
95

Collection Classes
(I am large. I contain multitudes.)

WALT WHITMAN

Song of Myself

3.1 A REVIEW OF JAVA ARRAYS

3.2 AN ADT FOR A BAG OF INTEGERS

3.3 PROGRAMMING PROJECT: THE SEQUENCE ADT

3.4 APPLETS FOR INTERACTIVE TESTING

CHAPTER SUMMARY

SOLUTIONS TO SELF-TEST EXERCISES

PROGRAMMING PROJECTS

The Throttle and Location classes in Chapter 2 are good
examples of abstract data types. But their applicability is limited to a few spe-
cialized programs. This chapter begins the presentation of several ADTs with
broad applicability to programs large and small. The ADTs in this chapter—
bags and sequences—are small, but they provide the basis for more complex
ADTs. The chapter also includes information about how to write a test program
for a class. 

an ADT in which 
each object 
contains a 
collection of 
elements

All of the ADTs in this chapter are examples of collection classes. Intuitively,
a collection class is a class where each object contains a collection of elements.
For example, one program might keep track of a collection of integers, perhaps
the collection of test scores for a group of students. Another program, perhaps a
cryptography program, can use a collection of characters.

There are many different ways to implement a collection class; the simplest
approach utilizes an array, so this chapter begins with a quick review of Java
arrays before approaching actual collection classes.

&&+$+$3377((55

3

95

java03.frm  Page 95  Saturday, August 26, 2000  5:53 PM



96  Chapter 3 / Collection Classes

3.1 A REVIEW OF JAVA ARRAYS

An array is a sequence with a certain number of components. We draw arrays
with each component in a separate box. For example, here’s an array of the four
integers 7, 22, 19, and 56:

Each component of an array can be accessed through an index. In Java, the
indexes are written with square brackets, beginning with [0], [1],.... The array
shown has four components, so the indexes are [0] through [3], as shown here:

In these examples, each component is an integer, but arrays can be built for any
fixed data type: arrays of double numbers, arrays of boolean values, even arrays
where the components are objects from a new class that you write yourself.

An array is declared like any other variable, except that a pair of square
brackets is placed after the name of the data type. For example, a program can
declare an array of integers like this:

int[ ] scores;

The name of this array is scores. The components of this array are integers, but
as we have mentioned, the components may be any fixed type. For example, an
array of double numbers would use  instead of .

An array variable, such as scores, is capable of referring to an array of any
size. In fact, an array variable is a reference variable, just like the reference vari-
ables we have used for other objects, and arrays are created with the same new
operator that allocates other objects. For example, we can write these statements:

int[ ] scores;
scores = new int[4];

The number [4], occurring with the new operator, indicates that we want a new
array with four components. Once both statements finish, scores refers to an
array with four integer components, as shown here:

This is an accurate picture, showing how scores refers to a new array of four
integers, but the picture has some clutter that we can usually omit. Here is a

7 22 19 56

7 22 19 56

[0] [1] [2] [3]

double[ ] int[ ]

scores

[0] [1] [2] [3]

a newly
allocated
array of
four
integers

java03.frm  Page 96  Saturday, August 26, 2000  5:53 PM



A Review of Java Arrays97

simpler picture that we’ll usually use to show that scores refers to an array of
four integers:

Both pictures mean the same thing. The first picture is a more accurate depiction
of what Java actually does; the second is a kind of shorthand which is typical of
what programmers draw to illustrate an array.

Once an array has been allocated, individual components can be selected
using the square bracket notation with an index. For example, with scores allo-
cated as shown, we can set its [2] component to 42 with the assignment

. The result is shown here:

Pitfall: Exceptions That Arise from Arrays

Two kinds of exceptions commonly arise from programming errors with arrays. One
problem is to try to use an array variable before the array has been allocated. For
example, suppose we declare , but we forget to use the new oper-
ator to create an array for scores to refer to. At this point, scores is actually a ref-
erence variable, just like the reference variables that we discussed for other kinds
of objects on page 50. But merely declaring a reference variable does not allocate
an array, and it is a programming error to try to access a component such as
scores[2]. A program that tries to access a component of a nonexistent array
may throw a NullPointerException (if the reference is null) or there may be a
compile-time error (if the variable is an uninitialized local variable).

A second common programming error is trying to access an array outside of its
bounds. For example, suppose that scores refers to an array with four compo-
nents. The indexes are [0] through [3], so it is an error to use an index that is too
small (such as scores[-1]) or too large (such as scores[4]). A program that
tries to use these indexes will throw an ArrayIndexOutOfBoundsException.

The Length of an Array

Every array has an instance variable called length, which tells the number of
components in the array. For example, consider . After
this allocation, scores.length is 4. Notice that length is not a method, so the
syntax is merely scores.length (with no argument list). By the way, if an
array variable is the null reference, then you cannot ask for its length (trying to
do so results in a NullPointerException).

scores

[0] [1] [2] [3]

scores[2] = 42

scores

[0] [1] [2] [3]

42

PITFALL

int[ ] scores

scores = new int[4]

java03.frm  Page 97  Saturday, August 26, 2000  5:53 PM



98  Chapter 3 / Collection Classes

Assignment Statements with Arrays

A program can use an assignment statement to make two array variables refer to
the same array. Here’s some example code:

int[ ] scores;
int[ ] exams;

scores = new int[4];
scores[0] = 7;
scores[1] = 22;
scores[2] = 19;
scores[4] = 56;
exams = scores;

After these statements, scores refers to an array containing the four integers 7,
22, 19, and 56. The assignment statement, , causes exams to
refer to the exact same array. Here is an accurate drawing of the situation:

Here’s a shorthand drawing of the same situation to show that scores and
exams refer to the same array:

In this example, there is only one array, and both array variables refer to this one
array. Any change to the array will affect both scores and exams. For example,
after the above statements we might assign . The situation after
the assignment to exams[2] is shown here:

At this point, both exams[2] and scores[2] are 42.

exams = scores

scores

[0] [1] [2] [3]

after the

exams

7 22 19 56
assignment,
both array
variables
refer to the
same array

scores

[0] [1] [2] [3]

after the

exams
7 22 19 56

assignment,
both array
variables
refer to the
same array

exams[2] = 42

scores

[0] [1] [2] [3]

the [2]

exams
7 22 42 56

component
has been
changed
to 42

java03.frm  Page 98  Saturday, August 26, 2000  5:53 PM



A Review of Java Arrays99

Clones of Arrays

In Chapter 2 you saw how to use a clone method to create a completely sepa-
rate copy of an object. Every Java array comes equipped with a clone method to
create a copy of the array. Just like the other clones that you’ve seen, changes to
the original array don’t affect the clone, and changes to the clone don’t affect the
original array. Here’s an example:

int[ ] scores;
int[ ] exams;

scores = new int[4];
scores[0] = 7;
scores[1] = 22;
scores[2] = 19;
scores[3] = 56;
exams = (int[ ]) scores.clone( );

The final statement in this example uses  to create a copy of
the scores array. The data type of the return value of any clone method is
Java’s Object data type and not an array. Because of this, we usually cannot use
the clone return value directly. For example, we cannot write an assignment:

exams = scores.clone( ); 

Instead, we must apply a typecast to the clone return value, converting it to an
integer array before we assign it to exams, like this:

exams =  scores.clone( );

The expression  tells the compiler to treat the return value of the
clone method as an integer array.

After the assignment statement, exams refers to a new array which is an exact
copy of the scores array, as shown here:

There are now two separate arrays. Changes to one array do not affect the other.
For example, after the above statements we might assign .

scores.clone( )

this has a compile-time error

(int[ ])

(int[ ])

scores

[0] [1] [2] [3]

after creating

7 22 19 56

exams

[0] [1] [2] [3]

7 22 19 56

the clone,
there are
two separate
arrays

exams[2] = 42

java03.frm  Page 99  Saturday, August 26, 2000  5:53 PM



100  Chapter 3 / Collection Classes

The situation after the assignment to exams[2] is shown here:

At this point, exams[2] is 42, but scores[2] is unchanged.

Array Parameters

An array can be a parameter to a method. Here’s an example method with an
array as a parameter:

  ◆ put42s
public static void put42s(int[ ] data)

Put 42 in every component of an array.
Parameters:

data – an array of integers
Postcondition:

All components of data have been set to 42.

public static void put42s(int[ ] data)
{

int i;
for (i = 0; i < data.length; i++)

data[i] = 42;
}

Perhaps this is a silly example (when was the last time you really wanted to put
42 in every component of an array?), but the example is a good way to show
how an array works as a parameter. Notice how the array parameter is indicated
by placing array brackets after the parameter name. In the put42s example, the
array is called data, so the parameter list is .

When a method is activated with an array parameter, the parameter is initial-
ized to refer to the same array that the actual argument refers to. Therefore, if the
method changes the components of the array, the changes do affect the actual
argument. For example, this code activates the put42s method:

int[ ] example = new int[7];
put42s(example);

After these statements, all seven components of the example array contain 42.

scores

[0] [1] [2] [3]

exams[2]

7 22 19 56

exams

[0] [1] [2] [3]

7 22 42 56

has changed
to 42, but
scores[2]
is unchanged

(int[ ] data)

java03.frm  Page 100  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers101

Self-Test Exercises

1. Write code that follows these steps: (1) Declare an integer array variable
called b; (2) Allocate a new array of 1000 integers for b to refer to; and
(3) Place the numbers 1 through 1000 in the array.

2. Write a Java expression that will indicate how many elements are in the
array b (from the previous exercise).

3. What is the output from this code:
int[ ] a, b;
a = new int[10];
a[5] = 0;
b = a;
a[5] = 42;
System.out(b[5]);

4. What is the output from this code:
int[ ] a, b;
a = new int[10];
a[5] = 0;
b = (int [ ]) a.clone( );
a[5] = 42;
System.out(b[5]);

5. Suppose that an array is passed as a parameter to a method, and the
method changes the first component of the array to 42. What effect does
this have on the actual argument back in the calling program?

6. Write a method that copies n elements from the front of one integer array
to the front of another. The two arrays and the number n are all argu-
ments to the method. Include a precondition/postcondition contract as
part of your implementation.

3.2 AN ADT FOR A BAG OF INTEGERS

This section provides an example of a collection class. In this first example, the
collection class will use an array to store its collection of elements (but later we
will see other ways to store collections). 

The example collection class is called a bag of integers. To describe the bag
data type, think about an actual bag—a grocery bag or a garbage bag—and

Array Parameters

When a parameter is an array, then the parameter is initial-
ized to refer to the same array that the actual argument refers
to. Therefore, if the method changes the components of the
array, the changes do affect the actual argument.

java03.frm  Page 101  Saturday, August 26, 2000  5:53 PM



102  Chapter 3 / Collection Classes

imagine writing integers on slips of paper and putting them in the bag. A bag of
integers is similar to this imaginary bag: a container that holds a collection of
integers that we place into it. A bag of integers can be used by any program that
needs to store a collection of integers for its own use. For example, later we will
write a program that keeps track of the ages of your family’s members. If you
have a large family with ten people, the program keeps track of ten ages—and
these ages are kept in a bag of integers.

The Bag ADT—Specification

We’ve given an intuitive description of a bag of integers. We will implement this
bag as a class called IntArrayBag, in which the integers are stored in an array.
In general, we’ll use a three-part name for a collection: “Int” specifies the type
of the elements in the bag; “Array” indicates the mechanism for storing the ele-
ments; and “Bag” indicates the kind of collection. For a precise specification of
the IntArrayBag class, we must describe each of the public methods to manip-
ulate an IntArrayBag object. These descriptions will later become our specifi-
cations, including a precondition/postcondition contract for each method. Let’s
look at the methods one at a time.

The Constructors.   The IntArrayBag class has two constructors to initialize a
new, empty bag. One constructor has a parameter, as shown in this heading:

public IntArrayBag(initialCapacity)

The parameter, initialCapacity, is the initial capacity of the bag—the num-
ber of elements that the bag can hold. Once this capacity is reached, more ele-
ments can still be added and the capacity will automatically increase in a
manner that you’ll see in a moment.

The other constructor has no parameters, and it constructs a bag with an initial
capacity of ten.

The add Method.   This is a modification method that places a new integer,
called element, into a bag. Here is the heading:

public void add(int element)

As an example, here are some statements for a bag called firstBag:

IntArrayBag firstBag = new IntArrayBag( );
firstBag.add(8); 
firstBag.add(4); 
firstBag.add(8);  

After these statements are executed, firstBag contains three integers: the num-
ber 4 and two copies of the number 8. It is important to realize that a bag can
contain many copies of the same integer, such as this example, which has two
copies of 8.

After these statements, firstBag
contains two 8s and a 4.

java03.frm  Page 102  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers103

The remove Method.   This modification method removes a particular number
from a bag. The heading is shown here:

public boolean remove(int target)

Provided that target is actually in the bag, the method removes one copy of
target and returns true to indicate that something has been removed. If tar-
get is not in the bag, then the method returns false without changing the bag.

The size Method.   This accessor method returns the count of how many inte-
gers are in a bag. The heading for the size method is:

public int size( )

For example, suppose firstBag contains one copy of the number 4 and two
copies of the number 8. Then firstBag.size( ) returns 3. 

The countOccurrences Method.   This is an accessor method that determines
how many copies of a particular number are in a bag. The heading is:

public int countOccurrences(int target)

The activation of countOccurrences(n) returns the number of occurrences of
n in a bag. For example, if firstBag contains the number 4 and two copies of
the number 8, then we will have these values:

System.out.println(firstBag.countOccurrences(1));
System.out.println(firstBag.countOccurrences(4));
Systme.out.println(firstBag.countOccurrences(8));

The addAll Method.   The addAll method allows us to add the contents of one
bag to the existing contents of another bag. The method has this heading:

public void addAll(IntArrayBag addend)

This is an interesting method for the IntArrayBag class because the parameter
is also an IntArrayBag object. We use the name addend for the parameter,
meaning “something to be added.” As an example, suppose we create two bags
called helter and skelter, and we then want to add all the contents of skel-
ter to helter. This is done with helter.addAll(skelter), as shown here:

IntArrayBag helter= new IntArrayBag( );
IntArrayBag skelter = new IntArrayBag( );
helter.add(8);
skelter.add(4);
skelter.add(8);
helter.addAll(skelter);

After these statements, helter contains one 4 and two 8s.

Prints 0

Prints 1

Prints 2

This adds the contents of
skelter to what’s
already in helter.

java03.frm  Page 103  Saturday, August 26, 2000  5:53 PM



104  Chapter 3 / Collection Classes

The union Method.   The union of two bags is a new larger bag that contains all
the numbers in the first bag and all the numbers in the second bag, as shown
here:

We will implement union with a static method that has the two parameters
shown here:

public static IntArrayBag union(IntArrayBag b1, IntArrayBag b2)

The union method computes the union of b1 and b2. For example:

IntArrayBag part1 = new IntArrayBag( );
IntArrayBag part2 = new IntArrayBag( );

part1.add(8);
part1.add(9);
part2.add(4);
part2.add(8);

IntArrayBag total = IntArrayBag.union(part1, part2);

After these statements, total contains one 4, two 8s, and one 9.
The union method is similar to addAll, but the usage is different. The addAll

method is an ordinary method that is activated by a bag, for example
helter.addAll(skelter), which adds the contents of skelter to helter. On
the other hand, union is a static method with two arguments. As a static
method,union is not activated by any one bag. Instead, the activation of
IntArrayBag.union(part1, part2) creates and returns a new bag that
includes the contents of both part1 and part2.

The clone Method.   As part of our specification, we require that bag objects
can be copied with a clone method. For example:

IntArrayBag b = new IntArrayBag( );
b.add(42);

At this point, because we are only specifying which operations can manipu-
late a bag, we don’t need to say anything more about the clone method.

and is

The union of

This computes the union of
the two bags, putting the result
in a third bag.

b now contains a 42.

c is initialized
as a clone of b.IntArrayBag c = (IntArrayBag) b.clone( );

java03.frm  Page 104  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers105

Three Methods That Deal with Capacity.   Each bag has a current capacity,
which is the number of elements the bag can hold without having to request more
memory. Once the capacity is reached, more elements can still be added by the
add method. In this case, the add method itself will increase the capacity as
needed. In fact, our implementation of add will double the capacity whenever the
bag becomes full.

