é% java03.frm Page 95 Saturday, August 26, 2000 5:53 PM

=

Collection Classes CHAPTER

WALT WHITMAN 3

Song of Myself

(I am large. | contain multitudes.)

3.1 A REVIEW OF JAVA ARRAYS
3.2 ANADT FOR A BAG OF INTEGERS
3.3 PROGRAMMING PROJECT: THE SEQUENCE ADT
3.4 APPLETS FOR INTERACTIVE TESTING
CHAPTER SUMMARY
SOLUTIONS TO SELF-TEST EXERCISES
PROGRAMMING PROJECTS

The Throttle andLocation classes in Chapter 2 are good
examples of abstract data types. But their applicability is limited to a few spe-
cialized programs. This chapter begins the presentation of several ADTs with
broad applicability to programs large and small. The ADTs in this chapter—
bags and sequences—are small, but they provide the basis for more complex
ADTs. The chapter also includes information about how to write a test program
for a class.
All of the ADTs in this chapter are examplesoflection classedntuitively, an ADT in which
a collection class is a class where each object contains a collection of elenmawts object
For example, one program might keep track of a collection of integers, perlgap&ins a
the collection of test scores for a group of students. Another program, perha&ggegtion of
cryptography program, can use a collection of characters. elements
There are many different ways to implement a collection class; the simplest
approach utilizes an array, so this chapter begins with a quick review of Java
arrays before approaching actual collection classes. 95

4 2k

%9 java03.frm Page 96 Saturday, August 26, 2000 5:53 PM

—& @

96 Chapter 3/ Collection Classes

3.1 AREVIEW OF JAVA ARRAYS

An array is a sequence with a certain number of components. We draw arrays
with each component in a separate box. For example, here’s an array of the four
integers 7, 22, 19, and 56:

7 22 19 56

Each component of an array can be accessed through an index. In Java, the
indexes are written with square brackets, beginning gaiih [1],.... The array
shown has four components, so the indexes are [0] through [3], as shown here:

7 22 19 56

(0] il [21 [3]
In these examples, each component is an integer, but arrays can be built for any
fixed data type: arrays of double numbers, arrays of boolean values, even arrays
where the components are objects from a new class that you write yourself.
An array is declared like any other variable, except that a pair of square
brackets is placed after the name of the data type. For example, a program can
declare an array of integers like this:

int[] scores;

The name of this array &&ores. The components of this array are integers, but
as we have mentioned, the components may be any fixed type. For example, an
array of double numbers would Ldouble[] insteaint[].

An array variable, such azores, is capable of referring to an array of any
size. In fact, an array variable is a reference variable, just like the reference vari-
ables we have used for other objects, and arrays are created with theesame
operator that allocates other objects. For example, we can write these statements:

int[] scores;
scores = new int[4];

The numberf4], occurring with thenew operator, indicates that we want a new
array with four components. Once both statements figisér;es refers to an
array with four integer components, as shown here:

a newly

S allocated
array of

four
[0] [1] [2] [3] integers

This is an accurate picture, showing hewsres refers to a new array of four
integers, but the picture has some clutter that we can usually omit. Here is a

scores

.

4~ 4

4‘9 java03.frm Page 97 Saturday, August 26, 2000 5:53 PM

*

A Review of Java Arrays97

simpler picture that we’ll usually use to show thatres refers to an array of
four integers:

scores

o] (11 [2] [3]

Both pictures mean the same thing. The first picture is a more accurate depiction
of what Java actually does; the second is a kind of shorthand which is typical of
what programmers draw to illustrate an array.

Once an array has been allocated, individual components can be selected
using the square bracket notation with an index. For example, with scores allo-
cated as shown, we can set its [2] component to 42 with the assignment
scores[2] = 42. The result is shown here:

42

scores

(o] [11 [2] [3]

Pitfall: Exceptions That Arise from Arrays

Two kinds of exceptions commonly arise from programming errors with arrays. One
problem is to try to use an array variable before the array has been allocated. For
example, suppose we declare int[] scores, but we forget to use the new oper-
ator to create an array for scores to refer to. At this point, scores is actually a ref-
erence variable, just like the reference variables that we discussed for other kinds
of objects on page 50. But merely declaring a reference variable does not allocate
an array, and it is a programming error to try to access a component such as
scores[2]. A program that tries to access a component of a nonexistent array
may throw a Nul1PointerException (if the reference is null) or there may be a
compile-time error (if the variable is an uninitialized local variable).

A second common programming error is trying to access an array outside of its
bounds. For example, suppose that scores refers to an array with four compo-
nents. The indexes are [0] through [3], so it is an error to use an index that is too
small (such as scores[-1]) or too large (such as scores[4]). A program that
tries to use these indexes will throw an ArrayIndexOutOfBoundsException.

The Length of an Array

Every array has an instance variable calledlgth, which tells the number of
components in the array. For example, consscores = new int[4] . After
this allocationscores.length is 4. Notice thalength is not a method, so the
syntax is merelyscores.length (with no argument list). By the way, if an
array variable is the null reference, then you cannot ask for its length (trying to
do so results in Bu11PointerException).

@ [o—

4~ 4]

%9 java03.frm Page 98 Saturday, August 26, 2000 5:53 PM

—&| @

98 Chapter 3/ Collection Classes

Assignment Statements with Arrays

A program can use an assignment statement to make two array variables refer to
the same array. Here's some example code:

int[] scores;
int[] exams;

scores = new int[4];
scores[0] = 7;
scores[1l] = 22;
scores[2] 19;
scores[4] = 56;
exams = scores;

After these statementscores refers to an array containing the four integers 7,
22, 19, and 56. The assignment statermexams = scores , Catiaas to
refer to the exact same array. Here is an accurate drawing of the situation:

after the

— 3] assignment,
7 22 19 56 both array

/ variables
exams [0] [1] [21 I[3] refer to the

same array

scores

Here's a shorthand drawing of the same situation to showstvaks and
exams refer to the same array:

after the
assignment,
both array
variables

[0] [11 [2]1 I[3] refer to the
same array

scores| 7 22 19 56
exams

In this example, there is only one array, and both array variables refer to this one
array. Any change to the array will affect bettores andexams. For example,

after the above statements we might asexams[2] = 42 . The situation after
the assignment texams [2] is shown here:

the [2]
component
scores 7 22 42 56 has been
exams changed
[0] [1]1 [2] [3] to42

At this point, bothexams[2] andscores[2] are 42.

@ [o—

4~ 4]

%9 java03.frm Page 99 Saturday, August 26, 2000 5:53 PM

i

A Review of Java Arrays99

Clones of Arrays

In Chapter 2 you saw how to usetone method to create a completely sepa-
rate copy of an object. Every Java array comes equipped widgna method to

create a copy of the array. Just like the other clones that you've seen, changes to
the original array don't affect the clone, and changes to the clone don't affect the
original array. Here’s an example:

int[] scores;
int[] exams;

scores = new int[4];

scores[0] = 7;

scores[1] 22;

scores[2] 19;

scores[3] = 56;

exams = (int[]) scores.clone();

The final statement in this example u scores.clone() to create a copy of
the scores array. The data type of the return value of amyne method is
Java’'sdbject data type and not an array. Because of this, we usually cannot use
theclone return value directly. For example, we cannot write an assignment:

exams = scores.clone(); <——— this has a compile-time error

Instead, we must apply a typecast to ¢hene return value, converting it to an
integer array before we assign it to exams, like this:

exams = (int[]) scores.clone();

The expressior(int[1) tells the compiler to treat the return value of the
clone method as an integer array.

After the assignment statemestams refers to a new array which is an exact
copy of thescores array, as shown here:

after creating
the clone,
scores 7 22 19 56 there are
two separate
(0] [11 [21 (3] arrays
7 22 19 56
exams

o] (11 [2] [3]

There are now two separate arrays. Changes to one array do not affect the other.
For example, after the above statements we might aiexams[2] = 42

.
4~ ~s

%9 java03.frm Page 100 Saturday, August 26, 2000 5:53 PM

—& @

100 Chapter 3/ Collection Classes

The situation after the assignmengtams [2] is shown here:

exams[2]
has changed
scores 7 22 19 56 to 42, but
scores[2]
[01 [11 [2] I[3] is unchanged
7 22 | 42 56
exams

(o1 [1il [21 [3]
At this point,exams [2] is 42, butscores[2] is unchanged.

