting Nodes

15

10

7

null
head_ptr

❷ Otherwise (if the new node will not be first):
❐ Start by setting a pointer named previous_ptr to point to the

node which is just before the new node's position

What is the name of this
pointer ?

Look at the pointer
which is in the node

previous_ptr^

previous_ptr

35

As you see, the highlighted pointer is called previous_ptr->link.

In other words: Start at previous_ptr, follow the pointer, and select the
link field from the record.

There is a reason that previous_ptr->link is important to us...

Pseudocode for Inserting Nodes

15

10

7

null
head_ptr

❷ Otherwise (if the new node will not be first):
❐ Start by setting a pointer named previous_ptr to point to the

node which is just before the new node's position

This pointer is called
previous_ptr->link

What is the name of this
pointer ?

previous_ptr

36

...as you can see here, previous_ptr->link actually points to the first
node of a small linked list. The small linked list contains 10 and 7 -- and
more important, we want to add the new entry at the front of this small
linked list.

Pseudocode for Inserting Nodes

15

10

7

null
head_ptr

➋ Otherwise (if the new node will not be first):
❐ Start by setting a pointer named previous_ptr to point to the

node which is just before the new node's position

previous_ptr->link
points to the head
of a small linked
list, with 10 and 7

previous_ptr

37

Here is a small challenge: Can you write just one C++ statement which
will insert the new node at the front of the small linked list? Use the
name entry for the name of the data that you are placing in the new
node...

...think about what functions you already have...

Pseudocode for Inserting Nodes

15

10

7

null
head_ptr

❷ Otherwise (if the new node will not be first):
❐ Start by setting a pointer named previous_ptr to point to the

node which is just before the new node's position.

The new node must
be inserted at the
front of this small

linked list.

13

Write one C++ statement
which will do the insertion.

previous_ptr

38

Did anyone come up with this solution? By calling the head_insert
function, we can insert entry at the front of the small linked list. The key
is that we have the pointer

 previous_ptr->link

which points to the head of the small linked list.

Pseudocode for Inserting Nodes

15

10

7

null
head_ptr

❷ Otherwise (if the new node will not be first):
❐ Start by setting a pointer named previous_ptr to point to the

node which is just before the new node's position.13

Write one C++ statement
which will do the insertion.

previous_ptrhead_insert(previous_ptr->link, entry);

39

Here is the complete pseudocode for adding a new node. Remember:
this pseudocode can be used for many different methods of inserting,
such as keeping nodes in order from largest to smallest.

Pseudocode for Inserting Nodes

❶ Determine whether the new node will be the first node in
the linked list. If so, then there is only one step:

head_insert(head_ptr, entry);

❷ Otherwise (if the new node will not be first):

❐ Set a pointer named previous_ptr to point to the node
which is just before the new node's position.

❐ Make the function call:

head_insert(previous_ptr->link, entry);

40

Section 5.2 gives a collection of function for manipulating linked lists.
One of these functions, called list_insert, places a new node in the
middle of a linked list.

Pseudocode for Inserting Nodes

❐ The process of adding a new node in the middle
of a list can also be incorporated as a separate
function. This function is called list_insert in the
linked list toolkit of Section 5.2.

41

Do you have energy for one more function? Or at least for some
pseudocode. I’ll just show you how to remove a node from the front of
a linked list. You can figure out the code for removing other nodes, or
you can read the solution in Section 5.2.

Pseudocode for Removing Nodes

❐ Nodes often need to be removed from a linked list.

❐ As with insertion, there is a technique for removing
a node from the front of a list, and a technique for
removing a node from elsewhere.

❐ We’ll look at the pseudocode for removing a node
from the front of a linked list.

42

As we did before, we'll use an example to illustrate the pseudocode. In
the example, we want to delete the head node which contains 13. The
first part of the pseudocode sets up a local variable named remove_ptr
to point to the node that we want to remove.

Removing the Head Node

10 15 7

null
head_ptr

13

❶ Start by setting up a temporary pointer named remove_ptr

to the head node.

remove_ptr

43

Since we are removing the first node of the list, we need to change the
place where head_ptr is pointing. Can you tell me where the head_ptr
will point after the assignment statement that is shown here? Be quick,
because I am about to change the slide...

Removing the Head Node

10 15 7

null
head_ptr

13

❶ Set up remove_ptr.
❷ head_ptr = remove_ptr->link;

remove_ptr

Draw the change that this
statement will make to the
linked list.

44

As you can see, the assignment statement makes the head pointer
point to the second node of the list.

Removing the Head Node

10 15 7

null
head_ptr

13

➊ Set up remove_ptr and BeforePtr.
➋ head_ptr = remove_ptr->link;

remove_ptr

45

There is one last statement that the removal function should execute:

 delete remove_ptr;

This takes the node which is pointed to by remove_ptr and returns it to
the heap, so that the memory can be reused at some later date. If you
forget this step, then the memory won't be able to be reused -- a
situation that's called a "heap leak".

Remember this rule of thumb: If you are adding a node to a linked list,
then make sure that new ... is called exactly once. If you are removing
a node from a linked list, then make sure that delete ... is called exactly
once.

Removing the Head Node

➊ Set up remove_ptr and BeforePtr.

➋ head_ptr = remove_ptr->link;

❸ delete remove_ptr; // Return the node's memory to heap.

10 15 7

null
head_ptr

13

remove_ptr

46

Notice that the local variable, remove_ptr, is no longer around.

Removing the Head Node

Here’s what the linked list looks like after the removal finishes.

10 15 7

null
head_ptr

47

A quick summary . . .

❐ It is easy to insert a node at the front of a list.

❐ The linked list toolkit also provides a function for
inserting a new node elsewhere

❐ It is easy to remove a node at the front of a list.

❐ The linked list toolkit also provides a function for
removing a node elsewhere--you should read
about this function and the other functions of the
toolkit.

 Summary

48

Feel free to send your ideas to:

 Michael Main

 main@colorado.edu

THE END

Presentation copyright 1997, Addison Wesley Longman,
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club
Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome
to use this presentation however they see fit, so long as this copyright notice remains
intact.