With this in mind, you might wonder why a programmer needs to worry about
the capacity at all. For example, why does the constructor require the program-
mer to specify an initial capacity? Couldn’t we always use the constructor that
has an initial capacity of ten and have the add method increase capacity as more
and more elements are added? Yes, this approach will always work correctly. But
if there are many elements, then many of the activations of add would need to
increase the capacity. This could be inefficient—in fact, increasing the capacity
will be the least efficient operation of the entire bag. To avoid repeatedly increas-
ing the capacity, a programmer provides an initial guess at the needed capacity
for the constructor.

For example, suppose a programmer expects no more than 1000 elements for
a bag named kilosack. The bag is declared this way, with an initial capacity of
1000:

IntArrayBag kilosack = new IntArrayBag(1000);

After this declaration, the programmer can place 1000 elements in the bag with-
out worrying about the capacity. Later, the programmer can add more elements
to the bag, maybe even more than 1000. If there are more than 1000 elements,
then add increases the capacity as needed.

There are three methods that allow a programmer to manipulate a bag’s
capacity after the bag is in use. The methods have these headers:

public int getCapacity( )
public void ensureCapacity(int minimumCapacity)
public void trimToSize( )

The first method, getCapacity, just returns the current capacity of the bag. The
second method, ensureCapacity, increases the capacity to a specified mini-
mum amount. For example, in order to ensure that a bag called bigboy has a
capacity of at least 10,000, we would activate bigboy.ensureCapacity(10000).

The third method, trimToSize, reduces the capacity of a bag to its current
size. For example, suppose that bigboy has a current capacity of 10,000, but it
contains only 42 elements and we are not planning to add any more. Then we can
reduce the current capacity to 42 with the activation bigboy.trimToSize( ).
Trimming the capacity is never required, but doing so can reduce the memory
used by a program.

That’s all the methods, and we’re almost ready to write the methods’ specifi-
cations. But first, there are some limitations that we’d like to discuss.

java03.frm  Page 105  Saturday, August 26, 2000  5:53 PM



106  Chapter 3 / Collection Classes

OutOfMemoryError and Other Limitations for Collection Classes

Our plan is to store a bag’s elements in an array, and to increase the capacity of
the array as needed. The memory for any array comes from a location called the
program’s heap (also called the free store). In fact, the memory for all Java
objects comes from the heap. Some computers provide huge heaps—Java
implementations running on a machine with a “64-bit address space” have the
potential for more than 1018 integers. But even the largest heap can be exhausted
by creating large arrays or other objects.

what happens 
when the heap 
runs out of 
memory?

If a heap has insufficient memory for a new object or array, then the result is
a Java exception called OutOfMemoryError. This exception is thrown automati-
cally by an unsuccessful “new” operation. For example, if there is insufficient
memory for a new Throttle object, then 
throws an OutOfMemoryError. Experienced programmers may monitor the size
of the heap and the amount that is still unused. Our programs won’t attempt such
monitoring, but our specification for any collection class will always mention
that the maximum capacity is limited by the amount of free memory. To aid more
experienced programmers, the specification will also indicate precisely which
methods have the possibility of throwing an OutOfMemoryError. (Any method
that uses the “new” operation could throw this exception.)

collection 
classes may be 
limited by the 
maximum value 
of an integer 

Many collection classes have another limitation that is tied to the maximum
value of an integer. In particular, our bag stores the elements in an array, and
every array has integers for its indexes. Java integers are limited to no more than
2,147,483,647, which is also written as Integer.MAX_VALUE. An attempt to cre-
ate an array with a size beyond Integer.MAX_VALUE results in an arithmetic
overflow during the calculation of the size of the array. Such an overflow usually
produces an array size that Java’s runtime system sees as negative. This
is because Java represents integers so that the “next” number after
Integer.MAX_VALUE is actually the smallest negative number. 

Programmers often ignore the array-size overflow problem (since today’s
machines generally have an OutOfMemoryError before Integer.MAX_VALUE is
approached). We won’t provide special code to handle this problem, but we
won’t totally ignore the problem either. Instead, our documentation will indicate
precisely which methods have the potential for an array-size overflow. We’ll also
add a note to advise that large bags should probably use a different implementa-
tion method anyway, because many of the array-based algorithms are slow for
large bags (O(n), where n is the number of elements in the bag).

The IntArrayBag Class—Specification

We now know enough about the bag to write a specification, as shown in Figure
3.1. We’ve used the name IntArrayBag for this class, and it is the first class of a
package named edu.colorado.collections.

The specification also states the bag’s limitations: the possibility of an Out-
OfMemoryError (when the heap is exhausted), a note about the limitation of the
capacity, and a note indicating that large bags will have poor performance.

Throttle t = new Throttle( )

java03.frm  Page 106  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers107

Class IntArrayBag

❖ public class IntArrayBag from the package edu.colorado.collections
An IntArrayBag is a collection of int numbers.

Limitations: 
(1) The capacity of one of these bags can change after it’s created, but the maximum capacity 
is limited by the amount of free memory on the machine. The constructor, add, clone, and 
union will result in an OutOfMemoryError when free memory is exhausted.

(2) A bag's capacity cannot exceed the largest integer 2,147,483,647 (Integer.MAX_VALUE). 
Any attempt to create a larger capacity results in failure due to an arithmetic overflow.

(3) Because of the slow linear algorithms of this class, large bags will have poor 
performance.

Specification

  ◆ Constructor for the IntArrayBag
public IntArrayBag( )

Initialize an empty bag with an initial capacity of 10. Note that the add method works 
efficiently (without needing more memory) until this capacity is reached.

Postcondition:
This bag is empty and has an initial capacity of 10.

Throws: OutOfMemoryError
Indicates insufficient memory for: new int[10].

  ◆ Second Constructor for the IntArrayBag
public IntArrayBag(int initialCapacity)

Initialize an empty bag with a specified initial capacity. Note that the add method works 
efficiently (without needing more memory) until this capacity is reached.

Parameters:
initialCapacity – the initial capacity of this bag

Precondition:
initialCapacity is non-negative.

Postcondition:
This bag is empty and has the given initial capacity.

Throws: IllegalArgumentException
Indicates that initialCapacity is negative.

Throws: OutOfMemoryError
Indicates insufficient memory for: new int[initialCapacity].

(continued)

 FIGURE  3.1 Specification for the IntArrayBag Class

java03.frm  Page 107  Saturday, August 26, 2000  5:53 PM



108  Chapter 3 / Collection Classes

 (FIGURE  3.1 continued)

  ◆ add
public void add(int element)

Add a new element to this bag. If this new element would take this bag beyond its current capacity, 
then the capacity is increased before adding the new element.
Parameters:

element – the new element that is being added
Postcondition:

A new copy of the element has been added to this bag.
Throws: OutOfMemoryError

Indicates insufficient memory for increasing the capacity.
Note:

An attempt to increase the capacity beyond Integer.MAX_VALUE will cause this bag to fail with 
an arithmetic overflow. 

  ◆ addAll
public void addAll(IntArrayBag addend)

Add the contents of another bag to this bag.
Parameters:

addend – a bag whose contents will be added to this bag
Precondition:

The parameter, addend, is not null. 
Postcondition:

The elements from addend have been added to this bag.
Throws: NullPointerException

Indicates that addend is null.
Throws: OutOfMemoryError

Indicates insufficient memory to increase the size of this bag.
Note:

An attempt to increase the capacity beyond Integer.MAX_VALUE will cause this bag to fail with 
an arithmetic overflow. 

  ◆ clone
public Object clone( )

Generate a copy of this bag.
Returns:

The return value is a copy of this bag. Subsequent changes to the copy will not affect the 
original, nor vice versa. The return value must be typecast to an IntArrayBag before it is used.

Throws: OutOfMemoryError
Indicates insufficient memory for creating the clone.

(continued)

java03.frm  Page 108  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers109

 (FIGURE  3.1 continued)

  ◆ countOccurrences
public int countOccurrences(int target)

Accessor method to count the number of occurrences of a particular element in this bag.
Parameters:

target – the element that needs to be counted
Returns:

the number of times that target occurs in this bag

  ◆ ensureCapacity
public void ensureCapacity(int minimumCapacity)

Change the current capacity of this bag.
Parameters:

minimumCapacity – the new capacity for this bag
Postcondition:

This bag’s capacity has been changed to at least minimumCapacity. If the capacity was 
already at or greater than minimumCapacity, then the capacity is left unchanged.

Throws: OutOfMemoryError
Indicates insufficient memory for: new int[minimumCapacity].

  ◆ getCapacity
public int getCapacity( )

Accessor method to determine the current capacity of this bag. The add method works 
efficiently (without needing more memory) until this capacity is reached.
Returns:

the current capacity of this bag

  ◆ remove
public boolean remove(int target)

Remove one copy of a specified element from this bag.
Parameters:

target – the element to remove from this bag
Postcondition:

If target was found in this bag, then one copy of target has been removed and the method 
returns true. Otherwise this bag remains unchanged and the method returns false. 

  ◆ size
public int size( )

Accessor method to determine the number of elements in this bag.
Returns:

the number of elements in this bag

(continued)

java03.frm  Page 109  Saturday, August 26, 2000  5:53 PM



110  Chapter 3 / Collection Classes

The IntArrayBag Class—Demonstration Program

With the specification in hand, we can write a program that uses a bag. We don’t
need to know what the instance variables of a bag are, and we don’t need to
know how the methods are implemented. As an example, a demonstration
program appears in Figure 3.2. The program asks a user about the ages of fam-
ily members. The user enters the ages followed by a negative number to indicate
the end of the input. (Using a special value to end a list is a common technique
called a sentinel value.) A typical dialogue with the program looks like this:

Type the ages of your family members. 
Type a negative number at the end and press return.
5 19 47 -1 
Type those ages again. Press return after each age.
Age: 19
Yes, I’ve got that age and will remove it.

 (FIGURE  3.1 continued)

  ◆ trimToSize
public void trimToSize( )

Reduce the current capacity of this bag to its actual size (i.e., the number of elements it contains).
Postcondition:

This bag’s capacity has been changed to its current size.
Throws: OutOfMemoryError

Indicates insufficient memory for altering the capacity.

  ◆ union
public static IntArrayBag union(IntArrayBag b1, IntArrayBag b2)

Create a new bag that contains all the elements from two other bags.
Parameters:

b1 – the first of two bags
b2 – the second of two bags

Precondition:
Neither b1 nor b2 is null.

Returns:
a new bag that is the union of b1 and b2

Throws: NullPointerException
Indicates that one of the arguments is null.

Throws: OutOfMemoryError
Indicates insufficient memory for the new bag.

Note:
An attempt to create a bag with capacity beyond Integer.MAX_VALUE will cause the bag to fail 
with an arithmetic overflow. 

java03.frm  Page 110  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers111

Age: 36
No, that age does not occur!
Age: 5
Yes, I’ve got that age and will remove it.
Age: 47
Yes, I’ve got that age and will remove it.
May your family live long and prosper.

the EasyReader 
class from 
Appendix B 
allows simple 
kinds of input

The program puts the ages in a bag and then asks the user to type the ages
again. The program’s interaction with the user is handled through a class called
EasyReader, which contains various simple input methods. The class is fully
described in Appendix B, but for this program all that’s needed is a single
EasyReader called stdin, which is attached to standard input (System.in).

Once stdin is set up, an integer can be read with either of two methods: (1)
stdin.intInput (which simply reads an integer input), or (2)stdin.intQuery
(which prints a prompt and then reads an integer input). You may find the Easy-
Reader class useful for your own demonstration programs. 

As for the IntArrayBag class itself, we still don’t know how the implemen-
tation will work, but we’re getting there.

Java Application Program

// FILE: BagDemonstration.java
// This small demonstration program shows how to use the IntArrayBag class
// from the edu.colorado.collections package.

import edu.colorado.collections.IntArrayBag;
import edu.colorado.io.EasyReader;

class BagDemonstration
{
   private static EasyReader stdin = new EasyReader(System.in);
   

   {
      IntArrayBag ages = new IntArrayBag( );
      getAges(ages);
      checkAges(ages);
      System.out.println("May your family live long and prosper.");
   }

(continued)

 FIGURE  3.2 Demonstration Program for the Bag Class

the EasyReader class is
described in Appendix B

public static void main(String[ ] args)

java03.frm  Page 111  Saturday, August 26, 2000  5:53 PM



112  Chapter 3 / Collection Classes

 (FIGURE  3.2 continued)

// The getAges method prompts the user to type in the ages of family members. These
// ages are read and placed in the ages bag, stopping when the user types a negative 
// number. This demonstration does not worry about the possibility of running out 
// of memory (therefore, an OutOfMemoryError is possible).

   {
      int userInput; // An age from the user's family

      System.out.println("Type the ages of your family members.");
      System.out.println("Type a negative number at the end and press return.");
      userInput = stdin.intInput( );
      while (userInput >= 0)
      { 
         ages.add(userInput);
         userInput = stdin.intInput( );
      }
   }

 
   // The checkAges method prompts the user to type in the ages of family members once

// again. Each age is removed from the ages bag when it is typed, stopping when the bag
// is empty.

   public static void checkAges(IntArrayBag ages)
   {

int userInput; // An age from the user's family

System.out.print("Type those ages again. ");
System.out.println("Press return after each age.");
while (ages.size( ) > 0)
{

userInput = stdin.intQuery("Next age: ");
if (ages.countOccurrences(userInput) == 0)

System.out.println("No, that age does not occur!");
else
{

System.out.println("Yes, I've got that age and will remove it.");
ages.remove(userInput);

}

}
   }

}

public static void getAges(IntArrayBag ages)

public static void checkAges(IntArrayBag ages)

java03.frm  Page 112  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers113

The IntArrayBag Class—Design

There are several ways to design the IntArrayBag class. For now, we’ll keep
things simple and design a somewhat inefficient data structure using an array.
The data structure will be redesigned several times to obtain more efficiency.

We start the design by thinking about the data structure—the actual configu-
ration of private instance variables used to implement the class. The primary
structure for our design is an array that stores the elements of a bag. Or, to be
more precise, we use the beginning part of a large array. Such an array is called
a partially filled array . For example, if the bag contains the integer 4 and two
copies of 8, then the first part of the array could look this way:

This array, called data, will be one of the private instance variables of the
IntArrayBag class. The length of the array will be determined by the current
capacity, but as the picture indicates, when we are using the array to store a bag
with just three elements, we don’t care what appears beyond the first three com-
ponents. Starting at index 3, the array might contain all zeros, or it might contain
garbage, or our favorite number—it really doesn’t matter.

Because part of the array can contain garbage, the IntArrayBag class must
keep track of one other item: How much of the array is currently being used? For
example, in the previous picture, we are using only the first three components of
the array because the bag contains three elements. The amount of the array being
used can be as small as zero (an empty bag) or as large as the current capacity.
The amount increases as elements are added to the bag, and it decreases as ele-
ments are removed. In any case, we will keep track of the amount in a private
instance variable called manyItems. With this approach, there are two instance
variables for a bag:

public class IntArrayBag implements Cloneable
{

}

Notice that we are planning to implement a clone method, therefore we indi-
cate “implements Cloneable” at the start of the class definition.

use the 
beginning part 
of an array

[2][0] [1]

data
8 4 8Components of

the partially filled
array contain the
elements of the bag. [3] [4] [5]

Parts
Unknown

the bag’s 
instance
variables

private int[ ] data; // An array to store elements
private int manyItems; // How much of the array is used

The public methods will be given in a moment.

java03.frm  Page 113  Saturday, August 26, 2000  5:53 PM



114  Chapter 3 / Collection Classes

The Invariant of an ADT

We’ve defined the bag data structure, and we have a good intuitive idea of how
the structure will be used to represent a bag of elements. But as an aid in imple-
menting the class we should also write down an explicit statement of how the
data structure is used to represent a bag. In the case of the bag, we need to state
how the instance variables of the class are used to represent a bag of elements.
There are two rules for our bag implementation:

rules that dictate 
how the instance 
variables are 
used to 
represent a 
value

1. The number of elements in the bag is stored in the instance variable 
manyItems.

2. For an empty bag, we do not care what is stored in any of data; for a
nonempty bag, the elements of the bag are stored in data[0] through
data[manyItems-1], and we don’t care what is stored in the rest of data.