Array Parameters

An array can be a parameter to a method. Here's an example method with an
array as a parameter:

o putd2s
public static void put42s(int[] data)
Put 42 in every component of an array.
Parameters:
data — an array of integers

Postcondition:
All components ofiata have been set to 42.

public static void put42s(int[] data)

{
int i;
for (i = 0; i < data.length; i++)
datal[i] = 42;

Perhaps this is a silly example (when was the last time you really wanted to put
42 in everycomponent of an array?), but the example is a good way to show
how an array works as a parameter. Notice how the array parameter is indicated
by placing array brackets after the parameter name. Iputl¥s example, the

array is callediata, so the parameter list (int[] data)

When a method is activated with an array parameter, the parameter is initial-
ized to refer to the same array that the actual argument refers to. Therefore, if the
method changes the components of the array, the changes do affect the actual
argument. For example, this code activatepti@2s method:

int[] example = new int[7];
put42s(example);

After these statements, all seven components afxthigple array contain 42.

.
4~ ~s

%9 java03.frm Page 101 Saturday, August 26, 2000 5:53 PM

*

An ADT for a Bag of Integers101

Array Parameters

When a parameter is an array, then the parameter is initial-
ized to refer to the same array that the actual argument refers
to. Therefore, if the method changes the components of the
array, the changes do affect the actual argument.

Self-Test Exercises

1. Write code that follows these steps: (1) Declare an integer array variable
calledb; (2) Allocate a new array of 1000 integers tiaio refer to; and
(3) Place the numbers 1 through 1000 in the array.

2. Write a Java expression that will indicate how many elements are in the
arrayb (from the previous exercise).

3. What is the output from this code:
int[] a, b;
a = new int[10];
a[5] = 0;
b = a;
a[5] = 42;
System.out(b[5]);

4. What is the output from this code:
int[1 a, b;
a = new int[10];
a[5] = 0;
b = (nt []) a.clone();
a[5] = 42;
System.out(b[5]);
5. Suppose that an array is passed as a parameter to a method, and the
method changes the first component of the array to 42. What effect does
this have on the actual argument back in the calling program?

6. Write a method that copieslements from the front of one integer array
to the front of another. The two arrays and the numbare all argu-
ments to the method. Include a precondition/postcondition contract as
part of your implementation.

3.2 AN ADT FOR A BAG OF INTEGERS

This section provides an example of a collection class. In this first example, the
collection class will use an array to store its collection of elements (but later we
will see other ways to store collections).

The example collection class is calleday of integersTo describe the bag
data type, think about an actual bag—a grocery bag or a garbage bag—and

@ [o—

4~ 4]

%9 java03.frm Page 102 Saturday, August 26, 2000 5:53 PM

—& @

102 Chapter 3/ Collection Classes

imagine writing integers on slips of paper and putting them in the blagg Af
integersis similar to this imaginary bag: a container that holds a collection of
integers that we place into it. A bag of integers can be used by any program that
needs to store a collection of integers for its own use. For example, later we will
write a program that keeps track of the ages of your family’s members. If you
have a large family with ten people, the program keeps track of ten ages—and
these ages are kept in a bag of integers.

The Bag ADT—Specification

We've given an intuitive description of a bag of integers. We will implement this
bag as a class calladtArrayBag, in which the integers are stored in an array.
In general, we’ll use a three-part name for a collectiont™ specifies the type

of the elements in the bagirray” indicates the mechanism for storing the ele-
ments; and Bag” indicates the kind of collection. For a precise specification of
theIntArrayBag class, we must describe each of the public methods to manip-
ulate anIntArrayBag object. These descriptions will later become our specifi-
cations, including a precondition/postcondition contract for each method. Let's
look at the methods one at a time.

The Constructors. TheIntArrayBag class has two constructors to initialize a
new, empty bag. One constructor has a parameter, as shown in this heading:

public IntArrayBag(initialCapacity)

The parameterinitialCapacity, is the initial capacity of the bag—the num-
ber of elements that the bag can hold. Once this capacity is reached, more ele-
ments can still be added and the capacity will automatically increase in a
manner that you'll see in a moment.

The other constructor has no parameters, and it constructs a bag with an initial
capacity of ten.

The add Method. This is a modification method that places a new integer,
calledelement, into a bag. Here is the heading:

public void add(int element)

As an example, here are some statements for a bag tatletBag:

IntArrayBag firstBag = new IntArrayBag();
firstBag.add(8);

firstBag.add(4); After these statements, firstBag
firstBag.add(8); contains two 8s and a 4.

After these statements are execufédstBag contains three integers: the num-

ber 4 and two copies of the number 8. It is important to realize that a bag can
contain many copies of the same integer, such as this example, which has two
copies of 8.

.
4~ ~s

%9 java03.frm Page 103 Saturday, August 26, 2000 5:53 PM

*

An ADT for a Bag of Integers103

The remove Method. This modification method removes a particular number
from a bag. The heading is shown here

public boolean remove(int target)

Provided thattarget is actually in the bag, the method removes one copy of
target and returngrue to indicate that something has been removédar-
get is not in the bag, then the method retufatse without changing the bag.

The size Method. This accessor method returns the count of how many inte-
gers are in a bag. The heading for ¢hee method is:

pubTlic int size()

For example, supposgirstBag contains one copy of the number 4 and two
copies of the number 8. ThémrstBag.size() returns 3.

The countOccurrences Method. This is an accessor method that determines
how many copies of particular number are in a bag. The heading is:

public int countOccurrences(int target)

The activation otountOccurrences (n) returns the number of occurrences of
n in a bag. For example, ffi rstBag contains the number 4 and two copies of
the number 8, then we will have these values:

. . 2 Prints 0
System.out.println(firstBag.countOccurrences(1l));

System.out.printin(firstBag.countOccurrences(4)); <— Prints 1

Systme.out.printIn(firstBag.countOccurrences(8));
~~ Prints 2

The addA11 Method. TheaddA11 method allows us to add the contents of one
bag to the existing contents of another bag. The method has this heading:

public void addA11(IntArrayBag addend)

This is an interesting method for thetArrayBag class because the parameter

is also anIntArrayBag object. We use the namaldend for the parameter,
meaning “something to be added.” As an example, suppose we create two bags
calledhelter andskelter, and we then want to add all the contentskef1 -

ter tohelter. This is done withheTlter.addA11(skelter), as shown here:

IntArrayBag helter= new IntArrayBag();
IntArrayBag skelter = new IntArrayBag();

helter.add(8); This adds the contents of
skelter.add(4); skelter to what's
skelter.add(8); already in helter.

helter.addAT11(skelter);

After these statementise1ter contains one 4 and two 8s.

@ [o—

4~ 4]

%9 java03.frm Page 104 Saturday, August 26, 2000 5:53 PM

—&| @

104 Chapter 3/ Collection Classes

The union Method. Theunion of two bags is a new larger bag that contains all
the numbers in the first bag and all the numbers in the second bag, as shown
here:

The union of

We will implementunion with a static method that has the two parameters
shown here:

public static IntArrayBag union(IntArrayBag bl, IntArrayBag b2)

Theunion method computes the unionkaf andb2. For example:

IntArrayBag partl = new IntArrayBag();
IntArrayBag part2 = new IntArrayBag();

partl.add(8);

partl.add(9); . .
part2.add(4); This computes the union of

) the two bags, putting the result
part2.add(8); / in a third bag.

IntArrayBag total = IntArrayBag.union(partl, part2);

After these statementsptal contains one 4, two 8s, and one 9.

Theunion method is similar taddA11, but the usage is different. ThédAT1
method is an ordinary method that is activated by a bag, for example
helter.addA11(skelter), which adds the contents €ife1ter tohelter. On
the other hand, union is a static method with two arguments. As a static
methodunion is not activated by any one bag. Instead, the activation of
IntArrayBag.union(partl, part2) creates and returns a new bag that
includes the contents of bathrtl andpart2.

The clone Method. As part of our specification, we require that bag objects
can be copied with a clone method. For example:

b now contains a 42.
IntArrayBag b = new IntArrayBag();

b.add(42); < c is initialized
IntArrayBag c¢ = (IntArrayBag) b.clone(); 454 clone of b.

At this point, because we are only specifying which operations can manipu-
late a bag, we don't need to say anything more aboufldre method.

.
4~ ~s

4‘9 java03.frm Page 105 Saturday, August 26, 2000 5:53 PM

*

An ADT for a Bag of Integers105

Three Methods That Deal with Capacity. Each bag has a currecapacity,

which is the number of elements the bag can hold without having to request more
memory. Once the capacity is reached, more elements can still be added by the
add method. In this case, theld method itself will increase the capacity as
needed. In fact, our implementatiornaat! will double the capacity whenever the

bag becomes full.

