
DIRECTORY STRUCTURE IN UNIX 
 
Recall that directories are organized as trees, with subdirectory branches and sub-
branches.   

Tilde ‘~‘ is your root directory; the topmost one in your directory tree.   
Dot ‘.’ is your current directory, wherever you are in your tree.   
The directory right above the one you’re currently in is ‘..’ 

 
You can specify the same directory in two ways.  The first way is to give the path to the 
file with reference to the root directory (‘~’): 
 emacs ~/.cshrc &  ## opens the .cshrc file in your root directory 
 cd ~/csci2270/hw2  ## move to this directory (if it exists) 
The second is to specify directories relative to your current location in the directory tree.  
So if we are in the directory ~/csci2270/hw2, then we can locate the directory above ours 
by using ‘..’: 
 ls ..    ## lists everything in the csci2270 directory 
 emacs ../../.cshrc &  ## picks up the .cshrc file in our root directory 
 
You can run some programs from any variety of directories because your .cshrc file 
defines where to find them as part of the path, which is why you can run g++ or emacs 
from almost anywhere.  Other executable programs, like your csci2270 programs, will 
require you to be in your current directory.  Running these programs requires you to 
either type ‘./’ before the program name, or else modify your .cshrc file to add the current 
directory (‘.’) to your path as we did in lab 4 (admittedly, this makes things a bit less 
secure). 
 
REVIEW AND EXTENSION OF UNIX COMMANDS 
 
You can learn more about how to get the most of these by asking for the manual page via 
man or info (you may have to try both):  
 man mkdir 
 info rm 
To quit the man page and get back to the command prompt, type q. 
 
pwd: print name of current (working) directory.   
Just type 
 pwd 
This is helpful if you get lost in your directory tree. 
 
mkdir: create a new directory.   
To create one relative to the root, say 

mkdir ~/foo 
To creat one relative to your current directory, leave off the ~/:  

mkdir foo2 
If you make a compound directory, like this:  

mkdir ~/csci2270/lab7 



you need to make sure that all the directories above it (like ~/csci2270) exist already, 
using the ls command.  
 
rmdir: erase a directory 
This follows the same rules as mkdir.  If you delete a directory, it must be empty of files 
and subdirectories. 
 rmdir ~/foo 
 rmdir foo2 
 
cd: change to a certain directory 
To change to top directory:  

cd ~ or just cd 
To change to the directory just above the current one in the tree:  

cd .. 
To change to a directory specified relative to the root:  

cd ~/csci2270 
To change to a directory specified relative to the current directory:  

cd lab7 
 
ls: list files and subdirectories of a directory 
To list a directory’s contents relative to the root:  

ls ~/csci2270 
To list a subdirectory’s contents relative to the current directory:  

ls  
list all files in a directory, in verbose format, including configuration files, which  start 
with ‘.’ (.emacs, .login, .cshrc):  

ls –la 
list the same files sorted by modification time:  

ls -lta 
 
rm: get rid of files 
To remove most files (except those starting with ‘.’):  

rm * 
To remove a particular file:  

rm csci2270/nonsense.cxx 
To remove several files (headers and makefile), the wildcard ‘*’ helps avoid extra typing:  

rm *.h Make* 
  
cp: copy a source filename to a destination directory (and possibly a different filename): 
To copy a file in your root directory to a file with a different name: 

cp ~/.cshrc ~/.cshrc_bak 
To copy a file to another directory (with its original name):  
 cp ~/.cshrc ~/csci2270/lab7 
To copy a file from a directory to your current directory (‘.’) under a new name:  

cp ~/.cshrc .cshrc-gecko 



If you’re in your ~/csci2270/hw2 directory and you want to copy your hw1 Makefile to 
your ~/csci2270/lab7 directory (and both directories exist!) 
 cp ../hw1/Makefile . 
 
mv: move (or rename) a file; note that the old file goes away! 
To rename a file, move it from the old name to the new name: 
 mv .cshrc-gecko .cshrc-octopus    
You can also move a file to a new directory: 
 mv poly1.cxx ~/csci2270/lab7/poly2.cxx 
 
Most of the above commands can be made recursive—so they work in the directory you 
call them in plus its subdirectories and the subdirectories’ subdirectories, etc.  Depending 
on the command, you usually include an –R or –r.  To recursively list all subdirectories 
from the root:  

ls –R ~  
And to recursively delete all files and subdirectories from a directory called ~/whatever, 
you can say:  

rm –r ~/whatever (but be careful! this is a bit drastic) 
 
MORE ON EMACS 
 
Handy reference card (you’ll need to zoom in) is at 

http://www.cs.colorado.edu/~main/lab/refcard-emacs.pdf 
 C- here is the control key 
 M- here is generally (but not always) the Alt key 
Full manual at 

http://www.cs.utah.edu/dept/old/texinfo/emacs19/emacs_toc.html 
A few of the basic commands: 

Control-x Control-c exits emacs (if you haven’t saved, you’ll get a prompt)
 Control-x Control-s saves your file (you may need to ok this or specify where)
 Control-k deletes one line of text 

Control-y pastes in test you cut or highlighted with the mouse  
Control-g cancels a command (very useful when you get into trouble)

 Control-s lets you search the current file for text  
Control-_(control, shift, and the – key!) undoes the last thing you did 

Many nice conventions are set in Professor Main’s .emacs configuration file; for 
example, the following lines set up your C++ formatting: 
 ;;; c++-mode 
 (add-hook 'c++-mode-hook 
 '(lambda() 
  (local-set-key [13] 'c-return)         ;;; RET with automatic indent 
  (local-set-key "\ep" 'indent-all)      ;;; Esc-p pretty-prints file 
  (c-set-style "k&r")                    ;;; Kernihan & Richie's style 
  (setq c-basic-offset 4)                ;;; 4 spaces for indentations 
  (c-set-offset 'substatement-open 0)    ;;; No indent for open bracket 
  (c-set-offset 'statement-cont 0)    ;;; No indent for new stmts 



                                                 ;;; Needed in emacs 19 
                                                 ;;; because it thinks 
                                                 ;;; function definitions are 
                                                 ;;; new statements! 
    ) 
) 
;;; 
 