The rules that dictate how the instance variables of a class represent a value
(such as a bag of elements) are called the invariant of the ADT. The knowledge
of these rules is essential to the correct implementation of the ADT’s methods.
With the exception of the constructors, each method depends on the invariant
being valid when the method is activated. And each method, including the con-
structors, has a responsibility of ensuring that the invariant is valid when the
method finishes. In some sense, the invariant of an ADT is a condition that is an
implicit part of every method’s postcondition. And (except for the constructors)
it is also an implicit part of every method’s precondition. The invariant is not
usually written as an explicit part of the precondition and postcondition because
the programmer who uses the ADT does not need to know about these condi-
tions. But to the implementor of the ADT, the invariant is indispensable. In other
words, the invariant is a critical part of the implementation of an ADT, but it has
no effect on the way the ADT is used.

Once the invariant of an ADT is stated, the implementation of the methods is
relatively simple because there is no interaction between the methods—except
for their cooperation at keeping the invariant valid. We’ll look at these imple-
mentations one at a time, starting with the constructors.

The Invariant of an ADT

When you design a new class, always make an explicit
statement of the rules that dictate how the instance variables
are used. These rules are called the invariant of the ADT . All
of the methods (except the constructors) can count on the
invariant being valid when the method is called. Each method
also has the responsibility of ensuring that the invariant is
valid when the method finishes.

The invariant 
is a critical part 
of an ADT’s  
implementation.

Key Design 
Concept

java03.frm  Page 114  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers115

The IntArrayBag ADT—Implementation

The Constructor.   Every constructor has one primary job: to set up the
instance variables correctly. In the case of the bag, the constructor must set up
the instance variables so that they represent an empty bag with a current capac-
ity given by the parameter initialCapacity. The bag has two instance vari-
ables, so its constructor will include two assignment statements shown in this
implementation of one of the constructors:

public IntArrayBag(int initialCapacity)
{

if (initialCapacity < 0)
throw new IllegalArgumentException
("initialCapacity is negative: " + initialCapacity);

manyItems = 0;
data = new int[initialCapacity];

}

implementing 
the constructor

The if-statement at the start checks the constructor’s precondition. The first
assignment statement, , simply sets manyItems to zero, indi-
cating that the bag does not yet have any elements. The second assignment
statement, , is more interesting. This
statement allocates an array of the right capacity (initialCapacity), and
makes data refer to the new array. For example, suppose that initialCapac-
ity is 6. After the two assignment statements, the instance variables look like
this:

Later, the program could add many elements to this bag, maybe even more than
six. If there are more than six elements, then the bag’s methods will increase the
array’s capacity as needed.

The other constructor is similar, except it always provides an initial capacity
of ten.

The add Method.   The add method checks that there is room to add a new ele-
ment. If not, then the array capacity is increased before proceeding. (The new
capacity is twice the old capacity plus 1. The extra +1 deals with the case where

manyItems = 0

data = new int[initialCapacity]

[2] [3] [4] [5][0] [1]

manyItems

data

0
The private instance
variables of this bag
include an array of
six integers.
The bag does not
yet contain any 
elements, so none of
the array is being used.

java03.frm  Page 115  Saturday, August 26, 2000  5:53 PM



116  Chapter 3 / Collection Classes

the original size was zero.) The attempt to increase the array capacity may lead
to an OutOfMemoryError or an arithmetic overflow as discussed on page 106.
But usually these errors do not occur, and we can place the new element in the
next available location of the array. What is the index of the next available loca-
tion? For example, if manyItems is 3, then data[0], data[1], and data[2] are
already occupied, and the next location is data[3]. In general, the next avail-
able location will be data[manyItems]. We can place the new element in
data[manyItems], as shown in this implementation:

public void add(int element)
implementing 
add

{
if (manyItems == data.length)
{

// Double the capacity and add 1; this works even if manyItems is 0.
// However, in the case that manyItems*2 + 1 is beyond
// Integer.MAX_VALUE, there will be an arithmetic overflow and
// the bag will fail.
ensureCapacity(manyItems*2 + 1);

}

manyItems++;
}

Within a method we can activate other methods, such as the way that the add
implementation activates ensureCapacity to increase the capacity of the array.

The remove Method.   The remove method takes several steps to remove an
element named target from a bag. In the first step, we find the index of target
in the bag’s array, and store this index in a local variable named index. For
example, suppose that target is the number 6 in the bag drawn here:

In this example, target is a parameter to the remove method, index is a local
variable in the remove method, and manyItems is the bag instance variable. As
you can see in the drawing, the first step of remove is to locate the target (6) and
place the index of the target in the local variable called index.

data[manyItems] = element; See Self-Test Exercise 11 
for an alternative approach 
to these steps.

index
1

data
3 6 4 9 8

manyItems

5
target

6

[2][0] [3] [4] [5][1]

. . .
The index of the target
is found and placed in
a local variable
called index.

java03.frm  Page 116  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers117

Once the index of the target is found, the second step is to take the final ele-
ment in the bag and copy it to data[index]. The reason for this copying is so
that all the bag’s elements stay together at the front of the partially filled array,
with no “holes.” In our example, the number 8 is copied to data[index] as
shown here:

The third step is to reduce manyItems by one—in effect reducing the used part
of the array by one. In our example, manyItems is reduced from 5 to 4:

The code for the remove method, shown in Figure 3.3, follows these three steps.
There is also a check that the target is actually in the bag. If we discover that the
target is not in the bag, then we do not need to remove anything. Also note that
our method works correctly for the boundary values of removing the first or last
element in the array.

implementing 
remove

Before we continue, we want to point out some programming techniques.
Look at the following for-loop from Figure 3.3:

for (index = 0; (index < manyItems) && (target != data[index]); index++)
// No work is needed in the body of this for-loop.
;

Instead of the usual loop body, there is merely a semicolon, which means that
the body of this loop has no statements; all of the work is accomplished by the
loop’s three clauses. The first clause initializes index to zero. The second

index
1

data
3 6 4 9

manyItems

5
target

6

[2][0] [3] [4] [5][1]

8
8 . . .

The final element
is copied onto
the element
that we are
removing.

index
1

data
3 8 4 9

manyItems

target
6

[2][0] [3] [4] [5][1]

. . .The value of manyItems

5
4

is reduced by
one to indicate
that one element
has been
removed.

java03.frm  Page 117  Saturday, August 26, 2000  5:53 PM



118  Chapter 3 / Collection Classes

clause indicates that the loop continues as long as index is still a location in
the used part of the array (i.e., index < manyItems) and we have not yet found
the target (i.e., target != data[index]). Each time through the loop, the third
clause increments index by one (index++). No other work is needed in the
loop, so the body of the loop has no statements.

A second programming technique concerns the boolean expression used to
control the loop:

for (index = 0; ; index++)
// No work is needed in the body of this for-loop.
;

Look at the expression data[index] in the second part of the test. The valid
indexes for data range from 0 to manyItems-1. But, if the target is not in the
array, then index will eventually reach manyItems, which could be an invalid
index. At that point, with index equal to manyItems, we must not evaluate the
expression data[index]. Trying to evaluate data[index] with an invalid
index will cause an ArrayIndexOutOfBoundsException. 

The general rule: Never use an invalid index with an array.

Implementation

{
int index; // The location of target in the data array

// First, set index to the location of target in the data array,
// which could be as small as 0 or as large as manyItems-1.
// If target is not in the array, then index will be set equal to manyItems.
for (index = 0; (index < manyItems) && (target != data[index]); index++)

// No work is needed in the body of this for-loop.
;

if (index == manyItems)
// The target was not found, so nothing is removed.

 return false;
else
{ // The target was found at data[index].

manyItems--;
data[index] = data[manyItems];
return true;

}
}

 FIGURE  3.3 Implementation of the Bag’s Method to Remove an Element

public boolean remove(int target)

See Self-Test Exercise 11 for an 
alternative approach to this step.

(index < manyItems) && (target != data[index])

java03.frm  Page 118  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers119

short-circuit 
evaluation of 
boolean 
expressions

Avoiding the invalid index is the reason for the first part of the boolean test
(i.e., index < manyItems). Moreover, the test for (index < manyItems) must
appear before the other part of the test. Placing (index < manyItems) first
ensures that only valid indexes are used. The insurance comes from a technique
called short-circuit evaluation, which Java uses to evaluate boolean expressions.
In short-circuit evaluation a boolean expression is evaluated from left to right,
and the evaluation stops as soon as there is enough information to determine the
value of the expression. In our example, if index equals manyItems, then the
first part of the boolean expression (index < manyItems) is false, so the entire
&& expression must be false. It doesn’t matter whether the second part of the &&
expression is true or false. Therefore, Java doesn’t bother to evaluate the sec-
ond part of the expression, and the potential error of an invalid index is avoided.

The countOccurrences Method.   To count the number of occurrences of
a particular element in a bag, we step through the used portion of the partially
filled array. Remember that we are using locations data[0] through
data[manyItems-1], so the correct loop is shown in this implementation:

public int countOccurrences(int target)
implementing 
the 
countOccurrences 
method

{
int answer;
int index;

answer = 0;

return answer;
}

implementing 
the addAll 
method

The addAll Method.   The addAll method has this heading:

public void addAll(IntArrayBag addend)

The bag that activates addAll is increased by adding all the elements from
addend. Our implementation follows these steps:

1. Ensure that the capacity of the bag is large enough to contain its current
elements plus the extra elements that will come from addend, as shown
here:

ensureCapacity(manyItems + addend.manyItems);

By the way, what happens in this statement if addend is null? Of course, a
null value violates the precondition of addAll, but a programmer could
mistakenly provide null. In that case, a NullPointerException will be
thrown, and this possibility is documented in the specification of addAll
on page 108.

for (index = 0; index < manyItems; index++)
if (target == data[index])

answer++;

java03.frm  Page 119  Saturday, August 26, 2000  5:53 PM



120  Chapter 3 / Collection Classes

2. Copy the elements from addend.data to the next available positions in
our own data array. In other words, we will copy addend.manyItems
elements from the front of addend.data. These elements go into our own
data array beginning at the next available spot, data[manyItems]. We
could write a loop to copy these elements, but a quicker approach is to use
Java’s System.arraycopy method, which has these five arguments:

System.arraycopy(source, si, destination, di, n);

the arraycopy 
method

The arguments source and destination are two arrays, and the other
arguments are integers. The method copies n elements from source
(starting at source[si]) to the destination array (with the elements
being placed at destination[di] through destination[di+n-1]). For
our purposes, we call the arraycopy method as shown here:

System.arraycopy
(addend.data, 0, data, manyItems, addend.manyItems);

3. Increase our own manyItems by addend.manyItems, as shown here:

manyItems += addend.manyItems;

These three steps are shown in the addAll implementation of Figure 3.4. 

Implementation

{
// If addend is null, then a NullPointerException is thrown.
// In the case that the total number of items is beyond Integer.MAX_VALUE, there will be
// arithmetic overflow and the bag will fail.
ensureCapacity(manyItems + addend.manyItems);

         
System.arraycopy(addend.data, 0, data, manyItems, addend.manyItems);
manyItems += addend.manyItems;

}

 FIGURE  3.4 Implementation of the Bag’s addAll Method

public void addAll(IntArrayBag addend)

java03.frm  Page 120  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers121

implementing 
the union 
method

The union Method.   The union method is different from our other methods. It
is a static method, which means that it is not activated by any one bag object.
Instead, the method must take its two parameters (bags b1 and b2), combine these
two bags together into a third bag, and return this third bag. The third bag is
declared as a local variable called answer in the implementation of Figure 3.5.
The capacity of the answer bag must be the sum of the capacities of b1 and b2,
so the actual answer bag is allocated by the statement:

answer = new IntArrayBag(b1.getCapacity( ) + b2.getCapacity( ));

This calls the IntArrayBag constructor to create a new bag with an initial
capacity of b1.getCapacity( ) + b2.getCapacity( ).

The union implementation also makes use of the System.arraycopy method
to copy elements from b1.data and b2.data into answer.data.

Implementation

{
 // If either b1 or b2 is null, then a NullPointerException is thrown. 
// In the case that the total number of items is beyond Integer.MAX_VALUE, 
// there will be an arithmetic overflow and the bag will fail. 
IntArrayBag answer = 

new IntArrayBag(b1.getCapacity( ) + b2.getCapacity( ));
      

System.arraycopy(b1.data, 0, answer.data, 0, b1.manyItems);
System.arraycopy(b2.data, 0, answer.data, b1.manyItems, b2.manyItems);
answer.manyItems = b1.manyItems + b2.manyItems;

return answer;
}

 FIGURE  3.5 Implementation of the Bag’s union Method

public static IntArrayBag union(IntArrayBag b1, IntArrayBag b2)

java03.frm  Page 121  Saturday, August 26, 2000  5:53 PM



122  Chapter 3 / Collection Classes

The clone Method.   The clone method of a class allows a programmer to
make a copy of an object. For example, the IntArrayBag class has a clone
method to allow a programmer to make a copy of an existing bag. The copy is
separate from the original, so that subsequent changes to the copy won’t change
the original, nor will subsequent changes to the original change the copy.

The IntArrayBag clone method will follow the pattern introduced in Chap-
ter 2 on page 78. Therefore, the start of the clone method is:

public Object clone( )
{ // Clone an IntArrayBag object.

IntArrayBag answer;

try
{

answer = (IntArrayBag) super.clone( );
}
catch (CloneNotSupportedException e)
{

throw new RuntimeException
("This class does not implement Cloneable.");

}
...

As explained in Chapter 2, this code uses the super.clone method to make
answer be an exact copy of the bag that activated the clone method. But for the
bag class, an exact copy is not quite correct. The problem occurs because
super.clone copies each instance variable of the class without concern for
whether the instance variable is a primitive type (such as an int) or a more com-
plicated type (such as an array or some other kind of reference to an object).

To see why this causes a problem, suppose we have a bag that contains three
elements, as shown here:

This drawing uses the “array shorthand” that we’ve been using—just putting the
name of the array right next to it. But in fact, as with every array, the instance
variable data is actually a reference to the array, so a more accurate picture
looks like the drawing at the top of the next page.

[2] [3] [4] [5][0] [1]manyItems

10 20 303 . . .
data

java03.frm  Page 122  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers123

Now, suppose we activate clone( ) to create a copy of this bag. The clone
method executes the statement .
What does super.clone( ) do? It creates a new IntArrayBag object and answer
will refer to this new IntArrayBag. But the new IntArrayBag has instance
variables (answer.manyItems and answer.data) that are merely copied from the
original. So, after the statement 
the situation looks like this (where manyItems and data are the instance vari-
ables from the original bag that activated the clone method):

As you can see, answer.manyItems has a copy of the number 3, and that is fine.
But answer.data merely refers to the original’s array. Subsequent changes to
answer.data will affect the original and vice versa. This is incorrect behavior
for a clone. To fix the problem, we need an additional statement before the
return of the clone method. The purpose of the statement is to create a new
array for the clone’s data instance variable to refer to. Here’s the statement:

answer.data = (int [ ]) data.clone( );

After this statement, answer.data refers to a separate array, as shown here:

[2] [3] [4] [5][0] [1]manyItems

10 20 303 . . .

data

answer = (IntArrayBag) super.clone( )

answer = (IntArrayBag) super.clone( )

[2] [3] [4] [5][0] [1]manyItems

10 20 303 . . .

data

answer.manyItems

3

answer.data

[2] [3] [4] [5][0] [1]manyItems

10 20 303 . . .

data

answer.manyItems

3

answer.data
[2] [3] [4] [5][0] [1]

10 20 30 . . .

java03.frm  Page 123  Saturday, August 26, 2000  5:53 PM



124  Chapter 3 / Collection Classes

The new answer.data array was created by creating a clone of the original
array (as described on page 99). Subsequent changes to answer will not affect
the original, nor will changes to the original affect answer. The complete clone
method, including the extra statement at the end, is shown in Figure 3.6.

Programming Tip: Cloning a Class That Contains an Array

If a class has an instance variable that is an array, then the clone method needs
extra work before it returns. The extra work creates a new array for the clone’s
instance variable to refer to.

The class may have other instance variables that are references to objects. In
such a case, the clone method also carries out extra work. The extra work creates a
new object for each such instances variable to refer to.

Implementation

{
{ // Clone an IntArrayBag object.
IntArrayBag answer;

try
{

answer = (IntArrayBag) super.clone( );
}
catch (CloneNotSupportedException e)
{

// This exception should not occur. But if it does, it would probably indicate a
// programming error that made super.clone unavailable. The most common
// error would be forgetting the “Implements Cloneable”
// clause at the start of this class.
throw new RuntimeException
("This class does not implement Cloneable.");

}

answer.data = (int [ ]) data.clone( );

return answer;
}

 FIGURE  3.6 Implementation of the Bag’s clone Method

public Object clone( )

This step creates a new 
array for answer.data to refer 
to. The new array is separate 
from the original array so 
that subsequent changes to 
one will not affect the other.