With this in mind, you might wonder why a programmer needs to worry about
the capacity at all. For example, why does the constructor require the program-
mer to specify an initial capacity? Couldn’'t we always use the constructor that
has an initial capacity of ten and have 4ddé method increase capacity as more
and more elements are added? Yes, this approach will always work correctly. But
if there are many elements, then many of the activationgdivould need to
increase the capacity. This could be inefficient—in fact, increasing the capacity
will be the least efficient operation of the entire bag. To avoid repeatedly increas-
ing the capacity, a programmer provides an initial guess at the needed capacity
for the constructor.

For example, suppose a programmer expects no more than 1000 elements for
a bag namedilosack. The bag is declared this way, with an initial capacity of
1000:

IntArrayBag kilosack = new IntArrayBag(1000);

After this declaration, the programmer can place 1000 elements in the bag with-
out worrying about the capacity. Later, the programmer can add more elements
to the bag, maybe even more than 1000. If there are more than 1000 elements,
thenadd increases the capacity as needed.

There are three methods that allow a programmer to manipulate a bag’'s
capacity after the bag is in use. The methods have these headers:

public int getCapacity()
public void ensureCapacity(int minimumCapacity)
public void trimToSize()

The first methodgetCapacity, just returns the current capacity of the bag. The
second methodgnsureCapacity, increases the capacity to a specified mini-
mum amount. For example, in order to ensure that a bag ¢dipdy has a
capacity of at least 10,000, we would activaitgboy . ensureCapacity (10000).

The third methodtrimToSize, reduces the capacity of a bag to its current
size. For example, suppose thagboy has a current capacity of 10,000, but it
contains only 42 elements and we are not planning to add any more. Then we can
reduce the current capacity to 42 with the activabidgboy . trimToSize().
Trimming the capacity is never required, but doing so can reduce the memory
used by a program.

That's all the methods, and we're almost ready to write the methods’ specifi-
cations. But first, there are some limitations that we’d like to discuss.

@ [o—

4~ 4]

4‘9 java03.frm Page 106 Saturday, August 26, 2000 5:53 PM

—& @

106 Chapter 3/ Collection Classes

OutOfMemoryError and Other Limitations for Collection Classes

Our plan is to store a bag’s elements in an array, and to increase the capacity of
the array as needed. The memory for any array comes from a location called the
program’'sheap (also called thdree store). In fact, the memory for all Java
objects comes from the heap. Some computers provide huge heaps—Java
implementations running on a machine with a “64-bit address space” have the
potential for more than 1®integers. But even the largest heap can be exhausted
by creating large arrays or other objects.

what happens If a heap has insufficient memory for a new object or array, then the result is
when the heap a Java exception call@dtOfMemoryError. This exception is thrown automati-
runs out of cally by an unsuccessful “new” operation. For example, if there is insufficient
memory? memory for a newrhrottle object, therThrottle t = new Throttle()

throws ardutOfMemoryError. Experienced programmers may monitor the size

of the heap and the amount that is still unused. Our programs won’t attempt such
monitoring, but our specification for any collection class will always mention
that the maximum capacity is limited by the amount of free memory. To aid more
experienced programmers, the specification will also indicate precisely which
methods have the possibility of throwing @rt0fMemoryError. (Any method

that uses the “new” operation could throw this exception.)

collection Many collection classes have another limitation that is tied to the maximum
classes may be value of an integer. In particular, our bag stores the elements in an array, and
limited by the every array has integers for its indexes. Java integers are limited to no more than
maXimum value 2,147,483,647, which is also writtenIas.eger .MAX_VALUE. An attempt to cre-

of an integer ate an array with a size beyomldteger.MAX_VALUE results in an arithmetic

overflow during the calculation of the size of the array. Such an overflow usually
produces an array size that Java’s runtime system sees as negative. This
is because Java represents integers so that the “next” number after
Integer.MAX_VALUE is actually the smallest negative number.

Programmers often ignore the array-size overflow problem (since today’s
machines generally have amtOfMemoryError beforeInteger.MAX_VALUE is
approached). We won't provide special code to handle this problem, but we
won't totally ignore the problem either. Instead, our documentation will indicate
precisely which methods have the potential for an array-size overflow. We'll also
add a note to advise that large bags should probably use a different implementa-
tion method anyway, because many of the array-based algorithms are slow for
large bags@(n), wheren is the number of elements in the bag).

The IntArrayBag Class—Specification

We now know enough about the bag to write a specification, as shown in Figure
3.1. We've used the namietArrayBag for this class, and it is the first class of a
package nameedu.colorado.collections.

The specification also states the bag’s limitations: the possibility ofian
OfMemoryError (when the heap is exhausted), a note about the limitation of the
capacity, and a note indicating that large bags will have poor performance.

.
4~ ~s

%9 java03.frm Page 107 Saturday, August 26, 2000 5:53 PM

*

An ADT for a Bag of Integers107

FIGURE 3.1 Specification for the IntArrayBag Class

Class IntArrayBag

O public class IntArrayBag from the package edu.colorado.collections
An IntArrayBag is a collection ofint numbers.

Limitations:
(1) The capacity of one of these bags can change after it's created, but the maximum capacity

is limited by the amount of free memory on the machine. The constradpelone, and
union will result in anoutofMemoryError when free memory is exhausted.

(2) A bag's capacity cannot exceed the largest integer 2,147,4886dde(. MAX_VALUE).
Any attempt to create a larger capacity results in failure due to an arithmetic overflow.

(3) Because of the slow linear algorithms of this class, large bags will have poor
performance.

Specification

o Constructor for the IntArrayBag
public IntArrayBag()
Initialize an empty bag with an initial capacity of 10. Note thattemethod works
efficiently (without needing more memory) until this capacity is reached.

Postcondition:
This bag is empty and has an initial capacity of 10.

Throws: OutOfMemoryError
Indicates insufficient memory fofiew int[10].

o Second Constructor for the IntArrayBag
public IntArrayBag(int initialCapacity)
Initialize an empty bag with a specified initial capacity. Note thatdldenethod works
efficiently (without needing more memory) until this capacity is reached.

Parameters:
initialCapacity — the initial capacity of this bag

Precondition:
initialCapacity iS non-negative.

Postcondition:
This bag is empty and has the given initial capacity.

Throws: I11egalArgumentException
Indicates thainitialCapacity is negative.

Throws: OutOfMemoryError
Indicates insufficient memory fofiew int[initialCapacity].

(continued)

.
4~ ~s

—&| @

%9 java03.frm Page 108 Saturday, August 26, 2000 5:53 PM

108 Chapter 3/ Collection Classes

(FIGURE 3.1 continued)

o add

public void add(int element)

Add a new element to this bag. If this new element would take this bag beyond its current capacity,

then the capacity is increased before adding the new element.
Parameters:

element — the new element that is being added

Postcondition:

A new copy of the element has been added to this bag.

Throws: outOfMemoryError

Indicates insufficient memory for increasing the capacity.

Note:

An attempt to increase the capacity beyomekger.MAX_VALUE will cause this bag to fail with
an arithmetic overflow.

o addAll
public void addA11(IntArrayBag addend)
Add the contents of another bag to this bag.

Parameters:

addend — a bag whose contents will be added to this bag

Precondition:

The parametegddend, is not null.

Postcondition:

The elements fromddend have been added to this bag.

Throws: Nul1PointerException

Indicates thatddend is null.

Throws: outOfMemoryError

Indicates insufficient memory to increase the size of this bag.

Note:

An attempt to increase the capacity beydmtkger .MAX_VALUE will cause this bag to fail with
an arithmetic overflow.

o clone
public Object clone()
Generate a copy of this bag.

Returns:

The return value is a copy of this bag. Subsequent changes to the copy will not affect the
original, nor vice versa. The return value must be typecastiotanrayBag before it is used.

Throws: outOfMemoryError

Indicates insufficient memory for creating the clone.

(continued)

4~ 4

\

%9 java03.frm Page 109 Saturday, August 26, 2000 5:53 PM

i

An ADT for a Bag of Integers109

(FIGURE 3.1 continued)

o countOccurrences
public int countOccurrences(int target)
Accessor method to count the number of occurrences of a particular element in this bag.

Parameters:
target — the element that needs to be counted
Returns:

the number of times thatrget occurs in this bag

o ensureCapacity
public void ensureCapacity(int minimumCapacity)

Change the current capacity of this bag.

Parameters:
minimumCapacity — the new capacity for this bag

Postcondition:
This bag’s capacity has been changed to at tdasihumCapacity. If the capacity was
already at or greater thafnimumCapacity, then the capacity is left unchanged.

