
RECURSION EXERCISES

1. A palindrome is a word that reads the same forwards and backwards, like “level”
or “sees” or “deified”. Write a recursive function that checks whether a single word
supplied by the user is a palindrome. Don’t worry about upper and lowercase issues.
Here is a prototype:

bool is_palindrome(unsigned int a, unsigned int b, const string& s)
You may want to #include <string>; this library is useful because it contains a function
length(), which tells you how long the string is.
Hint: there are two variants of the base case: consider the case for “tot” or “toot”, both of
which are palindromes. Do not use any local variables.
EXAMPLES:
 “ABCDEFGFEDCBA” is a palindrome
 “ABCDEFGGFEDCBA” is a palindrome
 “ABCDEFGEDCBA” is not a palindrome

2. (From Prof. Main’s Web page at
http://www.cs.colorado.edu/~main/projects/chap09c.html) Write a recursive function that
takes an integer and prints it out as a binary one. Here is the prototype:
 void binary_print(ostream& outs, unsigned int n);
The function prints the value of n as a BINARY number to the ostream outs. If n is zero,
then a single zero is printed; otherwise no leading zeros are printed in the output. The '\n'
character is NOT printed at the end of the output. Do not use any local variables.
EXAMPLES:
 n=0 Output:0
 n=4 Output:100
 n=27 Output:11011
�

3. (From Prof. Main’s Web page at
http://www.cs.colorado.edu/~main/projects/chap09a.html)Examine this fractal pattern of
asterisks and blanks, and write a recursive method that can generate patterns such as this:
*
* *
 *
* * * *
 *
 * *
 *
* * * * * * * *
 *
 * *
 *
 * * * *
 *
 * *
 *

With recursive thinking, the method needs only seven or eight lines of code (including
two recursive calls). Your method should look like this:
 void pattern(ostream& outs, int n, int i)
 // Precondition: n is a power of 2 greater than zero.
 // Postcondition: A pattern based on the above example has been
 // printed. The longest line of the pattern has
 // n stars beginning in column i of the output. For example,
 // The above pattern is produced by the call pattern(8, 0).
Hints: You do not need to check the precondition. Think about how the pattern is a
fractal. Can you find two smaller versions of the pattern within the large pattern? Here is
some code that may be useful within your method:
 // A loop to print exactly i spaces (Eliz’s solution modified this to print 2*i spaces):
 for (k = 0; k < i; k++) outs << " ";
 // A loop to print n asterisks, each one followed by a space:
 for (k = 0; k < n; k++) outs << "* ";