TIP

java03.frm  Page 124  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers125

The ensureCapacity Method.   This method ensures that a bag’s array has at
least a certain minimum length. Here is the method’s heading:

public void ensureCapacity(int minimumCapacity)

The method checks whether the bag’s array has a length below minimum-
Capacity. If so, then the method allocates a new larger array with a length of
minimumCapacity. The elements are copied into the larger array, and the data
instance variable is then made to refer to the larger array. Figure 3.7 shows our
implementation, which follows the steps we have outlined.

The Bag ADT—Putting the Pieces Together

Three bag methods remain to be implemented: size (which returns the number
of elements currently in the bag), getCapacity (which returns the current
length of the bag’s array, including the part that’s not currently being used), and
trimToSize (which reduces the capacity of the bag’s array to equal exactly the
current number of elements in the bag). 

The size and getCapacity methods are implemented in one line each, and
trimToSize is similar to ensureCapacity, so we won’t discuss these methods.
But you should examine these methods in the complete implementation file of
Figure 3.8 on page 126. Also notice that the IntArrayBag class is placed in a
package called edu.colorado.collections. Throughout the rest of this book,
we will add other collection classes to this package.

Implementation

{
int biggerArray[ ];

      
if (data.length < minimumCapacity)
{

 biggerArray = new int[minimumCapacity];
System.arraycopy(data, 0, biggerArray, 0, manyItems);
data = biggerArray;

}
}

 FIGURE  3.7 Implementation of the Bag’s ensureCapacity Method

public void ensureCapacity(int minimumCapacity)

java03.frm  Page 125  Saturday, August 26, 2000  5:53 PM



126  Chapter 3 / Collection Classes

Implementation

// File: IntArrayBag.java from the package edu.colorado.collections
// Complete documentation is in Figure 3.1 on page 107 or from the IntArrayBag link in
//   http://www.cs.colorado.edu/~main/docs/

package edu.colorado.collections;

public class IntArrayBag implements Cloneable
{
   // Invariant of the IntArrayBag class:
   //   1. The number of elements in the Bag is in the instance variable manyItems.
   //   2. For an empty Bag, we do not care what is stored in any of data;
   // for a nonempty Bag, the elements in the Bag are stored in data[0]
   // through data[manyItems-1], and we don’t care what’s in the rest of data.
   private int[ ] data;
   private int manyItems;   

{
final int INITIAL_CAPACITY = 10;

      manyItems = 0;
      data = new int[INITIAL_CAPACITY];
   }

{
      if (initialCapacity < 0)
         throw new IllegalArgumentException

("initialCapacity is negative: " + initialCapacity);
      manyItems = 0;
      data = new int[initialCapacity];
   }

   {
      if (manyItems == data.length)
      {

// Double the capacity and add 1; this works even if manyItems is 0. However, in
         // case that manyItems*2 + 1 is beyond Integer.MAX_VALUE, there will be an 
         // arithmetic overflow and the bag will fail.

ensureCapacity(manyItems*2 + 1);
      }
      data[manyItems] = element;
      manyItems++;
   }

(continued)

 FIGURE  3.8 Implementation File for the IntArrayBag Class

public IntArrayBag( )

public IntArrayBag(int initialCapacity) 

public void add(int element) 

java03.frm  Page 126  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers127

 (FIGURE  3.8 continued)

{
 // If addend is null, then a NullPointerException is thrown.
// In the case that the total number of items is beyond Integer.MAX_VALUE, there will

      // be an arithmetic overflow and the bag will fail.
ensureCapacity(manyItems + addend.manyItems);

         
System.arraycopy(addend.data, 0, data, manyItems, addend.manyItems);
manyItems += addend.manyItems;

}

   { // Clone an IntArrayBag object.
      IntArrayBag answer;
      
      try
      {
         answer = (IntArrayBag) super.clone( );
      }
      catch (CloneNotSupportedException e)
      { 

// This exception should not occur. But if it does, it would probably indicate a
// programming error that made super.clone unavailable. The most common
// error would be forgetting the “Implements Cloneable”
// clause at the start of this class.
throw new RuntimeException
("This class does not implement Cloneable.");

 }
      
      answer.data = (int [ ]) data.clone( );
      
      return answer;
   }

{
      int answer;
      int index;
      
      answer = 0;
      for (index = 0; index < manyItems; index++)
         if (target == data[index])
            answer++;
      return answer;
   } (continued)

public void addAll(IntArrayBag addend)

public Object clone( )

public int countOccurrences(int target)

java03.frm  Page 127  Saturday, August 26, 2000  5:53 PM



128  Chapter 3 / Collection Classes

 (FIGURE  3.8 continued)

{
      int biggerArray[ ];
      
      if (data.length < minimumCapacity)
      {
         biggerArray = new int[minimumCapacity];
         System.arraycopy(data, 0, biggerArray, 0, manyItems);
         data = biggerArray;
      }
   }

   {
      return data.length;
   }

   {
int index; // The location of target in the data array

// First, set index to the location of target in the data array,
// which could be as small as 0 or as large as manyItems-1.
// If target is not in the array, then index will be set equal to manyItems.
for (index = 0; (index < manyItems) && (target != data[index]); index++)

// No work is needed in the body of this for-loop.
;

if (index == manyItems)
// The target was not found, so nothing is removed.

 return false;
else
{ // The target was found at data[index].

manyItems--;
data[index] = data[manyItems];
return true;

}
}

   {
      return manyItems;
   } (continued)

public void ensureCapacity(int minimumCapacity)

public int getCapacity( ) 

public boolean remove(int target) 

See Self-Test Exercise 11 for an 
alternative approach to this step.

public int size( ) 

java03.frm  Page 128  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers129

Programming Tip: Document the ADT Invariant in the 
Implementation File

The invariant of an ADT describes the rules that dictate how the instance variables
are used. This information is important to the programmer who implements the
class. Therefore, you should write this information in the implementation file, just
before the declarations of the private instance variables. For example, the invariant
for the IntArrayBag class appears before the declarations of manyItems and
data in the implementation file of Figure 3.8 on page 126. 

This is the best place to document the ADT’s invariant. In particular, do not write
the invariant as part of the class’s specification, because a programmer who uses
the ADT does not need to know about private instance variables. But the program-
mer who implements the ADT does need to know about the invariant.

 (FIGURE  3.8 continued)

   {
      int trimmedArray[ ];
      
      if (data.length != manyItems)
      {

trimmedArray = new int[manyItems];
         System.arraycopy(data, 0, trimmedArray, 0, manyItems);

data = trimmedArray;
      }
   }

{
// If either b1 or b2 is null, then a NullPointerException is thrown. 
// In the case that the total number of items is beyond Integer.MAX_VALUE, there will

      // be an arithmetic overflow and the bag will fail.
      IntArrayBag answer = new IntArrayBag(b1.getCapacity( ) + b2.getCapacity( ));
      
      System.arraycopy(b1.data, 0, answer.data, 0, b1.manyItems);
      System.arraycopy(b2.data, 0, answer.data, b1.manyItems, b2.manyItems);
      answer.manyItems = b1.manyItems + b2.manyItems;
      return answer;
   }
      
}

public void trimToSize( ) 

public static IntArrayBag union(IntArrayBag b1, IntArrayBag b2) 

TIP

java03.frm  Page 129  Saturday, August 26, 2000  5:53 PM



130  Chapter 3 / Collection Classes

The Bag ADT—Testing

Thus far, we have focused on the design and implementation of new classes and
their methods. But it’s also important to continue practicing the other aspects of
software development, particularly testing. Each of the bag’s new methods must
be tested. As shown in Chapter 1, it is important to concentrate the testing on
boundary values. At this point, we will alert you to only one potential pitfall,
leaving the complete testing to Programming Project 2 on page 168.

Pitfall: An Object Can Be an Argument to Its Own Method

A class can have a method with a parameter that is the same data type as the class
itself. For example, one of the IntArrayBag methods, addAll, has a parameter
that is an IntArrayBag itself, as shown in this heading:

public void addAll(IntArrayBag addend) 

An IntArrayBag can be created and activate its addAll method using itself as
the argument. For example:

IntArrayBag b = new IntArrayBag( );
b.add(5);
b.add(2);

 

The highlighted statement takes all the elements in b (the 5 and the 2) and adds
them to what’s already in b, so b ends up with two copies of each number.

In the highlighted statement, the bag b is activating the addAll method, but this
same bag b is the actual argument to the method. This is a situation that must be
carefully tested. As an example of the danger, consider the incorrect implementa-
tion of addAll in Figure 3.9. Do you see what goes wrong with ?
(See the answer to Self-Test Exercise 12.)

PITFALL

b.addAll(b);

b now contains a 5 and a 2.

Now b contains two 5s and two 2s.

b.addAll(b)

A Wrong Implementation

{
int i; // An array index

ensureCapacity(manyItems + addend.manyItems);
for (i = 0; i < addend.manyItems; i++)

add(addend.data[i]);
}

 FIGURE  3.9 Wrong Implementation of the Bag’s addAll Method

public void addAll(IntArrayBag addend)

WARNING!

There is a bug in this 
implementation. See Self-Test 
Exercise 12.

java03.frm  Page 130  Saturday, August 26, 2000  5:53 PM



An ADT for a Bag of Integers131

The Bag ADT—Analysis

We finish this section with a time analysis of the bag’s methods. Generally, we’ll
use the number of elements in a bag as the input size. For example, if b is a bag
containing n integers, then the number of operations required by b.count-
Occurrences is a formula involving n. To determine the operations, we’ll see
how many statements are executed by the method, although we won’t need an
exact determination since our answer will use big-O notation. Except for two
declarations and two statements, all of the work in countOccurrences happens
in this loop:

for (index = 0; index < manyItems; index++)
if (target == data[index])

answer++;

We can see that the body of the loop will be executed exactly n times—once for
each element in the bag. The body of the loop also has another important prop-
erty: The body contains no other loops or calls to methods that contain
loops. This is enough to conclude that the total number of statements exe-
cuted by countOccurrences is no more than:

The extra +4 at the end is for the two declarations and two statements outside
the loop. Regardless of how many statements are actually in the loop, the time
expression is always O(n)—so the countOccurrences method is linear.

A similar analysis shows that remove is also linear, although remove’s loop
sometimes executes fewer than n times. However, the fact that remove some-
times requires less than  does not change
the fact that the method is O(n). In the worst case, the loop does execute a full n
iterations, therefore the correct time analysis is no better than O(n).

The analysis of the constructor is a special case. The constructor allocates an
array of initialCapacity integers, and in Java all array components are initial-
ized (integers are set to zero). The initialization time is proportional to the capac-
ity of the array, so an accurate time analysis is O(initialCapacity).

constant time 
O(1)

Several of the other bag methods do not contain any loops or array allocations.
This is a pleasant situation because the time required for any of these methods
does not depend on the number of elements in the bag. For example, when an ele-
ment is added to a bag that does not need to grow, the new element is placed at
the end of the array, and the add method never looks at the elements that were
already in the bag. When the time required by a method does not depend on the
size of the input, the procedure is called constant time, which is written O(1).

The add method has two distinct cases. If the current capacity is adequate for
a new element, then the time is O(1). But if the capacity needs to be increased,
then the time increases to O(n) because of the array allocation and copying of ele-
ments from the old array to the new array.

n (number of statements in the loop) 4+×

n (number of statements in the loop)×

java03.frm  Page 131  Saturday, August 26, 2000  5:53 PM



132  Chapter 3 / Collection Classes

The time analyses of all methods are summarized here for our IntArrayBag:

Self-Test Exercises

7. Draw a picture of mybag.data after these statements:
IntArrayBag mybag = new IntArrayBag(10);
mybag.add(1);
mybag.add(2);
mybag.add(3);
mybag.remove(1);

8. The bag in the previous question has a capacity of 10. What happens if
you try to add more than ten elements to the bag?

9. Write the invariant of the bag ADT.
10. What is the meaning of a static method? How is the activation different

than an ordinary method?
11. Use the expression --manyItems (with the -- before manyItems) to

rewrite the last two statements of remove (Figure 3.3 on page 118) as a
single statement. If you are unsure of the difference between many-
Items-- and --manyItems, then go ahead and peek at our answer at the
back of the chapter. Use manyItems++ to make a similar alteration to the
add method.

12. Suppose we implement addAll as shown in Figure 3.9 on page 130.
What goes wrong with ?

Operation Time Analysis Operation Time Analysis

Constructor O(c) c is the initial 
capacity

count-
Occurrences

O(n) linear time

add
without capacity

increase

O(1) Constant 
time

ensure
Capacity

O(c) c is the specified 
minimum 
capacity

add with
capacity
increase

O(n) Linear time getCapacity O(1) Constant time

remove O(n) Linear time

b1.addAll(b2)
without capacity

increase

O(n2) Linear in the 
size of the 
added bag

size O(1) Constant time

b1.addAll(b2)
with capacity

increase

O(n1 + n2) n1 and n2 are 
the sizes of 
the bags

trimToSize O(n) Linear time

clone O(c) c is the bag’s 
capacity

union of
b1 and b2

O(c1 + c2) c1 and c2 are the 
bags’ capacities

b.addAll(b)

java03.frm  Page 132  Saturday, August 26, 2000  5:53 PM



Programming Project: The Sequence ADT133

13. Describe the extra work that must be done at the end of the clone
method. Draw pictures to show what goes wrong if this step is omitted.

14. Suppose x and y are arrays with 100 elements each. Use the arraycopy
method to copy x[10]...x[25] to y[33]...y[48].

3.3 PROGRAMMING PROJECT: THE SEQUENCE ADT

You are ready to tackle a collection class implementation on your own. The data
type is called a sequence. A sequence is similar to a bag—both contain a bunch
of elements. But unlike a bag, the elements in a sequence are arranged one after
another.

how a sequence 
differs from a 
bag

How does this differ from a bag? After all, aren’t the bag elements arranged
one after another in the partially filled array that implements the bag? Yes, but
that’s a quirk of our particular bag implementation, and the order is just happen-
stance. Moreover, there is no way that a program using the bag can refer to the
bag elements by their position in the array. 

In contrast, the elements of a sequence are kept one after another, and the
sequence’s methods allow a program to step through the sequence one element
at a time, using the order in which the elements are stored. Methods also permit
a program to control precisely where elements are inserted and removed within
the sequence.

The Sequence ADT—Specification

Our bag happened to be a bag of integers. We could have had a different under-
lying element type such as a bag of double numbers or a bag of characters. In
fact, in Chapter 5, we’ll see how to construct a collection that can simulta-
neously handle many different types of elements, rather than being restricted to
one type of element. But for now, our collection classes will have just one kind
of element for each collection. In particular, for our sequence class each element
will be a double number, and the class itself is called DoubleArraySeq. We
could have chosen some other type for the elements, but double numbers are as
good as anything for your first implementation of a collection class.

As with the bag, each sequence will have a current capacity, which is the num-
ber of elements the sequence can hold without having to request more memory.
The initial capacity will be set by the constructor. The capacity can be increased
in several different manners, which we’ll see as we specify the various methods
of the new class.

Constructor.   The DoubleArraySeq has two constructors—a constructor that
constructs an empty sequence with an initial capacity of 10, and another con-
structor that constructs an empty sequence with some specified initial capacity.

java03.frm  Page 133  Saturday, August 26, 2000  5:53 PM



134  Chapter 3 / Collection Classes

The size Method.   The size method returns the number of elements in the
sequence. Here is the heading:

public int size( )

For example, if scores is a sequence containing the values 10.1, 40.2, and 1.1,
then scores.size( ) returns 3. Throughout our examples, we will draw
sequences vertically, with the first element on top, as shown in the picture in the
margin (where the first element is 10.1).

Methods to Examine a Sequence.   We will have methods to build a sequence,
but it will be easier to explain first the methods to examine a sequence that has
already been built. The elements of a sequence can be examined one after
another, but the examination must be in order, from the first to the last. Three
methods work together to enforce the in-order retrieval rule. The methods’
headings are:

public void start( )
public double getCurrent( )
public void advance( )

When we want to retrieve the elements of a sequence, we begin by activating
start. After activating start, the getCurrent method returns the first element
of the sequence. Each time we call advance, the getCurrent method changes
so that it returns the next element of the sequence. For example, if a sequence
called numbers contains the four numbers 37, 10, 83, and 42, then we can write
the following code to print the first three numbers of the sequence:

numbers.start( );
start,  
getCurrent,  
advance

System.out.println(numbers.getCurrent( ));
numbers.advance( );
System.out.println(numbers.getCurrent( ));
numbers.advance( );
System.out.println(numbers.getCurrent( ));

isCurrent One other method cooperates with getCurrent. The isCurrent method
returns a boolean value to indicate whether there actually is a current element for
getCurrent to provide, or whether we have advanced right off the end of the
sequence. 