Throws: outOfMemoryError
Indicates insufficient memory fofiew int[minimumCapacity].

o getCapacity
public int getCapacity()
Accessor method to determine the current capacity of this bagddimeethod works
efficiently (without needing more memory) until this capacity is reached.
Returns:
the current capacity of this bag

o remove

public boolean remove(int target)

Remove one copy of a specified element from this bag.

Parameters:
target — the element to remove from this bag

Postcondition:
If target was found in this bag, then one copytafget has been removed and the method
returnstrue. Otherwise this bag remains unchanged and the method redtisrs

0 size
public int size()
Accessor method to determine the number of elements in this bag.

Returns:
the number of elements in this bag

(continued)

.
4~ ~s

%9 java03.frm Page 110 Saturday, August 26, 2000 5:53 PM

—& @

110 Chapter 3/ Collection Classes

(FIGURE 3.1 continued)

o trimToSize
pubTlic void trimToSize()
Reduce the current capacity of this bag to its actual size (i.e., the number of elements it contains).

Postcondition:
This bag’s capacity has been changed to its current size.

Throws: outOfMemoryError
Indicates insufficient memory for altering the capacity.

o union
public static IntArrayBag union(IntArrayBag bl, IntArrayBag b2)

Create a new bag that contains all the elements from two other bags.

Parameters:
b1 — the first of two bags
b2 — the second of two bags

Precondition:
Neitherb1 norb2 is null.

Returns:
a new bag that is the uniontif andb2

Throws: Nul1PointerException
Indicates that one of the arguments is null.

Throws: outOfMemoryError
Indicates insufficient memory for the new bag.

Note:
An attempt to create a bag with capacity beynr@ger . MAX_VALUE will cause the bag to fail
with an arithmetic overflow.

The IntArrayBag Class—Demonstration Program

With the specification in hand, we can write a program that uses a bag. We don't
need to know what the instance variables of a bag are, and we don’t need to
know how the methods are implemented. As an example, a demonstration
program appears in Figure 3.Zhe program asks a user about the ages of fam-
ily members. The user enters the ages followed by a negative humber to indicate
the end of the input. (Using a special value to end a list is a common technique
called asentinel value) A typical dialogue with the program looks like this:

Type the ages of your family members.

Type a negative number at the end and press return.
5 19 47 -1

Type those ages again. Press return after each age.
Age: 19

Yes, I’ve got that age and will remove 1it.

@ [o—

4~ 4]

%9 java03.frm Page 111 Saturday, August 26, 2000 5:53 PM

*

An ADT for a Bag of Integers111

Age: 36

No, that age does not occur!

Age: 5

Yes, I’ve got that age and will remove it.
Age: 47

Yes, I’ve got that age and will remove it.
May your family Tive long and prosper.

The program puts the ages in a bag and then asks the user to type thehadesyReader
again. The program’s interaction with the user is handled through a class cékked from
EasyReader, which contains various simple input methods. The class is fuflgeendix B
described in Appendix B, but for this program all that's needed is a si n%"‘s/soi’irgpﬁ
EasyReader calledstdin, which is attached to standard inpgggtem.in). P

Oncestdin is set up, an integer can be read with either of two methods: (1)
stdin.intInput (which simply reads an integer input), or §2in.intQuery
(which prints a prompt and then reads an integer input). You may firtd ¢he
Reader class useful for your own demonstration programs.

As for theIntArrayBag class itself, we still don’t know how the implemen-
tation will work, but we're getting there.

FIGURE 3.2 Demonstration Program for the Bag Class

Java Application Program

// FILE: BagDemonstration.java
// This small demonstration program shows how to use the IntArrayBag class
// from the edu.colorado.collections package.

import edu.colorado.collections.IntArrayBag;

import edu.co1orado.1o.EasyReader;‘<\\\\\\\\
the EasyReader class is

class BagDemonstration described in Appendix B

{

private static EasyReader stdin = new EasyReader(System.in);

public static void main(String[] args)

{

IntArrayBag ages = new IntArrayBag();

getAges(ages);

checkAges(ages);

System.out.printin("May your family 1ive long and prosper.");
}

(continued)

.
4~ ~s

%9 java03.frm Page 112 Saturday, August 26, 2000 5:53 PM

—&| @

112 Chapter 3/ Collection Classes

(FIGURE 3.2 continued)

public static void getAges(IntArrayBag ages)

// The getAges method prompts the user to type in the ages of family members. These
// ages are read and placed in the ages bag, stopping when the user types a negative
// number. This demonstration does not worry about the possibility of running out

// of memory (therefore, an OutOfMemoryError is possible).

{

int userlInput; // An age from the user's family

System.out.printin("Type the ages of your family members.™);
System.out.println("Type a negative number at the end and press return.");
userInput = stdin.intInput();
while (userInput >= 0)
{

ages.add(userInput);

userInput = stdin.intInput();

}

public static void checkAges(IntArrayBag ages)

// The checkAges method prompts the user to type in the ages of family members once
// again. Each age is removed from the ages bag when it is typed, stopping when the bag
// is empty.

public static void checkAges(IntArrayBag ages)

{

int userInput; // An age from the user's family

System.out.print("Type those ages again. ");
System.out.println("Press return after each age.");
while (ages.size() > 0)

{
userInput = stdin.intQuery("Next age: ");
if (ages.countOccurrences(userInput) == 0)
System.out.println("No, that age does not occur!");
else
{
System.out.printin("Yes, I've got that age and will remove it.");
ages.remove(userInput);
}
}

@ [o—

4~ 4]

%9 java03.frm Page 113 Saturday, August 26, 2000 5:53 PM

*

An ADT for a Bag of Integers113

The IntArrayBag Class—Design

There are several ways to design In@ArrayBag class. For now, we’'ll keep
things simple and design a somewhat inefficient data structure using an array.
The data structure will be redesigned several times to obtain more efficiency.
We start the design by thinking about the data structure—the actual configu-
ration of private instance variables used to implement the class. The primary
structure for our design is an array that stores the elements of a bag. Or, tcusé the
more precise, we uskebeginningpart of a large array. Such an array is called peginning part
apartially filled array . For example, if the bag contains the integer 4 and twcof an array
copies of 8, then the first part of the array could look this way:

Components of 8 4 8 = Parts l
the partially filled data Unknown
array contain the —

4 [01 [11 r[21 [3]1 [2

elements of the bag.

This array, calleddata, will be one of the private instance variables of the
IntArrayBag class. The length of the array will be determined by the current
capacity, but as the picture indicates, when we are using the array to store a bag
with just three elements, we don'’t care what appears beyond the first three com-
ponents. Starting at index 3, the array might contain all zeros, or it might contain
garbage, or our favorite number—it really doesn’t matter.

Because part of the array can contain garbage ntterrayBag class must
keep track of one other itetdow much of the array is currently being uséa?
example, in the previous picture, we are using only the first three components of
the array because the bag contains three elements. The amount of the array being
used can be as small as zero (an empty bag) or as large as the current capacity.
The amount increases as elements are added to the bag, and it decreases as ele-
ments are removed. In any case, we will keep track of the amount in a private
instance variable callethnyItems. With this approach, there are two instance

variables for a bag: the bag’s
instance
public class IntArrayBag implements Cloneable variables
{
private int[] data; // An array to store elements

private int manylItems; // How much of the array is used

|| The public methods will be given in a moment.
}

Notice that we are planning to implementiane method, therefore we indi-
cate “implements Cloneable” at the start of the class definition.

.
4~ ~s

4‘9 java03.frm Page 114 Saturday, August 26, 2000 5:53 PM

—& @

114 Chapter 3/ Collection Classes

The Invariant of an ADT

We've defined the bag data structure, and we have a good intuitive idea of how
the structure will be used to represent a bag of elements. But as an aid in imple-
menting the class we should also write down an explicit statement of how the
data structure is used to represent a bag. In the case of the bag, we need to state
how the instance variables of the class are used to represent a bag of elements.
There are two rules for our bag implementation:

rules that dictate 1. The number of elements in the bag is stored in the instance variable
how the instance manyIltems.

variables are 2. For an empty bag, we do not care what is stored in adytaf for a

used to , nonempty bag, the elements of the bag are storedta[0] through
rveal/)chsen a data[manyItems-1], and we don't care what is stored in the restaa.

The rules that dictate how the instance variables of a class represent a value
(such as a bag of elements) are callednveriant of the ADT. The knowledge

of these rules is essential to the correct implementation of the ADT’s methods.
: With the exception of the constructors, each method depends on the invariant
Key Design being valid when the method is activated. And each method, including the con-
structors, has a responsibility of ensuring that the invariant is valid when the
The invariant method finishes. In some sense, the invariant of an ADT is a condition that is an
is a critical part | implicit part of every method’s postcondition. And (except for the constructors)
of an ADT’s it is also an implicit part of every method’s precondition. The invariant is not
implementation.| usually written as aexplicit part of the precondition and postcondition because
the programmer who uses the ADT does not need to know about these condi-
tions. But to the implementor of the ADT, the invariant is indispensable. In other
words, the invariant is a critical part of the implementation of an ADT, but it has
no effect on the way the ADT is used.

Concept

The Invariant of an ADT

When you design a new class, always make an explicit
statement of the rules that dictate how the instance variables
are used. These rules are called the invariant of the ADT . All
of the methods (except the constructors) can count on the
invariant being valid when the method is called. Each method
also has the responsibility of ensuring that the invariant is
valid when the method finishes.

Once the invariant of an ADT is stated, the implementation of the methods is
relatively simple because there is no interaction between the methods—except
for their cooperation at keeping the invariant valid. We’'ll look at these imple-
mentations one at a time, starting with the constructors.

.
4~ ~s

%9 java03.frm Page 115 Saturday, August 26, 2000 5:53 PM

i

An ADT for a Bag of Integers115

The IntArrayBag ADT—Implementation

The Constructor. Every constructor has one primary job: to set up the
instance variables correctly. In the case of the bag, the constructor must set up
the instance variables so that they represent an empty bag with a current capac-
ity given by the parameteimitialCapacity. The bag has two instance vari-
ables, so its constructor will include two assignment statements shown in this
implementation of one of the constructors:

public IntArrayBag(int initialCapacity)
{
if (initialCapacity < 0)
throw new ITlegalArgumentException
("initialCapacity 1is negative: " + initialCapacity);
manyItems = 0;
data = new int[initialCapacity];

}

The if-statement at the start checks the constructor's precondition. The firgtementing
assignment statemermanyItems = 0 , simply sedsyItems to zero, indi- the constructor
cating that the bag does not yet have any elements. The second assignment
statement,data = new int[initialCapacity] , iS more interesting. This

statement allocates an array of the right capadity tfialCapacity), and

makesdata refer to the new array. For example, supposeittatialCapac-

ity is 6. After the two assignment statements, the instance variables look like

this:
manyItems
The private instance
variables of this bag 0
include an array of
six integers.

The bag does not

yet contain any

elements, so none of data
the array is being used.

ol (11 [2] ([31 [4] I[5]

Later, the program could add many elements to this bag, maybe even more than
six. If there are more than six elements, then the bag’s methods will increase the
array’s capacity as needed.

The other constructor is similar, except it always provides an initial capacity
of ten.

The add Method. Theadd method checks that there is room to add a new ele-
ment. If not, then the array capacity is increased before proceeding. (The new
capacity is twice the old capacity plus 1. The extra +1 deals with the case where

.
4~ ~s

%9 java03.frm Page 116 Saturday, August 26, 2000 5:53 PM

—&| @

116 Chapter 3/ Collection Classes

the original size was zero.) The attempt to increase the array capacity may lead
to anOutOfMemoryError or an arithmetic overflow as discussed on page 106.
But usually these errors do not occur, and we can place the new element in the
next available location of the array. What is the index of the next available loca-
tion? For example, ifianyItems is 3, therdata[0], data[1], anddata[2] are
already occupied, and the next locatioridaga[3]. In general, the next avail-

able location will bedata[manyItems]. We can place the new element in
data[manyItems], as shown in this implementation:

public void add(int element)
implementing {
add if (manyItems == data.length)
{
// Double the capacity and add 1; this works even if manyltems is 0.
// However, in the case that manyltems*2 + 1 is beyond
// Integer.MAX_VALUE, there will be an arithmetic overflow and
// the bag will fail.
ensureCapacity(manyItems*2 + 1);

}

data[manyItems] = element; < See Self-Test (:'xercise 11
manyTtems-++; for an alternative approach

} to these steps.

Within a method we can activate other methods, such as the way thatthe
implementation activatessureCapacity to increase the capacity of the array.

The remove Method. The remove method takes several steps to remove an
element namedarget from a bag. In the first step, we find the indexafget

in the bag’s array, and store this index in a local variable namask. For
example, suppose theirget is the number 6 in the bag drawn here:

s [6 [a]o]s ‘ 5
The index of the target data N

is found and placed in -

a local variable [0Js [1]1 o [21 [3]1 [4] [5]
called index.
manyItems
6 . 1 5
target index

In this exampletarget is a parameter to themove method,index is a local
variable in theremove method, anehanyItems is the bag instance variable. As
you can see in the drawing, the first stepafove is to locate the target (6) and
place the index of the target in the local variable cailhefdx.

.
4~ ~s

%9 java03.frm Page 117 Saturday, August 26, 2000 5:53 PM

—&| @

An ADT for a Bag of Integers117

Once the index of the target is found, the second step is to takeathele-
ment in the bag and copy it data[index]. The reason for this copying is so
that all the bag’s elements stay together at the front of the partially filled array,
with no “holes.” In our example, the number 8 is copiedidoa[index] as

shown here:

The final element

is copied onto 3 8 4 9 5; 8

the element data 8

that we are

removing. (0] [11 [21 [31 [41 [5]

manyItems
6 . 1 5

target index

The third step is to redueenyItems by one—in effect reducing the used part
of the array by one. In our examptenyItems is reduced from 5 to 4:

The value of manyltems 3 8 4
is reduced by data
one to indicate
that one element [0l [1l [2]
has been
removed.

6 . 1

target index

The code for theemove method, shown in Figure 3.3, follows these three steps.
There is also a check that the target is actually in the bag. If we discover that the
target is not in the bag, then we do not need to remove anything. Also note that
our method works correctly for the boundary values of removing the first or last
element in the array.

Before we continue, we want to point out some programming techniquieglementing
Look at the following for-loop from Figure 3.3: remove

for (index =0; (index <manyItems) & (target != data[index]); index++)
// No work is needed in the body of this for-loop.

Instead of the usual loop body, there is merely a semicolon, which means that
the body of this loop has no statements; all of the work is accomplished by the
loop’s three clauses. The first clause initializeslex to zero. The second

.
4~ ~s

%9 java03.frm Page 118 Saturday, August 26, 2000 5:53 PM

—& @

118 Chapter 3/ Collection Classes

clause indicates that the loop continues as lonthésx is still a location in
the used part of the array (i.endex < manyItems) and we have not yet found
the target (i.etarget != data[index]). Each time through the loop, the third
clause increment$ndex by one fndex++). No other work is needed in the
loop, so the body of the loop has no statements.

A second programming technique concerns the boolean expression used to
control the loop:

for (index =0; (index <manyItems) & (target != data[index]); index++)
// No work is needed in the body of this for-loop.

Look at the expressiotata[index] in the second part of the test. The valid
indexes fordata range fromo to manyItems-1. But, if the target is not in the
array, thenindex will eventually reachmanyItems, which could be an invalid
index. At that point, withindex equal tomanyItems, we must not evaluate the
expressiondata[index]. Trying to evaluatedata[index] with an invalid
index will cause amrrayIndexOutOfBoundsException.

The general ruleNever use an invalid index with an array.

FIGURE 3.3 Implementation of the Bag’s Method to Remove an Element

Implementation

public boolean remove(int target)

{

int index; // The location of target in the data array

// First, set index to the location of target in the data array,

// which could be as small as 0 or as large as manyltems-1.

// If target is not in the array, then index will be set equal to manylitems.

for (index = 0; (index < manyItems) && (target != data[index]); index++)
// No work is needed in the body of this for-loop.

if (index == manyItems)
// The target was not found, so nothing is removed.
return false;

else
{ // The target was found at data[index].
manyItems--;

See Self-Test Exercise 11 for an

data[ind = dat It ; . .
atalindex] atamanyltems]; <—— alternative approach to this step.

return true;

@ [o—

4~ 4]

—& @

%9 java03.frm Page 119 Saturday, August 26, 2000 5:53 PM

An ADT for a Bag of Integers119

Avoiding the invalid index is the reason for the first part of the boolean tefsbrt-circuit
(i.e., index < manyItems). Moreover, the test fo¢index < manyItems) must evaluation of
appearbefore the other part of the test. Placifgndex < manyItems) first boolean
ensures that only valid indexes are used. The insurance comes from a tech@¥gigssions
calledshort-circuit evaluationyhich Java uses to evaluate boolean expressions.