Using all four of the methods with a for-loop, we can print an entire sequence,
as shown here for the numbers sequence:

for (numbers.start( ); numbers.isCurrent( ); numbers.advance( ))
System.out.println(numbers.getCurrent( ));

10.1
40.2
1.1

Prints 37

Prints 10

Prints 83

java03.frm  Page 134  Saturday, August 26, 2000  5:53 PM



Programming Project: The Sequence ADT135

The addBefore and addAfter Methods.   There are two methods to add a new
element to a sequence, with these headers:

public void addBefore(double element)
public void addAfter(double element)

The first method, addBefore, places a new element before the current element.
For example, suppose that we have created the sequence shown in the margin,
and that the current element is 8.8. In this example, we want to add 10.0 to our
sequence, immediately before the current element. When 10.0 is added before
the current element, other elements in the sequence—such as 8.8 and 99.0—
will move down the sequence to make room for the new element. After the addi-
tion, the sequence has the four elements shown in the lower box.

If there is no current element, then addBefore places the new element at the
front of the sequence. In any case, after the addBefore method returns, the new
element will be the current element. In the example shown in the margin, the 10.0
becomes the new current element.

A second method, called addAfter, also adds a new element to a sequence—
but the new element is added after the current element. If there is no current ele-
ment, then the addAfter method places the new element at the end of the
sequence (rather than the front). In all cases, when the method finishes, the new
element will be the current element.

Either addBefore or addAfter can be used on an empty sequence to add the
first element.

The removeCurrent Method.   The current element can be removed from a
sequence. The method for a removal has no parameters, but the precondition
requires that there is a current element; it is this current element that is removed,
as specified here:

  ◆ removeCurrent
public boolean removeCurrent( )

Removes the current element from this sequence.
Precondition:

isCurrent( ) returns true.
Postcondition:

The current element has been removed from this sequence. If this was 
the final element of the sequence (with nothing after it), then after the 
removal there is no longer a current element; otherwise the new current 
element is the one that used to be after the removed element.

For example, suppose scores is the four-element sequence shown at the top of
the box in the margin, and the highlighted 8.3 is the current element. After acti-
vating scores.removeCurrent( ), the 8.3 has been deleted, and the 4.1 is now
the current element.

42.1

99.0
8.8

42.1

8.8
99.0

10.0

The 
sequence 
grows by 
adding 10.0 
before the 
current 
element.

3.7

4.1
3.1

8.3

3.7

3.1
4.1

Before
the
removal

After
the
removal

java03.frm  Page 135  Saturday, August 26, 2000  5:53 PM



136  Chapter 3 / Collection Classes

The addAll Method.   The addAll method is similar to the bag’s addAll
method. It allows us to place the contents of one sequence at the end of what we
already have. The method has this heading:

public void addAll(DoubleArraySeq addend)

As an example, suppose we create two sequences called helter and skelter.
The sequences contain the elements shown in the box in the margin (helter has
four elements and skelter has three). We can then activate the method:

helter.addAll(skelter);

After the addAll activation, the helter sequence will have seven elements: 3.7,
8.3, 4.1, 3.1, 4.9, 9.3, 2.5 (its original four elements followed by the three ele-
ments of skelter). The current element of the helter sequence remains where
it was (at the number 8.3), and the skelter sequence still has its original three
elements.

The concatenation Method.   The concatenation of two sequences is a new
sequence obtained by placing one sequence after the other. We will implement
concatenation with a static method that has the following two parameters:

public static DoubleArraySeq concatenation
(DoubleArraySeq s1, DoubleArraySeq s2)

A concatenation is somewhat similar to the union of two bags. For example:

DoubleArraySeq part1 = new DoubleArraySeq( );
DoubleArraySeq part2 = new DoubleArraySeq( );

part1.addAfter(3.7);
part1.addAfter(9.5);
part2.addAfter(4.0);
part2.addAfter(8.6);

After these statements, total is the sequence consisting of 3.7, 9.5, 4.0, 8.6.
The new sequence computed by concatenation has no current element. The
original sequences, part1 and part2, are unchanged.

Notice the effect of having a static method: concatenation is not activated
by any one sequence. Instead, the activation of 

DoubleArraySeq.concatenation(part1, part2) 

creates and returns a new sequence that includes the contents of part1 followed
by the contents of part2.

3.7

4.1
3.1

8.3

4.9

2.5
9.3

The

The
skelter
sequence

helter
sequence

This computes the concatenation
of the two sequences, putting the
result in a third sequence.

DoubleArraySeq total = DoubleArraySeq.concatenation(part1, part2);

java03.frm  Page 136  Saturday, August 26, 2000  5:53 PM



Programming Project: The Sequence ADT137

The clone Method.   As part of our specification, we require that a sequence
can be copied with a clone method. The clone contains the same elements as
the original. If the original had a current element, then the clone has a current
element in the corresponding place. For example:

DoubleArraySeq s = new DoubleArraySeq( );
s.addAfter(4.2);
s.addAfter(1.5);
s.start( );

At the point when the clone is made, the sequence s has two elements (4.2 and
1.5) and the current element is the 4.2. Therefore, t will end up with the same
two elements (4.2 and 1.5) and its current element will be the number 4.2.
Subsequent changes to s will not affect t, nor vice versa.

Three Methods That Deal with Capacity.   The sequence class has three meth-
ods for dealing with capacity—the same three methods that the bag has:

public int getCapacity( )
public void ensureCapacity(int minimumCapacity)
public void trimToSize( )

As with the bag, the purpose of these methods is to allow a programmer to
explicitly set the capacity of the collection. If a programmer does not explicitly
set the capacity, then the class will still work correctly, but some operations will
be less efficient because the capacity might be repeatedly increased.

The Sequence ADT—Documentation

The complete specification for this first version of our sequence class is
shown in Figure 3.10 on page 138. This specification is also available from the
DoubleArraySeq link at the web address

http://www.cs.colorado.edu/~main/docs/

When you read the specification, you’ll see that the package name
is edu.colorado.collections. So, you should create a subdirectory called
edu/colorado/collections for your implementation.

The specification also indicates some limitations—the same limitations that
we saw for the bag class. For example, an OutOfMemoryError can occur in any
method that increases the capacity. Several of the methods throw an Illegal-
StateException to indicate that they have been illegally activated (with no cur-
rent element). Also, an attempt to move the capacity beyond the maximum
integer causes the class to fail by an arithmetic overflow.

After you’ve looked through the specifications, we’ll suggest a design that
uses three private instance variables. 

IntArrayBag t = (DoubleArraySeq) s.clone( );

java03.frm  Page 137  Saturday, August 26, 2000  5:53 PM



138  Chapter 3 / Collection Classes

Class DoubleArraySeq

❖ public class DoubleArraySeq from the package edu.colorado.collections
A DoubleArraySeq keeps track of a sequence of double numbers. The sequence can have a 
special “current element,” which is specified and accessed through four methods that are not 
available in the bag class (start, getCurrent, advance and isCurrent).
Limitations: 

(1) The capacity of a sequence can change after it’s created, but the maximum capacity is 
limited by the amount of free memory on the machine. The constructor, addAfter, addBefore, 
clone, and concatenation will result in an OutOfMemoryError when free memory is 
exhausted.

(2) A sequence’s capacity cannot exceed the largest integer 2,147,483,647 
(Integer.MAX_VALUE). Any attempt to create a larger capacity results in failure due to an 
arithmetic overflow.

Specification

  ◆ Constructor for the DoubleArraySeq
public DoubleArraySeq(int initialCapacity)

Initialize an empty sequence with a specified initial capacity. Note that the addAfter and 
addBefore methods work efficiently (without needing more memory) until this capacity is 
reached.
Postcondition:

This sequence is empty and has an initial capacity of 10.
Throws: OutOfMemoryError

Indicates insufficient memory for: new double[10].

  ◆ Second Constructor for the DoubleArraySeq
public DoubleArraySeq(int initialCapacity)

Initialize an empty sequence with a specified initial capacity. Note that the addAfter and 
addBefore methods work efficiently (without needing more memory) until this capacity is 
reached.
Parameters:

initialCapacity – the initial capacity of this sequence
Precondition:

initialCapacity is non-negative.
Postcondition:

This sequence is empty and has the given initial capacity.
Throws: IllegalArgumentException

Indicates that initialCapacity is negative.
Throws: OutOfMemoryError

Indicates insufficient memory for: new double[initialCapacity].
(continued)

 FIGURE  3.10 Specification for the DoubleArraySeq Class

java03.frm  Page 138  Saturday, August 26, 2000  5:53 PM



Programming Project: The Sequence ADT139

 (FIGURE  3.10 continued)

  ◆ addAfter and addBefore
public void addAfter(double element)
public void addBefore(double element)

Adds a new element to this sequence, either before or after the current element. If this new 
element would take this sequence beyond its current capacity, then the capacity is increased 
before adding the new element.

Parameters:
element – the new element that is being added

Postcondition:
A new copy of the element has been added to this sequence. If there was a current element, 
then addAfter places the new element after the current element and addBefore places the 
new element before the current element. If there was no current element, then addAfter 
places the new element at the end of this sequence and addBefore places the new element at 
the front of this sequence. In all cases, the new element becomes the new current element of 
this sequence.

Throws: OutOfMemoryError
Indicates insufficient memory to increase the size of this sequence.

Note:
An attempt to increase the capacity beyond Integer.MAX_VALUE will cause this sequence to 
fail with an arithmetic overflow. 

  ◆ addAll
public void addAll(DoubleArraySeq addend)

Place the contents of another sequence at the end of this sequence.

Parameters:
addend – a sequence whose contents will be placed at the end of this sequence

Precondition:
The parameter, addend, is not null. 

Postcondition:
The elements from addend have been placed at the end of this sequence. The current element 
of this sequence remains where it was, and the addend is also unchanged.

Throws: NullPointerException
Indicates that addend is null.

Throws: OutOfMemoryError
Indicates insufficient memory to increase the capacity of this sequence.

Note:
An attempt to increase the capacity beyond Integer.MAX_VALUE will cause this sequence to 
fail with an arithmetic overflow. 

(continued)

java03.frm  Page 139  Saturday, August 26, 2000  5:53 PM



140  Chapter 3 / Collection Classes

 (FIGURE  3.10 continued)

  ◆ advance
public void advance( )

Move forward, so that the current element is now the next element in this sequence.
Precondition:

isCurrent( ) returns true.
Postcondition:

If the current element was already the end element of this sequence (with nothing after it), 
then there is no longer any current element. Otherwise, the new element is the element 
immediately after the original current element.

Throws: IllegalStateException
Indicates that there is no current element, so advance may not be called.

  ◆ clone
public Object clone( )

Generate a copy of this sequence.
Returns:

The return value is a copy of this sequence. Subsequent changes to the copy will not affect 
the original, nor vice versa. The return value must be typecast to a DoubleArraySeq before  
it is used.

Throws: OutOfMemoryError
Indicates insufficient memory for creating the clone.

  ◆ concatenation
public static DoubleArraySeq concatenation
(DoubleArraySeq s1, DoubleArraySeq s2)
Create a new sequence that contains all the elements from one sequence followed by another.

Parameters:
s1 – the first of two sequences
s2 – the second of two sequences

Precondition:
Neither s1 nor s2 is null.

Returns:
a new sequence that has the elements of s1 followed by the elements of s2 (with no current 
element)

Throws: NullPointerException
Indicates that one of the arguments is null.

Throws: OutOfMemoryError
Indicates insufficient memory for the new sequence.

Note:
An attempt to increase the capacity beyond Integer.MAX_VALUE will cause this sequence to 
fail with an arithmetic overflow. 

(continued)

java03.frm  Page 140  Saturday, August 26, 2000  5:53 PM



Programming Project: The Sequence ADT141

 (FIGURE  3.10 continued)

  ◆ ensureCapacity
public void ensureCapacity(int minimumCapacity)

Change the current capacity of this sequence.
Parameters:

minimumCapacity – the new capacity for this sequence
Postcondition:

This sequence’s capacity has been changed to at least minimumCapacity. 
Throws: OutOfMemoryError

Indicates insufficient memory for: new double[minimumCapacity].

  ◆ getCapacity
public int getCapacity( )

Accessor method to determine the current capacity of this sequence. The addBefore and 
addAfter methods works efficiently (without needing more memory) until this capacity is 
reached.
Returns:

the current capacity of this sequence

  ◆ getCurrent
public double getCurrent( )

Accessor method to determine the current element of this sequence.
Precondition:

isCurrent( ) returns true.
Returns:

the current element of this sequence
Throws: IllegalStateException

Indicates that there is no current element.

  ◆ isCurrent
public boolean isCurrent( )

Accessor method to determine whether this sequence has a specified current element that can 
be retrieved with the getCurrent method.
Returns:
true (there is a current element) or false (there is no current element at the moment)

  ◆ removeCurrent
public void removeCurrent( )

Remove the current element from this sequence.
Precondition:

isCurrent( ) returns true.
Postcondition:

The current element has been removed from this sequence, and the following element (if 
there is one) is now the new current element. If there was no following element, then there 
is now no current element.

Throws: IllegalStateException
Indicates that there is no current element, so removeCurrent may not be called. (continued)

java03.frm  Page 141  Saturday, August 26, 2000  5:53 PM



142  Chapter 3 / Collection Classes

The Sequence ADT—Design

Our suggested design for the sequence ADT has three private instance variables.
The first variable, data, is an array that stores the elements of the sequence. Just
like the bag, data is a partially filled array, and a second instance variable,
called manyItems, keeps track of how much of the data array is currently
being used. Therefore, the used part of the array extends from data[0] to
data[manyItems-1]. The third instance variable, currentIndex, gives the
index of the current element in the array (if there is one). Sometimes a sequence
has no current element, in which case currentIndex will be set to the same
number as manyItems (since this is larger than any valid index). The complete
invariant of our ADT is stated as three rules:

1. The number of elements in the sequence is stored in the instance variable
manyItems.

2. For an empty sequence (with no elements), we do not care what is stored
in any of data; for a nonempty sequence, the elements of the sequence
are stored from the front to the end in data[0] to data[manyItems-1],
and we don't care what is stored in the rest of data.

3. If there is a current element, then it lies in data[currentIndex]; if there
is no current element, then currentIndex equals manyItems.

 (FIGURE  3.10 continued)

  ◆ size
public int size( )

Accessor method to determine the number of elements in this sequence.
Returns: 

the number of elements in this sequence

  ◆ start
public void start( )

Set the current element at the front of this sequence.
Postcondition:

The front element of this sequence is now the current element (but if this sequence has no 
elements at all, then there is no current element).

  ◆ trimToSize
public void trimToSize( )

Reduce the current capacity of this sequence to its actual size (i.e., the number of elements it 
contains).
Postcondition:

This sequence’s capacity has been changed to its current size.
Throws: OutOfMemoryError

Indicates insufficient memory for altering the capacity.

java03.frm  Page 142  Saturday, August 26, 2000  5:53 PM



Programming Project: The Sequence ADT143

As an example, suppose that a sequence contains four numbers, with the current
element at data[2]. The instance variables of the object might appear as shown
here:

In this example, the current element is at data[2], so the getCurrent( )
method would return the number 6. At this point, if we called advance( ), then
currentIndex would increase to 3, and getCurrent( ) would then return the 9.

Normally, a sequence has a current element, and the instance variable
currentIndex contains the location of that current element. But if there is no
current element, then currentIndex contains the same value as manyItems. In
the above example, if currentIndex was 4, then that would indicate that there
is no current element. Notice that this value (4) is beyond the used part of the
array (which stretches from data[0] to data[3]).

invariant of the 
ADT

The stated requirements for the instance variables form the invariant of the
sequence ADT. You should place this invariant at the top of your implementation
file (DoubleArraySeq.java). We will leave most of this implementation file up
to you, but we will offer some hints and a bit of pseudocode.

The Sequence ADT—Pseudocode for the Implementation

The removeCurrent Method.   This method removes the current element from
the sequence. First check that the precondition is valid (use isCurrent( )). Then
remove the current element by shifting each of the subsequent elements leftward
one position. For example, suppose we are removing the current element from
the sequence drawn here:

What is the current element in this picture? It is the 1.4, since currentIndex is
1 and data[1] contains 1.4.

currentIndex
2

data

3 1.4 6 9

manyItems

4

[2][0] [3] [4] [5][1]

. . .

currentIndex
1

data

3 1.4 6 9

manyItems

5

[2][0] [3] [4] [5][1]

. . .1.1

java03.frm  Page 143  Saturday, August 26, 2000  5:53 PM



144  Chapter 3 / Collection Classes

In the case of the bag, we could remove an element such as 1.4 by copying the
final element (1.1) onto the 1.4. But this approach won’t work for the sequence
because the elements would lose their sequence order. Instead, each element after
the 1.4 must be moved leftward one position. The 6 moves from data[2] to
data[1]; the 9 moves from data[3] to data[2]; the 1.1 moves from data[4]
to data[3]. This is a lot of movement, but a small for-loop suffices to carry out
all the work. This is the pseudocode:

for (i = the index after the current element; i < manyItems; i++)
Move an element from data[i] back to data[i-1];

When the loop completes, you should reduce manyItems by one. The final
result for our example is:

After the removal, the value in currentIndex is unchanged. In effect, this
means that the element that was just after the removed element is now the cur-
rent element. You must check that the method works correctly for boundary val-
ues—removing the first element and removing the end element. In fact, both
these cases work fine. When the end element is removed, currentIndex will
end up with the same value as manyItems, indicating that there is no longer a
current element.

The addBefore Method.   If there is a current element, then addBefore must
take care to put the new element just before the current position. Elements that
are already at or after the current position must be shifted rightward to make
room for the new element. We suggest that you start by shifting elements at the
end of the array rightward one position each until you reach the position for the
new element. 

For example, suppose you are putting 1.4 at the location data[1] in the following
sequence:

currentIndex
1

data

3 6 9 1.1

manyItems

4

[2][0] [3] [4] [5][1]

. . .

data

3 6 9 1.1

manyItems

4

[2][0] [3] [4] [5][1]

. . .

currentIndex
1

java03.frm  Page 144  Saturday, August 26, 2000  5:53 PM



Programming Project: The Sequence ADT145

You would begin by shifting the 1.1 rightward from data[3] to data[4]; then
move the 9 from data[2] to data[3]; then the 6 moves from data[1] right-
ward to data[2]. At this point, the array looks like this:

Of course, data[1] actually still contains a 6 since we just copied the 6 from
data[1] to data[2]. But we have drawn data[1] as an empty box to indicate
that data[1] is now available to hold the new element (the 1.4 that we are put-
ing in the sequence). At this point we can place the 1.4 in data[1] and add one
to manyItems, as shown here:

The pseudocode for shifting the elements rightward uses a for-loop. Each iter-
ation of the loop shifts one element, as shown here:

for (i = manyItems; ; i--)
data[i] = data[i-1];

The key to the loop is the test . How do
we test whether a position is the wrong spot for the new element? A position is
wrong if (i > currentIndex). Can you now write the entire method in Java?
(See the solution to Self-Test Exercise 15, and don’t forget to handle the special
case when there is no current element.)

Other Methods.   The other sequence methods are straightforward; for exam-
ple, the addAfter method is similar to addBefore. Some additional useful meth-
ods are described in Programming Project 4 on page 168. You’ll also need to be
careful that you don’t mindlessly copy the implementation of a bag method. For
example, the concatenation method is similar to the bag’s union method, but
there is one extra step that concatenation must take (it sets currentIndex to
manyItems).

data

3 6 9

[2][0] [3] [4] [5][1]

. . .1.1

data

3 1.4 6 9

manyItems

5

[2][0] [3] [4] [5][1]

. . .1.1

currentIndex
1

data[i] is the wrong spot for element

data[i] is the wrong spot for element

java03.frm  Page 145  Saturday, August 26, 2000  5:53 PM



146  Chapter 3 / Collection Classes

Self-Test Exercises

15. Write the sequence’s addBefore method.
16. Suppose that a sequence has 24 elements, and there is no current ele-

ment. According to the invariant of the ADT, what is currentIndex?
17. Suppose g is a sequence with 10 elements and you activate g.start( ) and

then activate g.advance( ) three times. What value is then in
g.currentIndex?

18. What are good boundary values to test the removeCurrent method?
19. Write a demonstration program that asks the user for a list of family

member ages, then prints the list in the same order that it was given.
20. Write a new method to remove a specified element from a sequence. The

method has one parameter (the element to remove).
21. For a sequence of numbers, suppose that you insert 1, then 2, then 3, and

so on up to n. What is the big-O time analysis for the combined time of
inserting all n numbers with addAfter? How does the analysis change if
you insert n first, then n–1, and so on down to 1—always using add-
Before instead of addAfter?

22. Which of the ADTs—the bag or the sequence—must be implemented
by storing the elements in an array? (Hint: We are not beyond asking a
trick question.)

3.4 APPLETS FOR INTERACTIVE TESTING

When you implement a new class, it’s useful to have a small interactive test pro-
gram to help you test the class methods. Such a program can be written as a Java
applet, which is a Java program written in a special format to have a graphical
user interface. The graphical user interface is also called a GUI (pronounced
“gooey”), and it allows a user to interact with a program by clicking the mouse,
typing information into boxes, and performing other familiar actions. With a
Java applet, GUIs are easy to create even if you’ve never run into such goo
before.

This section shows a pattern for developing such applets. To illustrate the pat-
tern, we’ll implement an applet that lets you test three of the bag’s methods
(size, add, and countOccurrences). When the bag applet starts, a GUI is cre-
ated, similar to the drawing in Figure 3.11(a).

By the way, the word “applet” means a particular kind of Java program, so you
might show Figure 3.11 to your boss and say, “My applet created this nice GUI.”
But you can also use the word “applet” to talk about the GUI itself, such as “The
applet in Figure 3.11(a) has three buttons in its middle section.” And in fact,
there are three buttons in that applet—the rectangles labeled size( ), add( ), and
countOccurrences( ). 

java03.frm  Page 146  Saturday, August 26, 2000  5:53 PM



Applets for Interactive Testing147

 FIGURE  3.11 Two Views of the Applet to Test the IntArrayBag Class

(a) When the applet 
first opens, the applet 
has the components 
shown here. 

(b) The user interacts 
with the applet by 
typing information and 
clicking on the buttons 
with the mouse. In this 
example, the user has 
typed 42 into the add 
text field, and then 
clicked the add button. 
The applet responds 
with a message “42 
has been added to the 
bag,” written in the 
text area at the bottom 
of the applet.

java03.frm  Page 147  Saturday, August 26, 2000  5:53 PM



148  Chapter 3 / Collection Classes

The applet in Figure 3.11 is intended to be used by the programmer who wrote
the IntArrayBag class, to check interactively that the class is working correctly.
When the applet starts, two sentences appear at the top: “This test program has

created a bag. Press buttons to activate the bag’s methods.” Above these
sentences are some extra items, shown here:

The display above our sentences is created automatically by the applet display
mechanism. The exact form of this display varies from one system to another,
but the dark bar across the top generally contains controls such as the  in the
top right corner. Clicking on that  with the mouse closes the applet on this
particular system.

A series of buttons appears in the middle part of the applet, like this:

To test the bag, the user clicks on the various buttons. For example, the user can
click on  and a new message will appear in the large text area at the bottom
of the applet. The message will tell the current size of the bag, as obtained by
activating the size( ) method. If you click on this button right at the start, you’ll
get the message “The bag’s size is 0.”

The user can also activate add or countOccurrences, but these methods each
need an argument. For example, to add the number 42 to the bag, the user types
the number 42 in the white box next to the add button, then clicks . The
result of adding 42 is shown in Figure 3.11(b). After elements have been added, the
user can test countOccurrences. For example, to count the occurrences of the
number 10, the user types 10 in the box by the countOccurrences button and then
clicks . The applet activates countOccurrences(10) and prints
the method’s return value in the large text area at the bottom.

Anyway, that’s the behavior that we want. Let’s look at an outline of the Java
programming techniques to produce such behavior, as shown in Figure 3.12.

java03.frm  Page 148  Saturday, August 26, 2000  5:53 PM



Applets for Interactive Testing149

Java Applet Outline

// FILE: BagApplet.java

public class BagApplet extends Applet
{

// Declare an IntArrayBag object for the Applet to manipulate:
IntArrayBag b = new IntArrayBag( );

public void init( )
{

...
}

}

 FIGURE  3.12 Outline for the Interactive Applet to Test the IntArrayBag class

1. Import statements.   These statements import the class that is being tested 
and also the Java classes that are needed by the applet. For this applet, we must 
import the IntArrayBag class:

import edu.colorado.collections.IntArrayBag;

Most applets will also have these three import statements:

import java.applet.Applet; // Provides the Applet class.
import java.awt.*; // Provides Button class, etc.
import java.awt.event.*; // Provides ActionEvent, ActionListener.

3. Declarations of the applet’s components.   These are the 
declarations of buttons, text areas, and other GUI components that 
appear in the applet.

6. Implementations of other methods.   These are methods that 
are activated from within init to carry out various subtasks.

5. Implementations of the action listeners.   This code tells the 
applet what to do when each of the buttons is pressed.

2. The class 
definition.   

4. The init method.   

java03.frm  Page 149  Saturday, August 26, 2000  5:53 PM



150  Chapter 3 / Collection Classes

Six Parts of a Simple Interactive Applet

Figure 3.12 on page 149 shows an outline for the Java code of the applet that
tests the IntArrayBag. The same outline can be used for an applet that interac-
tively tests any class. The code has six parts, which we’ll discuss now.

1. Import statements.   As with any Java program, we begin with a collection
of import statements to tell the compiler about the other classes that we’ll be
using. In the case of the bag applet, we import the IntArrayBag class (using the
statement ). Most applets
also have these three import statements:

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

abstract 
windowing 
toolkit

The first import statement provides a class called Applet, which we’ll use in a
moment. The other two import statements provide items from the abstract
windowing toolkit  (the “AWT”), which is a collection of classes for drawing
buttons and other GUI items.

2. The class definition.   After the import statements, we define a class, much
like any other Java class. This class definition begins with the line:

public class IntArrayBag Applet extends Applet

inheritance: the 
BagApplet gets 
a bunch of 
methods from 
the Applet class

The definition continues down to the last closing bracket of the file. The class
for the bag applet is called BagApplet, which is certainly a good name, but what
does “extends Applet” mean? It means that the BagApplet class will not be
written entirely by us. Instead, the class begins by already having all the non-
private methods of another class called Applet. We imported the Applet class
from java.applet.Applet, and it is provided as part of the Java language so
that a class such as BagApplet does not have to start from scratch. The act of
obtaining methods from another class is called inheritance. The class that pro-
vides these methods (such as the Applet class) is called the superclass, and the
new class (such as BagApplet) is called the extended class. Chapter 13 studies
inheritance in detail, but for now all you need to know is that the BagApplet
obtains a bunch of methods from the Applet class without having to do any-
thing more than “extends Applet.”

At the top of the class we define an IntArrayBag instance variable:

IntArrayBag b = new IntArrayBag( );

This bag, b, will be manipulated when the user clicks on the applet’s buttons. In
general, an interactive test applet will have one or more objects declared here,
and these objects are manipulated by clicking the applet’s buttons. 

import edu.colorado.collections.IntArrayBag;

java03.frm  Page 150  Saturday, August 26, 2000  5:53 PM



Applets for Interactive Testing151

3. Declarations of the applet’s components.   An applet’s components are the
buttons and other items that are displayed when the applet runs. These compo-
nents are declared as instance variables of the class. Our bag applet has several
kinds of components: buttons (such as ), text fields (which are the white
rectangles next to some of the buttons), and a text area (which is the large rectan-
gle in the bottom third of the applet). In all, there are six important components
in the bag applet, represented by these six instance variables:

Button    sizeButton = new Button("size( )");
Button    addButton = new Button("add( )");
TextField elementText = new TextField(10);
Button countOccurrencesButton = new Button("countOccurrences( )");
TextField targetText = new TextField(10);
TextArea feedback = new TextArea(7, 60);

All the instance variables are declared near the top of the class definition, before
any of the method definitions. They cannot have the usual private access
because they’ll be accessed from other classes that we’ll see shortly. But before
that, let’s look at the three kinds of components: button, text field, and text area.

buttonA button is a grey rectangle with a label. When a button is created, the con-
structor is given a string that is printed in the middle of the button. For example,
this declaration creates a button called sizeButton, and the label on the button
is the string “size( )”:

Button sizeButton = new Button(“size( )”);

The bag applet has three Button objects: sizeButton, addButton, and count-
OccurrencesButton.

text fieldA text field is a white rectangle that can display one line of text. A text field
is set up so that the program’s user can click on the field and type information,
and the applet can then read that information. Our applet has two text fields, one
next to the add button and one next to the countOccurrences button. The
TextField class has a constructor with one argument—an integer that specifies
approximately how many characters can fit in the text field. For example, one of
our text fields is declared as:

TextField elementText = new TextField(10);

The elementText text field can hold about 10 characters. The user can actually
type beyond 10 characters, but only 10 characters of a long string will be dis-
played. We plan to display elementText right beside the add button, like this:

To test the add method, the user will type a number in the text field and click on
the add button.

java03.frm  Page 151  Saturday, August 26, 2000  5:53 PM



152  Chapter 3 / Collection Classes

text area A text area is like a text field with more than one line. Its constructor has two
arguments that specify the number of rows and columns of text to display. Our
bag applet has one text area, declared like this:

TextArea feedback = new TextArea(7, 60);

This large text area appears at the bottom of the applet. The intention is to use
the text area to display messages to the user.

The declarations we have seen created the three kinds of components:
Button, TextField, and TextArea. All three classes are part of the java.awt
package that is imported by our applet. When we declare a button (or other com-
ponent) and create it with the constructor, it does not immediately appear in the
GUI. How do the objects get placed in the GUI? Also, how does the applet know
what to do when the user clicks on a button or takes some other action? The
answers to these two questions lie in a special applet method called init, which
we’ll discuss next.

4. The init method.   A Java application program has a special static method
called main. A Java applet does not have main. Instead, an applet has a special
nonstatic method called init. When an applet runs, the runtime system creates
an object of the applet class, and activates init( ) for that object. There are sev-
eral other applet methods that the runtime system also activates at various times,
but an interactive test program needs only init.

Our init method carries out four kinds of actions:

A. The add method. We can add one of the interactive components to the
GUI. This is done with an applet method called add. The method has one
argument, which is the component that is being added to the GUI. For
example, one of our buttons is sizeButton, so we can write the
statement:

the applet’s add 
method

add(sizeButton);

As components are added, the GUI fills up from left to right. If there is no
room for a component on the current line, then the GUI moves down and
starts a new row of components. Later you can learn more sophisticated
ways of laying out the components of a GUI, but the simple left-to-right
method used by an applet is a good starting point.

B. Displaying messages. We can display messages in the GUI. Each mes-
sage is a fixed string that provides some information to the user. Each of
these messages is a Label object (from the package java.awt). To create
and display a message, we activate add, with a newly created Label as the
argument. For example:

add(new Label("This test program has created a bag"));

printing a 
message in the 
GUI

The Label constructor has one argument, which is the string that you
want to display. The add method will put the message in the next available
spot of the GUI.

java03.frm  Page 152  Saturday, August 26, 2000  5:53 PM



Applets for Interactive Testing153

C. New lines and horizontal lines. If our applet class has other methods
(besides init), then we can activate these other methods. For example,
we plan to have two other methods in the IntArrayBag class:

addNewLine 
addHorizontalLine

void addNewLine( );
void addHorizontalLine(Color c);

The addNewLine method forces the GUI to start a new line, even if there’s
room for more components on the current line. The second method,
addHorizontalLine, draws a horizontal line in the specified color. We’ll
have to define these two methods as part of BagApplet.Java, but they
won’t be difficult. (The data type Color is part of java.lang. It includes
Color.blue and twelve other colors plus the ability to define your own
colors.)