In short-circuit evaluation a boolean expression is evaluated from left to right,
and the evaluation stops as soon as there is enough information to determine the
value of the expression. In our examplejriflex equalsnanyItems, then the

first part of the boolean expressiéimdex < manyItems) is false, SO the entire

&& expressiomustbefalse. It doesn’t matter whether the second part okéhe
expression isrue or false. Therefore, Java doesn’t bother to evaluate the sec-
ond part of the expression, and the potential error of an invalid index is avoided.

The countOccurrences Method. To count the number of occurrences of

a particular element in a bag, we step through the used portion of the partially
filled array. Remember that we are using locatiotsta[0] through
data[manyItems-1], so the correct loop is shown in this implementation:

public int countOccurrences(int target)

{ implementing
int answer; the
int index; countOccurrences
method

answer = 0;
for (index = 0; index < manyItems; index++)
if (target == data[index])
answer++;
return answer;

}
The addA11 Method. TheaddA11 method has this heading: implementing
the addAll
public void addAl11(IntArrayBag addend) method

The bag that activatesddA11 is increased by adding all the elements from
addend. Our implementation follows these steps:

1. Ensure that the capacity of the bag is large enough to contain its current
elements plus the extra elements that will come faddend, as shown
here:

ensureCapacity(manyItems + addend.manyItems);

By the way, what happens in this statemeatiifend is null? Of course, a
null value violates the precondition afildA11, but a programmer could
mistakenly provide null. In that caseNal1PointerException will be
thrown, and this possibility is documented in the specificaticrudh11
on page 108.

ﬁ%

\

@ [o—

4‘9 java03.frm Page 120 Saturday, August 26, 2000 5:53 PM

—& @

120 Chapter 3/ Collection Classes

2. Copy the elements froaddend.data to the next available positions in
our own data array. In other words, we will copyddend.manyItems
elements from the front afddend.data. These elements go into our own
data array beginning at the next available spata[manyItems]. We
could write a loop to copy these elements, but a quicker approach is to use
Java'sSystem.arraycopy method, which has these five arguments:

System.arraycopy(source, si, destination, di, n);

the arraycopy The argumentsource anddestination are two arrays, and the other

method arguments are integers. The method copieslements fromsource
(starting atsource[si]) to thedestination array (with the elements
being placed aflestination[di] throughdestination[di+n-1]). For
our purposes, we call the raycopy method as shown here:

System.arraycopy
(addend.data, 0, data, manyItems, addend.manyItems);

3. Increase our owmnanyItems by addend.manyItems, as shown here:

manyItems += addend.manyIltems;

These three steps are shown indtiéA11 implementation of Figure 3.4.

SIeIV]{=NC W/l |Implementation of the Bag's addA11 Method

Implementation

public void addAT11(IntArrayBag addend)
{
// If addend is null, then a NullPointerException is thrown.
// In the case that the total number of items is beyond Integer.MAX_VALUE, there will be
// arithmetic overflow and the bag will fail.
ensureCapacity(manyItems + addend.manyItems);

System.arraycopy(addend.data, 0, data, manyItems, addend.manyItems);
manyItems += addend.manyltems;

@ [o—

4~ 4]

%9 java03.frm Page 121 Saturday, August 26, 2000 5:53 PM

*

An ADT for a Bag of Integers121

The union Method. Theunion method is different from our other methods. limplementing
is astatic method, which means that it is not activated by any one bag objé& union
Instead, the method must take its two parameters ghaaysdb2), combine these Method

two bags together into a third bag, and return this third bag. The third bag is
declared as a local variable calletswer in the implementation of Figure 3.5.

The capacity of the answer bag must be the sum of the capaciiesuadb2,

so the actual answer bag is allocated by the statement:

answer = new IntArrayBag(bl.getCapacity() + b2.getCapacity());

This calls theIntArrayBag constructor to create a new bag with an initial
capacity ob1.getCapacity() + b2.getCapacity().

Theunion implementation also makes use of $fietem.arraycopy method
to copy elements froml.data andb2.data into answer.data.

FIGURE 3.5 Implementation of the Bag's union Method

Implementation

public static IntArrayBag union(IntArrayBag bl, IntArrayBag b2)
{
// If either b1 or b2 is null, then a NullPointerException is thrown.
// In the case that the total number of items is beyond Integer.MAX_VALUE,
// there will be an arithmetic overflow and the bag will fail.
IntArrayBag answer =
new IntArrayBag(bl.getCapacity() + b2.getCapacity());

System.arraycopy(bl.data, 0, answer.data, 0, bl.manyItems);
System.arraycopy(b2.data, 0, answer.data, bl.manyItems, b2.manyItems);
answer.manyItems = bl.manyItems + b2.manyItems;

return answer;

@ [o—

%9 java03.frm Page 122 Saturday, August 26, 2000 5:53 PM

—&| @

122 Chapter 3/ Collection Classes

The clone Method. The clone method of a class allows a programmer to

make a copy of an object. For example, TheArrayBag class has @lone

method to allow a programmer to make a copy of an existing bag. The copy is

separate from the original, so that subsequent changes to the copy won't change

the original, nor will subsequent changes to the original change the copy.
TheIntArrayBag clone method will follow the pattern introduced in Chap-

ter 2 on page 78. Therefore, the start ofd¢hene method is:

public Object clone()
{ // Clone an IntArrayBag object.
IntArrayBag answer;

try
{
answer = (IntArrayBag) super.clone();
}
catch (CloneNotSupportedException e)
{
throw new RuntimeException
("This class does not implement Cloneable.");

As explained in Chapter 2, this code usesdingr.clone method to make
answer be an exact copy of the bag that activated:1a@e method. But for the
bag class, an exact copy is not quite correct. The problem occurs because
super.clone copies each instance variable of the class without concern for
whether the instance variable is a primitive type (such asgror a more com-
plicated type (such as an array or some other kind of reference to an object).

To see why this causes a problem, suppose we have a bag that contains three
elements, as shown here:

3 10 20 30 L
data

manyItems (01 [11 [2] (31 1[41 [5]

This drawing uses the “array shorthand” that we've been using—ijust putting the
name of the array right next to it. But in fact, as with every array, the instance
variabledata is actually a reference to the array, so a more accurate picture
looks like the drawing at the top of the next page.

@ [o—

4~ 4]

é% java03.frm Page 123 Saturday, August 26, 2000 5:53 PM

i

An ADT for a Bag of Integers123

3 //_) 10 20 30 -. -

manyItems data [0] [11 [2]1 [31 T[4]1 I[5]

Now, suppose we activat€lone() to create a copy of this bag. The clone
method executes the statemanswer = (IntArrayBag) super.clone()
What doesuper.clone() do? It creates a nelmtArrayBag object anchinswer

will refer to this newIntArrayBag. But the newIntArrayBag has instance
variables énswer.manyItems andanswer.data) that are merely copied from the
original. So, after the statemeanswer = (IntArrayBag) super.clone()

the situation looks like this (whenanyItems anddata are the instance vari-
ables from the original bag that activated ¢hene method):

3 //’ 10 20 30 -. -

manyItems data W[O] [1] [2] [31 1[41 [5]

: |

answer.manyItems answer.data

As you can seanswer.manyItems has a copy of the number 3, and that is fine.
But answer.data merely refers to the original’s array. Subsequent changes to
answer.data will affect the original and vice versa. This is incorrect behavior
for a clone. To fix the problem, we need an additional statement before the
return of theclone method. The purpose of the statement is to create ¢
array for the clone’s data instance variable to refer to. Here's the statemet

answer.data = (int []) data.clone();

After this statemengnswer.data refers to a separate array, as shown here:

3 //) 10 20 30 -. -

manyItems data [0l [1] [21 [31 [4] [5]
I eEEs 3
answer.manyItems ol [11 (21 (31 [41 [5]

answer.data

.

ﬁ%

2
A

4‘9 java03.frm Page 124 Saturday, August 26, 2000 5:53 PM

—& @

124 Chapter 3/ Collection Classes

The newanswer.data array was created by creating a clone of the original
array (as described on page 99). Subsequent changeswta- will not affect
the original, nor will changes to the original affestwer. The complete&lone
method, including the extra statement at the end, is shown in Figure 3.6.

Programming Tip: Cloning a Class That Contains an Array

If a class has an instance variable that is an array, then the clone method needs
extra work before it returns. The extra work creates a new array for the clone’s
instance variable to refer to.

The class may have other instance variables that are references to objects. In
such a case, the clone method also carries out extra work. The extra work creates a
new object for each such instances variable to refer to.

FIGURE 3.6 Implementation of the Bag’s c1one Method

Implementation
public Object clone()
{
{ // Clone an IntArrayBag object.
IntArrayBag answer;
try
{
answer = (IntArrayBag) super.clone();
3
catch (CloneNotSupportedException e)
{
// This exception should not occur. But if it does, it would probably indicate a
// programming error that made super.clone unavailable. The most common
// error would be forgetting the “Implements Cloneable”
// clause at the start of this class. .
throw new RuntimeException This step creates a new
("This class does not implement Cloneable."); arrayforanswer.dgta to refer
} to. The new array is separate
from the original array so
answer.data = (int []) data.clone(); <« that sqbsequent changes to
one will not affect the other.
return answer;
3

@ [o—

4‘9 java03.frm Page 125 Saturday, August 26, 2000 5:53 PM

*

An ADT for a Bag of Integers125

FIGURE 3.7 Implementation of the Bag’s ensureCapacity Method

Implementation

public void ensureCapacity(int minimumCapacity)

{
int biggerArray[1;
if (data.length < minimumCapacity)
{
biggerArray = new int[minimumCapacity];
System.arraycopy(data, 0, biggerArray, 0, manyItems);
data = biggerArray;
}
}

The ensureCapacity Method. This method ensures that a bag’s array has at
least a certain minimum length. Here is the method’s heading:

public void ensureCapacity(int minimumCapacity)

The method checks whether the bag’'s array has a length Imeéloimum-
Capacity. If so, then the method allocates a new larger array with a length of
minimumCapacity. The elements are copied into the larger array, andatte
instance variable is then made to refer to the larger array. Figure 3.7 shows our
implementation, which follows the steps we have outlined.

The Bag ADT—Pultting the Pieces Together

Three bag methods remain to be implemendéde (which returns the number

of elements currently in the bagetCapacity (which returns the current
length of the bag’s array, including the part that's not currently being used), and
trimToSize (which reduces the capacity of the bag’s array to equal exactly the
current number of elements in the bag).

Thesize andgetCapacity methods are implemented in one line each, and
trimToSize is similar toensureCapacity, SO we won't discuss these methods.
But you should examine these methods in the complete implementation file of
Figure 3.8 on page 126. Also notice that TineArrayBag class is placed in a
package calleddu.colorado.collections. Throughout the rest of this book,
we will add other collection classes to this package.

@ [o—

4~ 4]

%9 java03.frm Page 126 Saturday, August 26, 2000 5:53 PM

—& @

126 Chapter 3/ Collection Classes

FIGURE 3.8 Implementation File for the IntArrayBag Class

Implementation

// File: IntArrayBag.java from the package edu.colorado.collections
// Complete documentation is in Figure 3.1 on page 107 or from the IntArrayBag link in
// http://www.cs.colorado.edu/~main/docs/

package edu.colorado.collections;

public class IntArrayBag implements Cloneable

{

// Invariant of the IntArrayBag class:

// 1. The number of elements in the Bag is in the instance variable manyltems.
// 2. For an empty Bag, we do not care what is stored in any of data;

// for a nonempty Bag, the elements in the Bag are stored in data[0]

// through data[manyltems-1], and we don’t care what’s in the rest of data.
private int[] data;

private int manyItems;

public IntArrayBag()

final int INITIAL_CAPACITY = 10;
manyItems = 0;
data = new int[INITIAL_CAPACITY];

public IntArrayBag(int initialCapacity)

if (initialCapacity < 0)

throw new I1legalArgumentException

("initialCapacity is negative: " + initialCapacity);
manyItems = 0;
data = new int[initialCapacity];

public void add(int element)

{
if (manyItems == data.length)
{
// Double the capacity and add 1; this works even if manyltems is 0. However, in
// case that manyltems*2 + 1 is beyond Integer.MAX_VALUE, there will be an
// arithmetic overflow and the bag will fail.
! ensureCapacity(manyItems*2 + 1);
data[manyItems] = element;
) manyltems++;

(continued)

ﬁ%

\

%9 java03.frm Page 127 Saturday, August 26, 2000 5:53 PM

i

An ADT for a Bag of Integers127

(FIGURE 3.8 continued)

public void addA11(IntArrayBag addend)
{
// If addend is null, then a NullPointerException is thrown.
// In the case that the total number of items is beyond Integer.MAX_VALUE, there will
// be an arithmetic overflow and the bag will fail.
ensureCapacity(manyItems + addend.manyItems);

System.arraycopy(addend.data, 0, data, manyItems, addend.manyItems);
manyItems += addend.manyItems;

}

public Object clone()
{ // Clone an IntArrayBag object.
IntArrayBag answer;

try
{
answer = (IntArrayBag) super.clone();
}
catch (CloneNotSupportedException e)
{
// This exception should not occur. But if it does, it would probably indicate a
// programming error that made super.clone unavailable. The most common
// error would be forgetting the “Implements Cloneable”
// clause at the start of this class.
throw new RuntimeException
("This class does not implement Cloneable.");
}

answer.data = (int []) data.clone();

return answer;

}
public int countOccurrences(int target)
{
int answer;
int index;
answer = 0;
for (index = 0; index < manyIltems; index++)
if (target == data[index])
answer++;
return answer;
} (continued)

.
4~ ~s

%9 java03.frm Page 128 Saturday, August 26, 2000 5:53 PM

i

128 Chapter 3/ Collection Classes

(FIGURE 3.8 continued)

public void ensureCapacity(int minimumCapacity)

{
int biggerArray[1;
if (data.length < minimumCapacity)
{
biggerArray = new int[minimumCapacity];
System.arraycopy(data, 0, biggerArray, 0, manyItems);
data = biggerArray;
3
}
public int getCapacity()
{
return data.length;
3
public boolean remove(int target)
{
int index; // The location of target in the data array
// First, set index to the location of target in the data array,
// which could be as small as 0 or as large as manyltems-1.
// If target is not in the array, then index will be set equal to manylitems.
for (index = 0; (index < manyItems) && (target != data[index]); index++)
// No work is needed in the body of this for-loop.
if (index == manyItems)
// The target was not found, so nothing is removed.
return false;
else
{ // The target was found at datalindex].
manyIltems--; .
data[index] = data[manyItems]; «— S;?e Setlf-Test Exercf;s? lt/f.fortan
return true; alternative approach to this step.
}
}
public int size()
{
return manyltems;
} (continued)

4‘9 java03.frm Page 129 Saturday, August 26, 2000 5:53 PM

*

An ADT for a Bag of Integers129

(FIGURE 3.8 continued)

public void trimToSize()

{
int trimmedArray[1;
if (data.length != manyItems)
{
trimmedArray = new int[manyItems];
System.arraycopy(data, 0, trimmedArray, 0, manyItems);
data = trimmedArray;
3
}

public static IntArrayBag union(IntArrayBag bl, IntArrayBag b2)
{
// If either b1 or b2 is null, then a NullPointerException is thrown.
// In the case that the total number of items is beyond Integer.MAX_VALUE, there will
// be an arithmetic overflow and the bag will fail.
IntArrayBag answer = new IntArrayBag(bl.getCapacity() + b2.getCapacity());

System.arraycopy(bl.data, 0, answer.data, 0, bl.manyItems);
System.arraycopy(b2.data, 0, answer.data, bl.manyItems, b2.manyItems);
answer.manyItems = bl.manyItems + b2.manyItems;

return answer;

Programming Tip: Document the ADT Invariant in the TP :
Implementation File

The invariant of an ADT describes the rules that dictate how the instance variables
are used. This information is important to the programmer who implements the
class. Therefore, you should write this information in the implementation file, just
before the declarations of the private instance variables. For example, the invariant
for the IntArrayBag class appears before the declarations of manyItems and
data in the implementation file of Figure 3.8 on page 126.

This is the best place to document the ADT's invariant. In particular, do not write
the invariant as part of the class’s specification, because a programmer who uses
the ADT does not need to know about private instance variables. But the program-
mer who implements the ADT does need to know about the invariant.

@ [o—

4~ 4]

4‘9 java03.frm Page 130 Saturday, August 26, 2000 5:53 PM

—& @

130 Chapter 3/ Collection Classes

The Bag ADT—Testing

Thus far, we have focused on the design and implementation of new classes and
their methods. But it’s also important to continue practicing the other aspects of
software development, particularly testing. Each of the bag’'s new methods must
be tested. As shown in Chapter 1, it is important to concentrate the testing on
boundary values. At this point, we will alert you to only one potential pitfall,
leaving the complete testing to Programming Project 2 on page 168.