D. Activate methods of the components. The buttons and other compo-
nents have methods that can be activated. For example, one of the meth-
ods of a TextArea is called append. The method has one argument,
which is a string, and this string is appended to the end of what’s already
in the text field. One of the statements in our init method will activate
append in this way:

appendfeedback.append(“I am ready for your first action.\n”);

This causes the message “I am ready for your first action.” to be
written in the feedback text field (with a newline character \n at the end
of the message). 

action listener 
objects

The most important method for buttons involves a new kind of object
called an action listener. An action listener is object that an applet
programmer creates to describe the action that should be taken when
certain events occur. Our bag applet will have a different kind of action
listener for each of the three buttons:

Each kind of action listener is actually a new class that we’ll define in a
moment. But the only thing you need to know for the init method is how
to connect an action listener to a Button. The solution is to activate a

Kind of Action Listener Purpose

SizeListener Describes the actions to be taken when 
sizeButton is clicked.

AddListener Describes the actions to be taken when 
addButton is clicked.

CountOccurrencesListener Describes the actions to be taken when 
countOccurrencesButton is clicked.

java03.frm  Page 153  Saturday, August 26, 2000  5:53 PM



154  Chapter 3 / Collection Classes

method called addActionListener for each Button. For example, to
connect sizeButton to its action listener, we place this statement in the
init method:

sizeButton.addActionListener(new SizeListener( ));

Notice that addActionListener is a method of the Button class, and its one
argument is a new SizeListener object. Of course, we still need to implement
the SizeListener class, as well as the other two action listener classes. But
first, let’s summarize all the pieces that are part of the init method for the
BagApplet. Within init, we expect to activate these methods to carry our
work:

• add—an Applet method to add the buttons and other components to the
display

• addNewLine and addHorizontalLine—two methods that we will write
for the BagApplet

• feedback.append—a method of the TextField to place the message “I
am ready for your first action” in feedback (a TextField object)

• addActionListener—a method that will be called once for each of the
three buttons

The complete init implementation is shown in Figure 3.13 on page 156.
We’ve used just one method that we haven’t yet mentioned. That one method
(setEditable) is summarized in Figure 3.14 on page 157 along with the other
applet-oriented methods that we have used or plan to use.

5. Implementations of the action listeners.   The next step of the applet imple-
mentation is to design and implement three action listener classes—one for each
of our three buttons. The purpose of an action listener is to describe the actions
that are carried out when a button is pushed. 

Here’s the Java syntax for defining an action listener class—the blank line is
filled in with your choice of a name for the action listener class.

class  implements ActionListener
{

void actionPerformed(ActionEvent event)
{

...
}

}

The phrase “implements ActionListener” informs the Java compiler that the
class will have a certain method that is specified in the ActionListener inter-
face that is part of java.awt.*. The method, called actionPerformed, is
shown with “...” to indicate its body. The actionPerformed method will be
executed when an action occurs in the action listener’s component, such as

java03.frm  Page 154  Saturday, August 26, 2000  5:53 PM



Applets for Interactive Testing155

clicking a button. For example, here is the complete definition of the action lis-
tener that handles the clicking of the  button of our test applet:

an action 
listener for 
sizeButton

class SizeListener implements ActionListener
{

void actionPerformed(ActionEvent event)
{

feedback.append("The bag has size " + b.size( ) + ".\n");
}

}

This declares a class called SizeListener, which includes its own actionPer-
formed method. For most classes, the class definition would go in a separate file
called SizeListener.java. But a separate file is undesirable here because the
actionPerformed method needs access to two instance variables: the bag b and
the text area feedback. The necessary access can be provided by placing the
entire SizeListener definition within the BagApplet. This is an example of an
inner class, where the definition of one class is placed inside of another. An
inner class has two key properties:

• The larger class that encloses an inner class may use the inner class; but
the inner class may not be used elsewhere.

• The inner class may access nonprivate instance variables and methods of
the larger class. Some Java implementations also permit an inner class to
access private instance variables of the larger class. But other implemen-
tations forbid private access from an inner class. (Java implementations
that are built into web browsers are particularly apt to forbid the private
access.)

So, by making SizeListener an inner class, the actionPerformed method can
activate feedback.append to print a message in the feedback component of
the applet. The message itself includes an activation of b.size( ), so an entire
message is something like “The bag has size 42.” 

By the way, the actionPerformed method has a parameter called event. For
more complex actions, the event can provide more information about exactly
which kind of action triggered the actionPerformed method. 

(Text continues on page 158)

The actionPerformed Method

The SizeListener class is an inner class, declared within
BagApplet. Therefore, its actionPerformed method has
access to the instance variables of the BagApplet.

java03.frm  Page 155  Saturday, August 26, 2000  5:53 PM



156  Chapter 3 / Collection Classes

Implementation

{

// Some messages for the top of the Applet:   
add(new Label("This test program has created a bag."));
add(new Label("Press buttons to activate the bag's methods."));
addHorizontalLine(Color.blue);

       

// The Button for testing the size method:
add(sizeButton);
addNewLine( );

      

// The Button and TextField for testing the add method:
add(addButton);
add(elementText);
addNewLine( );

      

// The Button and TextField for testing the countOccurrences method:
add(countOccurrencesButton);
add(targetText);
addNewLine( );

      

// A TextArea at the bottom to write messages:
addHorizontalLine(Color.blue);
addNewLine( );
feedback.setEditable(false);
feedback.append("I am ready for your first action.\n");
add(feedback);

      

// Tell the Buttons what they should do when they are clicked:
sizeButton.addActionListener(new SizeListener( ));
addButton.addActionListener(new AddListener( ));
countOccurrencesButton.addActionListener(new CountOccurrencesListener( ));

}

 FIGURE  3.13 Implementation of the BagApplet’s init Method

public void init( )

java03.frm  Page 156  Saturday, August 26, 2000  5:53 PM



Applets for Interactive Testing157

 FIGURE  3.14 Guide to Building an Applet for Interactive Testing

Methods to Call from an Applet or from a Class That Extends an Applet
add(component) The component may be any of Java’s AWT

components such as Button, TextArea, or Text-
Field. As components are added, the applet fills
up from left to right. If there is no room for
a component on the current line, then the
applet moves down and starts a new row of
components.

addNewLine( )
addHorizontalLine(Color c)

These are not actually Applet methods—you’ll
need to define them if you want to use them
(see page 160).

Constructors for Three Useful Applet Components
Button(String label) Creates a button with a given label.

TextField(int size) Creates a white box for the user to type infor-
mation. The size is the number of characters.

TextArea(int rows, int columns) Creates a box with the given number of rows
and columns—often for displaying information
to the user.

Six Useful Methods for a Component
b.setActionListener
(ActionListener act)

We use b.setActionListener for a Button b. The
ActionListener, act, describes the actions to
take when the Button b is pressed. See
page 154 for information on how to create an
ActionListener.

t.append(String message) We use t.append for a TextArea t. The specified
message is added to the end of the TextArea.

t.getText( ) We use t.getText for a TextField t. The method
returns a copy of the String that the user has
typed in the field.

t.setEditable(boolean editable) The component t can be a TextArea or a Text-
Field. The boolean parameter tells whether you
want the user to be able to type text into the
component.

t.requestFocus( )
t.selectAll( )

We use these methods with a TextField. The
requestFocus method causes the mouse to go
to the field, and selectAll causes all text to be
highlighted.

c.setSize(int width, int height) This method may be used with any component
c. The component’s width and height are set to
the given values in pixels. 

java03.frm  Page 157  Saturday, August 26, 2000  5:53 PM



158  Chapter 3 / Collection Classes

registering an 
ActionListener

Once an action listener is created, it must be registered with its particular but-
ton. The registration is made in the init method. Our applet had these three
statements to register the three ActionListener objects:

sizeButton.addActionListener(new SizeListener( ));
addButton.addActionListener(new AddListener( ));
countOccurrencesButton.addActionListener

(new CountOccurrencesListener( ));

For example, the first of these statements creates a new SizeListener and reg-
isters it with the button sizeButton.

Let’s look at the second action listener class for our applet: AddListener.
This action listener handles the actions of addButton, which is shown here along
with the TextField that’s right beside it in the applet:

What actions should occur when the user clicks the addButton? The text should
be read from the TextField. This text is a String, such as “42”, but it can
be converted to its value as an integer by using the Java method
Integer.parseInt. The method Integer.parseInt has one argument (a
String which should contain an integer value), and the return value is the int
value of the String. Once we know the value of the integer provided by the
user, we can add it to the bag b and print an appropriate message in the applet’s
feedback area. Following these ideas, we have this first try at implementing
AddListener:

class AddListener implements ActionListener
{

void actionPerformed(ActionEvent event)
{

String userInput = elementText.getText( );
int element = Integer.parseInt(userInput);
b.add(element);
feedback.append(element + " has been added to the bag.\n");

}
}

The actionPerformed method defined here uses three of the applet’s instance
variables: (1) elementText, which is the TextField where the user typed a
number; (2) the bag b, where the new element is added; and (3) the TextArea
feedback, where a message is printed providing feedback to the user.

The method works fine, though a problem arises if the user forgets to type a
number in the TextField before clicking the button. In this case, a Number-
FormatException will occur when Integer.parseInt tries to convert the
user’s string to an integer. 

java03.frm  Page 158  Saturday, August 26, 2000  5:53 PM



Applets for Interactive Testing159

catching the 
possible 
exception

The best solution to this problem is to “catch” the exception when it occurs,
rather than allowing the exception to stop the applet. The syntax for catching a
NumberFormatException looks like this:

try
{

...code that might throw a NumberFormatException...
}
catch (NumberFormatException e)
{

...code to execute if the NumberFormatException happens...
}

The words try and catch are Java keywords for handling exceptions. The full
power of try and catch are described in Appendix C. For our purposes, we’ll fol-
low the preceding pattern to write a better version of AddListener:

an action 
listener for 
addButton

class AddListener = implements ActionListener
{

void actionPerformed(ActionEvent event)
{

try
{

String userInput = elementText.getText( );
int element = Integer.parseInt(userInput);
b.add(element);
feedback.append

(element + " has been added to the bag.\n");
}
catch (NumberFormatException e)
{

feedback.append
("Type an integer before clicking button.\n");

elementText.requestFocus( );
elementText.selectAll( );

}
}

}

If a NumberFormatException occurs, then the code in the catch block is exe-
cuted. This code prints a message in the feedback area of the applet, then acti-
vates two methods for elementText (which is the TextField where the user
was supposed to type a number):

elementText.requestFocus( );
elementText.selectAll( );

java03.frm  Page 159  Saturday, August 26, 2000  5:53 PM



160  Chapter 3 / Collection Classes

requestFocus 
and selectAll

The requestFocus method causes the mouse cursor to jump into the Text-
Field, and the selectAll method causes any text in the field to be highlighted.
So now, if the user forgets to type a number, the applet will print a nice error
message and provide a second chance.

Our applet needs one more action listener for the countOccurrences button.
That implementation is part of Figure 3.2 on page 112.

6. Implementations of other methods.   Our applet has two other methods that
we’ve mentioned: (1)addHorizontalLine, which draws a horizontal line in a
specified color; and (2) addNewLine, which causes a new line to start in the GUI,
even if there’s room for more components on the current line.

Our addHorizontalLine doesn’t really draw a line. Instead, it adds a com-
ponent called a Canvas to the applet. A Canvas is another applet component, like
a Button, primarily used for drawing graphical images. The size of the Canvas
can be set in pixels, which are the individual dots on a computer screen. Today’s
typical screens have about 100 pixels per inch, so a Canvas that is only one pixel
high looks like a horizontal line. Here’s our implementation:

implementation 
of

private void addHorizontalLine(Color c)
{

// Add a Canvas 10000 pixels wide but 
// only 1 pixel high, which acts as
// a horizontal line.
Canvas line = new Canvas( );
line.setSize(10000, 1);
line.setBackground(c);
add(line);

}

Notice that the Canvas is 10,000 pixels wide, which is wide enough to span even
the largest applet—at least on today’s computer screens.

implementation 
of addNewLine

Our last method, addNewLine, works by calling addHorizontalLine with
the color set to the background color of the applet. In effect, we are drawing a
horizontal line, but it is invisible since it’s the same color as the applet’s back-
ground. 

The implementation of addNewLine is given in Figure 3.15 as part of the com-
plete applet. Look through the implementation with an eye toward how it can be
expanded to test all of the bag’s methods or to test a different class such as the
DoubleArraySeq class.

addHorizontalLine

java03.frm  Page 160  Saturday, August 26, 2000  5:53 PM



Applets for Interactive Testing161

Java Applet Implementation

// File: BagApplet.java
// This applet is a small example to illustrate how to write an interactive applet that
// tests the methods of another class. This first version tests three of the IntArrayBag methods.

import edu.colorado.collections.IntArrayBag;
import java.applet.Applet;
import java.awt.*;          // Imports Button, Canvas, TextArea, TextField
import java.awt.event.*;    // Imports ActionEvent, ActionListener

public class BagApplet extends Applet
{
   // An IntArrayBag for this applet to manipulate:

IntArrayBag b = new IntArrayBag( );

   // These are the interactive components that will appear in the applet.
   // We declare one Button for each IntArrayBag method that we want to be able to
   // test. If the method has an argument, then there is also a TextField
   // where the user can enter the value of the argument.
   // At the bottom, there is a TextArea to write messages.

Button    sizeButton     = new Button("size( )");
Button    addButton  = new Button("add( )");

 TextField elementText  = new TextField(10);
Button    countOccurrencesButton = new Button("countOccurrences( )");
TextField targetText             = new TextField(10);
TextArea feedback               = new TextArea(7, 60);

   

   {   

}

   {
      public void actionPerformed(ActionEvent event)
      {
         feedback.append("The bag has size " + b.size( ) + ".\n");
      }
   } (continued)

 FIGURE  3.15 Complete Implementation of the BagApplet

public void init( )

See the implementation in Figure 3.13 on page 156.

class SizeListener implements ActionListener

java03.frm  Page 161  Saturday, August 26, 2000  5:53 PM



162  Chapter 3 / Collection Classes

 (FIGURE  3.15 continued)

   {
      public void actionPerformed(ActionEvent event)

{
try
{

String userInput = elementText.getText( );
int element = Integer.parseInt(userInput);
b.add(element);
feedback.append(element + " has been added to the bag.\n");

}
catch (NumberFormatException e)
{

feedback.append("Type an integer before clicking button.\n”); 
elementText.requestFocus( );
elementText.selectAll( );

}
 }                   

   }
   

   {
      public void actionPerformed(ActionEvent event)
      {

try
         {

String userInput = targetText.getText( );
int target = Integer.parseInt(userInput);
feedback.append(target + " occurs ");
feedback.append(b.countOccurrences(target) + “times.\n”);

         }
         catch (NumberFormatException e)
         {
            feedback.append("Type a target before clicking button.\n");
            targetText.requestFocus( );
            targetText.selectAll( );
         }
      }                   
   }

(continued)

class AddListener implements ActionListener

class CountOccurrencesListener implements ActionListener

java03.frm  Page 162  Saturday, August 26, 2000  5:53 PM



Applets for Interactive Testing163

How to Compile and Run an Applet

An applet can be compiled just like any other Java program. For example, using
the Java Development Kit we can compile BagApplet.java with the command
line:

javac BagApplet.java

You may have some other way of compiling Java programs in your development
environment, but the result will be the same. The act of compiling produces the
file BagApplet.class. The compilation will probably produce three other files
with names such as BagApplet$SizeListener.class. These are the compiled
versions of the inner classes.

applets were 
created to be 
viewed over the 
Internet

Applets were actually created to run as part of a page that you view over the
Internet with a web browser. These pages are called html pages, which stands
for “hyper-text markup language.” So, to run the BagApplet, we need a small
html file. The file, called BagApplet.html, should be created by you in the same
directory as BagApplet.class, and it should contain the two lines of html code
shown at the top of the next page.

 (FIGURE  3.15 continued)

{ 
// Add a Canvas 10000 pixels wide but only 1 pixel high, which acts as

      // a horizontal line to separate one group of components from the next.
      Canvas line = new Canvas( );
      line.setSize(10000,1);
      line.setBackground(c);
      add(line);

}

 
   {

// Add a horizontal line in the background color. The line itself is
      // invisible, but it serves to force the next component onto a new line.
      addHorizontalLine(getBackground( ));
   }
      
}

private void addHorizontalLine(Color c)

private void addNewLine( )

java03.frm  Page 163  Saturday, August 26, 2000  5:53 PM



164  Chapter 3 / Collection Classes

<applet code="BagApplet.class" width=480 height=340>
</applet>

The first line, containing <applet...> tells the web browser that you are going
to start an applet. Usually, you will have at least three pieces of information
about the applet:

Many Java development environments have a feature to automatically create a
small html file such as this.

Once the html file is in place, you can run the applet in one of two ways. One
approach is to run an appletviewer, which is a tool that reads an html file and
runs any applets that it finds. The Java Development Kit has an appletviewer that
is executed from the command line. For example, to run the JDK appletviewer
you change to the directory that contains BagApplet.html and type the com-
mand:

appletviewer BagApplet.html

This command runs the applet, resulting in the display shown in Figure 3.11 on
page 147.

The applet can also be displayed by putting it in a location that’s available to
your web browser. My latest information about this approach is available at
http://www.cs.colorado.edu/~main/java.html.

Beyond the init Method

Our test applet needed to define only the init method. More complex applets
can also be created, involving graphical images plus interaction. Graphical
applets will generally provide other methods called start, paint, update,
stop, and destroy. A good resource is Graphic Java Mastering the AWT by
David M. Geary.

Self-Test Exercises

23. Write three declarations of instance variables that might appear in an applet. 
Include a constructor activation in each declaration. The first declaration is a 
button with the label “Mmm, good.” The second declaration is for a text 

code = "BagApplet.class" Tells the browser where to
find the compiled class.

width = 480

height = 340

Sets the applet’s size in pix-
els. Today’s typical screens
have about 100 pixels per
inch, so a size of 480 x 340
is about 4.8 inches by 3.4
inches.

java03.frm  Page 164  Saturday, August 26, 2000  5:53 PM



Chapter Summary 165

field of 15 characters. The third declaration is for a text area with 12 rows 
and 60 columns.

24. Write three statements that could appear in the init method of an applet.
The statements should take the three components from the previous exer-
cise and add them to the applet’s GUI.

25. Write a statement that could appear in the init method of an applet to
display the message “FREE Consultation!”

26. Describe the technique used in the implementation of addHorizon-
talLine.

27. Write a new action listener that can be registered to a button of the
BagApplet. The actionPerformed method should print feedback to
indicate how many copies of the numbers 1 through 10 appear in the
applet’s bag.

28. Suppose that b is a button in the BagApplet. Write a statement that could
appear in the init method to create an action listener of the previous
exercise and register it to the button b.

29. Suppose that s is a String that may or may not contain a sequence of
digits representing a valid integer. Write a try-catch statement that will
try to convert the String to an integer and print two times this integer. If
the String does not represent a valid integer, then an error message
should be printed.

CHAPTER SUMMARY

• A collection class is an ADT where each object contains a collection of
elements. Bags and sequences are two examples of collection classes.

• The simplest implementations of collection classes use a partially filled
array. Using a partially filled array requires each object to have at least
two instance variables: the array itself and an int variable to keep track of
how much of the array is being used.

• When a collection class is implemented with a partially filled array, the
capacity of the array should grow as elements are added to the collection.
The class should also provide explicit methods to allow a programmer to
control the capacity of the array.

• In a collection class, some methods allocate additional memory (such as
changing the capacity of an array). These methods have the possibility of
throwing an OutOfMemoryError (when the machine runs out of memory).

• A class may have other instance variables that are references to objects or
arrays. In such a case, the clone method must carry out extra work. The
extra work creates a new object or array for each such instance variable to
refer to.

java03.frm  Page 165  Saturday, August 26, 2000  5:53 PM



166  Chapter 3 / Collection Classes

• When you design an ADT, always make an explicit statement of the rules
that dictate how the instance variables are used. These rules are called the
invariant of the ADT, and should be written at the top of the implementa-
tion file for easy reference.

• Small ADTs can be tested effectively with an interactive test applet that
follows the standard format of the BagApplet in Section 3.4.

SOLUTIONS TO SELF-TEST EXERCISES? Solutions to Self-Test Exercises

1. int i;
int[ ] b;
b = new int[1000];
for (i = 1; i <= 1000; i++)

b[i-1] = i;

2. b.length

3. 42 (since a and b refer to the same array)

4. 0 (since b is a clone of a)

5. The array referred to by the parameter in the
method is the same as the array referred to by
the actual argument. So, the actual argument
will have its first component changed to 42.

6. void copyFront(int[] a, int[] b, int n)
// Precondition: a.length and b.length are
// both greater than or equal to n.
// Postcondition: n integers have been cop-
// ied from the front of a to the front of b.
{

int i;
for (i = 0; i < n; i++)

b[i] = a[i];
}

7.

8. When the 11th element is added, the add
method will increase the capacity.

9. See the two rules on page 114.

10. A static method is not activated by any one
particular object. It is activated by writing the
class name, a dot, the method name, and the

[0] [1]

3 2 We don’t care what
appears beyond
data[1].

argument list. For example:
IntArrayBag.union(b1, b2)

11. The two statements can be replaced by one:
data[index] = data[--manyItems]; When
--manyItems appears as an expression, the
variable manyItems is decremented by one,
and the resulting value is the value of the
expression. (On the other hand, if many-
Items-- appears as an expression, the value
of the expression is the value of manyItems
prior to subtracting one.) Similarly, the last
two statements of add can be combined to
data[manyItems++] = element;

12. For the incorrect implementation of addAll,
suppose we have a bag b and we activate
b.addAll(b). Then the private instance
variable manyItems is the same variable as
addend.manyItems. Each iteration of the
loop adds 1 to manyItems, and hence
addend.manyItems is also increasing, and the
loop never ends. 

One warning: Some collection classes in
the Java libraries have an addAll method that
fails for the statement b.addAll(b). The rea-
son is improved efficiency. So, before you use
an addAll method, check the specification for
restrictions.

13. At the end of the clone implementation we
need an additional statement to make a sepa-
rate copy of the data array for the clone to use.
If we don’t make this copy, then our own data
array and the clone’s data array will be one
and the same (see the pictures on page 123).

14. System.arrayCopy(x, 10, y, 33, 16);

java03.frm  Page 166  Saturday, August 26, 2000  5:53 PM



Solutions to Self-Test Exercises167

15. void addBefore(double element)
{ 
int i;

if (manyItems == data.length)
{ // Try to double the capacity

ensureCapacity(manyItems*2 + 1);
}

if (!isCurrent( ))
currentIndex = 0;

for 

(i=manyItems; i>currentIndex; i--)
data[i] = data[i-1];

data[currentIndex] = element;
manyItems++;

}

16. 24

17. g.currentIndex will be 3 (since the 4th ele-
ment occurs at data[3]).

18. The removeCurrent method should be tested
when the sequence’s size is just 1, and when
the sequence is at its full capacity. At full
capacity you should try removing the first ele-
ment, and the last element of the sequence. 

19. Your program can be similar to Figure 3.2 on
page 111.

20. Here is our method’s heading, with a postcon-
dition:
void remove(int target);
// Postcondition: If target was in the
// sequence, then the first copy of target 
// has been removed, and the element after 
// the removed element (if there is one)
// becomes the new current element; other-
// wise the sequence remains unchanged.

The easiest implementation searches for the
index of the target. If this index is found, then
set currentIndex to this index, and activate
the ordinary removeCurrent method.

21. The total time to add 1, 2, ... , n with add-
After is O(n). The total time to add n, n–1, ...,
1 with addBefore is O(n2). The larger time
for the second approach is because an addition
at the front of the sequence requires all of the
existing elements to be shifted right to make
room for the new element. Hence, on the

second addition, one element is shifted. On
the third addition, two elements are shifted.
And so on to the nth element which needs n–1
shifts. The total number of shifts is
1+2+...+(n–1), which is O(n2). (To show that
this sum is O(n2), use a technique similar to
Figure 1.3 on page 21.)

22. Neither of the classes must use an array. In
later chapters we will see both classes imple-
mented without arrays.

23. Button b = new Button("Mmm, good");
TextField f = new TextField(15);
TextArea a = new TextArea(12, 60);

24. add(b); add(f); add(a);

25. add
(new Label("FREE Consultation!"));

26. The “horizontal line” is actually a Canvas that
is one pixel high and very wide.

27. class InfoListener
implements ActionListener
{
public void 
actionPerformed(ActionEvent event)
{
int i;
int count;

for (i = 1; i <= 10; i++)
{

count = b.countOccurrences(i);
feedback.append
(i + " occurs " + count + ".\n");

}
}

}

28. b.addActionListener
(new InfoListener( ));

29. try
{

int value = Integer.parseInt(s);
System.out.println(2 * value);

}
catch (NumberFormatException e)
{

System.out.println("Not number");
}

java03.frm  Page 167  Saturday, August 26, 2000  5:53 PM



168  Chapter 3 / Collection Classes

PROGRAMMING PROJECTS
PROGRAMMING PROJECTS

For the IntArrayBag class, implement a
new method called equals with a boolean
return value and one parameter. The param-

eter, called b, is another IntArrayBag. The method
returns true if b and the bag that activates the meth-
od have exactly the same number of every element.
Otherwise the method returns false. Notice that the
locations of the elements in the data arrays are not
necessarily the same. It is only the number of occur-
rences of each element that must be the same.

The worst-case time for the method should be
, where m is the size of the bag that activates

the method and n is the size of b.

A black box test of a class is a program
that tests the correctness of a class without
directly examining the private instance vari-

ables of the class. You can imagine that the private
instance variables are inside an opaque black box
where they cannot be seen, so all testing must occur
only through activating the public methods.

Write a noninteractive black box test program for
the IntArrayBag class. Make sure that you test the
boundary values, such as an empty bag, a bag with
just one element, and a full bag.

Expand the BagApplet from Figure 3.15 on
page 161. The expanded version should
have three bags and buttons to activate any

method of any bag. Also include a button that will
carry out an action such as:  xxxxxxxxxxxxxx

b1 = IntArrayBag.union(b2, b3).

Implement the sequence class from Section
3.3. You may wish to provide some
additional useful methods, such as:

(1) a method to add a new element at the front of
the sequence; (2) a method to remove the element at

1

O mn( )

2

3

4

the front of the sequence; (3) a method to add a new
element at the end of the sequence; (4) a method that
makes the last element of the sequence become the
current element; (5) a method that returns the ith ele-
ment of the sequence (starting with the 0th at the
front); (6) a method that makes the ith element be-
come the current element.

Implement an applet for interactive testing
of the sequence class from the previous
project.

A bag can contain more than one copy of an
element. For example, the chapter describes
a bag that contains the number 4 and two

copies of the number 8. This bag behavior is differ-
ent from a set, which can contain only a single copy
of any given element. Write a new collection class
called SetOfInt, which is similar to a bag, except
that a set can contain only one copy of any given
element. You’ll need to change the specification a
bit. For example, instead of the bag’s countOccur-
rences method, you’ll want a method such as this:

boolean contains(int target)
// Postcondition: The return value is true if 
// target is in the set; otherwise the return 
// value is false.

Make an explicit statement of the invariant of the set
ADT. Do a time analysis for each operation. At this
point, an efficient implementation is not needed. For
example, just adding a new element to a set will take
linear time because you’ll need to check that the new
element isn’t already present. Later we’ll explore
more efficient implementations.

You may also want to add additional methods to
your set ADT, such as a method for subtracting one
set from another.

5

6

java03.frm  Page 168  Saturday, August 26, 2000  5:53 PM



Programming Projects 169

Rewrite the sequence class using a new class
name, DoubleArraySortedSeq. In the new
class, the add method always puts the new

element so that all the elements stay in order from
smallest to largest. There is no addBefore or add-
After method. All the other methods are the same
as the original sequence ADT.

A one-variable polynomial is an arithmetic
expression of the form:

The highest exponent, k, is called the degree of the
polynomial, and the constants  are the co-
efficients. For example, here are two polynomials
with degree three:

Specify, design, and implement a class for polyno-
mials. Spend some time thinking about operations
that make sense on polynomials. For example, you
can write a method that adds two polynomials. An-
other method should evaluate the polynomial for a
given value of x.

Specify, design, and implement a class that
can be one player in a game of tic-tac-toe.
The constructor should specify whether the

object is to be the first player (X’s) or the second
player (O’s). There should be a method to ask the
object to make its next move, and a method that tells
the object what the opponent’s next move is. Also
include other useful methods, such as a method to
ask whether a given spot of the tic-tac-toe board is
occupied, and if so, whether the occupation is with
an X or an O. Also, include a method to determine
when the game is over, and whether it was a draw,
an X win, or an O win.

Use the class in two programs: a program that
plays tic-tac-toe against the program’s user, and a
program that has two tic-tac-toe objects that play
against each other.

7

8
a0 a1x a2x2 … akx

k+ + + +

a0 a1 …, ,

2.1 4.8x 0.1x2 7.1–( )x3+ + +

2.9 0.8x 10.1x2 1.7x3+ + +

9

Specify, design, and implement a collection
class that can hold up to five playing cards.
Call the class PokerHand, and include a 

method with a boolean return value to allow you to
compare two poker hands. For two hands x and y,
the relation x.beats(y) means that x is a better
hand than y. If you do not play in a weekly poker
game yourself, then you may need to consult a card
rule book for the rules on the ranking of poker
hands.

Specify, design, and implement a class that
keeps track of rings stacked on a peg, rather
like phonograph records on a spindle. An

example with five rings is shown here:

The peg may hold up to 64 rings, with each ring
having its own diameter. Also, there is a rule that
requires each ring to be smaller than any ring under-
neath it. The class’s methods should include: (a) a
constructor that places n rings on the peg (where n
may be as large as 64). These n rings have diameters
from n inches (on the bottom) to one inch (on the
top); (b) an accessor method that returns the number
of rings on the peg; (c) an accessor method that re-
turns the diameter of the topmost ring; (d) a method
that adds a new ring to the top (with the diameter of
the ring as a parameter to the method); (e) a method
that removes the topmost ring; (f) a method that
prints some clever representation of the peg and its
rings. Make sure that all methods have appropriate
preconditions to guarantee that the rule about ring
sizes is enforced. Also spend time designing appro-
priate private instance variables.

10

11

Rings stacked
on a peg

java03.frm  Page 169  Saturday, August 26, 2000  5:53 PM



170  Chapter 3 / Collection Classes

At game start After 1 move After 2 moves After 3 moves

After 7 movesAfter 6 movesAfter 5 movesAfter 4 moves

In this project, you will design and imple-
ment a class called Towers, which is part
of a program that lets a child play a game

called Towers of Hanoi. The game consists of three
pegs and a collection of rings that stack on the pegs.
The rings are different sizes. The initial configura-
tion for a five-ring game is shown here, with the first
tower having rings from one inch (on the top) to five
inches (on the bottom). 

The rings are stacked in decreasing order of their
size, and the second and third towers are initially
empty. During the game, the child may transfer
rings one-at-a-time from the top of one peg to the top
of another. The goal is to move all the rings from the
first peg to the second peg. The difficulty is that the
child may not place a ring on top of one with a small-
er diameter. There is the one extra peg to hold rings
temporarily, but the prohibition against a larger ring
on a smaller ring applies to it as well as the other two
pegs. A solution for a three-ring game is shown at
the bottom of the page. The Towers class must keep
track of the status of all three pegs. You might use
an array of three pegs, where each peg is an object
from the previous project. The Towers methods are
specified in the next column.

12

Initial configuration for
a five-ring game of

Towers of Hanoi

Towers(int n);
// Precondition: 1 <= n <= 64.
// Postcondition: The towers have been initialized
// with n rings on the first peg and no rings on
// the other two pegs. The diameters of the first 
// peg’s rings are from one inch (on the top) to n
// inches (on the bottom).

int countRings(int pegNumber)
// Precondition: pegNumber is 1, 2, or 3.
// Postcondition: The return value is the number 
// of rings on the specified peg.

int getTopDiameter(int pegNumber)
// Precondition: pegNumber is 1, 2, or 3.
// Postcondition: If countRings(pegNumber) > 0, 
// then the return value is the diameter of the top 
// ring on the specified peg; otherwise the return 
// value is zero.

void move(int startPeg, int endPeg)
// Precondition: startPeg is a peg number
// (1, 2, or 3), and coutRings(startPeg) > 0;
// endPeg is a different peg number (not equal 
// to startPeg), and if endPeg has at least one
// ring, then getTopDiameter(startPeg) is 
// less than getTopDiameter(endPeg).
// Postcondition: The top ring has been moved 
// from startPeg to endPeg.

Also include a method so that a Towers object may
be displayed easily.

Use the Towers object in a program that allows a
child to play Towers of Hanoi. Make sure that you
don’t allow the child to make any illegal moves.

java03.frm  Page 170  Saturday, August 26, 2000  5:53 PM