WTFALL Pitfall: An Object Can Be an Argument to Its Own Method
A class can have a method with a parameter that is the same data type as the class
itself. For example, one of the IntArrayBag methods, addA11, has a parameter

that is an IntArrayBag itself, as shown in this heading:

public void addA11(IntArrayBag addend)

An IntArrayBag can be created and activate its addA11 method using itself as
the argument. For example:

IntArrayBag b = new IntArrayBag();
b.add(5); b now contains a 5 and a 2.

b.add(2); <—

b.addA11(b);

Now b contains two 5s and two 2s.

The highlighted statement takes all the elements in b (the 5 and the 2) and adds
them to what's already in b, so b ends up with two copies of each number.

In the highlighted statement, the bag b is activating the addA11 method, but this
same bag b is the actual argument to the method. This is a situation that must be
carefully tested. As an example of the danger, consider the incorrect implementa-
tion of addA11 in Figure 3.9. Do you see what goes wrong with b.addA11 (b) ?
(See the answer to Self-Test Exercise 12.)

Se{UI>{=<X I \Vrong Implementation of the Bag's addA11 Method ‘

A Wrong Implementation WARNING!

?ubhc void addA11(IntArrayBag addend) There is a bug in this

implementation. See Self-Test

int 1; An array inde .
! i/ vi X Exercise 12.

ensureCapacity(manyItems + addend.manyItems);
for (i = 0; i < addend.manyItems; i++)
add(addend.datal[i]);

@ [o—

4~ 4]

%9 java03.frm Page 131 Saturday, August 26, 2000 5:53 PM

*

An ADT for a Bag of Integers131

The Bag ADT—Analysis

We finish this section with a time analysis of the bag’s methods. Generally, we'll
use the number of elements in a bag as the input size. For exarhpeaibag
containingn integers, then the number of operations required lyunt-
Occurrences is a formula involvingh. To determine the operations, we’ll see
how many statements are executed by the method, although we won’t need an
exact determination since our answer will use @igetation. Except for two
declarations and two statements, all of the wordoimtOccurrences happens

in this loop:

for (index = 0; index < manyItems; index++)
if (target == data[index])
answer++;

We can see that the body of the loop will be executed exatittyes—once for

each element in the bag. The body of the loop also has another important prop-
erty: The body contains no other loops or calls to methods that contain
loops. This is enough to conclude that the total number of statements exe-
cuted bycountOccurrences is no more than:

n x (number of statements in the loop) 4

The extra +4 at the end is for the two declarations and two statements outside
the loop. Regardless of how many statements are actually in the loop, the time
expression islwaysO(n)—so thecountOccurrences method is linear.

A similar analysis shows thatmove is also linear, althoughemove'’s loop
sometimes executes fewer thanimes. However, the fact thaémove some-
timesrequires less than x (number of statements in the loop)does not change
the fact that the method @&(n). In the worst case, the loop does execute anfull
iterations, therefore the correct time analysis is no betterQf@n

The analysis of the constructor is a special case. The constructor allocates an
array ofinitialCapacity integers, and in Java all array components are initial-
ized (integers are set to zero). The initialization time is proportional to the capac-
ity of the array, so an accurate time analys®(initialCapacity).

Several of the other bag methods do not contain any loops or array allocatmnstant time
This is a pleasant situation because the time required for any of these meth@ds
does not depend on the number of elements in the bag. For example, when an ele-
ment is added to a bag that does not need to grow, the new element is placed at
the end of the array, and thed method never looks at the elements that were
already in the bag. When the time required by a method does not depend on the
size of the input, the procedure is caltethstant time which is writtenO(1).

Theadd method has two distinct cases. If the current capacity is adequate for
a new element, then the timeQ@$1). But if the capacity needs to be increased,
then the time increases@gn) because of the array allocation and copying of ele-
ments from the old array to the new array.

@ [o—

4~ 4]

%9 java03.frm Page 132 Saturday, August 26, 2000 5:53 PM

—&| @

132 Chapter 3/ Collection Classes

The time analyses of all methods are summarized here fanoarrayBag:

Operation Time Analysis Operation Time Analysis
Constructor O(c) cisthe initial count- O(n) linear time
capacity Occurrences
add O(1) Constant ensure O(c) cisthe specified
without capacity time Capacity minimum
increase capacity
add with O(n) Linear time getCapacity O(1) Constanttime
capacity remove O(n) Linear time
increase
bl.addAll(b2) O(n,) Linearinthe size O(1) Constanttime
without capacity size of the
increase added bag
bl.addAll(b2) | O(n,+n,) n,andn,are trimToSize O(n) Lineartime
with capacity the sizes of
increase the bags
clone O(c) cisthebag’s union of | O(c,+c,) c;andc,arethe
capacity bl and b2 bags’ capacities

Self-Test Exercises

7. Draw a picture ofiybag.data after these statements:
IntArrayBag mybag = new IntArrayBag(10);
mybag.add(1);
mybag.add(2);
mybag.add(3);
mybag.remove (1) ;
8. The bag in the previous question has a capacity of 10. What happens if
you try to add more than ten elements to the bag?
9. Write the invariant of the bag ADT.

10. What is the meaning ofstiatic method? How is the activation different
than an ordinary method?

11. Use the expressiofr-manyItems (with the -- beforemanyItems) to
rewrite the last two statements rafimove (Figure 3.3 on page 118) as a
single statement. If you are unsure of the difference between-
Items-- and--manyItems, then go ahead and peek at our answer at the
back of the chapter. UsmnyItems++ to make a similar alteration to the
add method.

12. Suppose we implemeatildA11 as shown in Figure 3.9 on page 130.

What goes wrong wit'h.addA11(b) ?

ﬁ%

-t

\

4‘9 java03.frm Page 133 Saturday, August 26, 2000 5:53 PM

*

Programming Project: The Sequence ADI33

13. Describe the extra work that must be done at the end ofltime
method. Draw pictures to show what goes wrong if this step is omitted.

14. Suppose andy are arrays with 100 elements each. Usathraycopy
method to copyw[10]...x[25] to y[33]...y[48].

3.3 PROGRAMMING PROJECT: THE SEQUENCE ADT

You are ready to tackle a collection class implementation on your own. The data
type is called @equenceA sequence is similar to a bag—both contain a bunch

of elements. But unlike a bag, the elements in a sequence are arranged one after
another.

How does this differ from a bag? After all, aren’t the bag elements arranbed a sequence
one after another in the partially filled array that implements the bag? Yes,differs from a
that's a quirk of our particular bag implementation, and the order is just happeg-
stance. Moreover, there is no way that a program using the bag can refer to the
bag elements by their position in the array.

In contrast, the elements of a sequence are kept one after another, and the
sequence’s methods allow a program to step through the sequence one element
at a time, using the order in which the elements are stored. Methods also permit
a program to control precisely where elements are inserted and removed within
the sequence.

The Sequence ADT—Specification

Our bag happened to be a bagniégers We could have had a different under-

lying element type such as a bagdoublenumbers or a bag @haracters In

fact, in Chapter 5, we'll see how to construct a collection that can simulta-
neously handle many different types of elements, rather than being restricted to
one type of element. But for now, our collection classes will have just one kind
of element for each collection. In particular, for our sequence class each element
will be a double number, and the class itself is calBelbleArraySeq. We

could have chosen some other type for the elements, but double numbers are as
good as anything for your first implementation of a collection class.

As with the bag, each sequence will have a current capacity, which is the num-
ber of elements the sequence can hold without having to request more memory.
The initial capacity will be set by the constructor. The capacity can be increased
in several different manners, which we’ll see as we specify the various methods
of the new class.

Constructor. The DoubleArraySeq has two constructors—a constructor that
constructs an empty sequence with an initial capacity of 10, and another con-
structor that constructs an empty sequence with some specified initial capacity.

.
4~ ~s

—& @

%9 java03.frm Page 134 Saturday, August 26, 2000 5:53 PM

134 Chapter 3/ Collection Classes

10.1
40.2
11

start,
getCurrent,
advance

isCurrent

The size Method. The size method returns the number of elements in the
sequence. Here is the heading:

public int size()

For example, ikcores is a sequence containing the values 10.1, 40.2, and 1.1,
then scores.size() returns 3. Throughout our examples, we will draw
sequences vertically, with the first element on top, as shown in the picture in the
margin (where the first element is 10.1).

Methods to Examine a SequenceWe will have methods to build a sequence,

but it will be easier to explain first the methods to examine a sequence that has
already been built. The elements of a sequence can be examined one after
another, but the examination must be in order, from the first to the last. Three
methods work together to enforce the in-order retrieval rule. The methods’
headings are:

public void start()
public double getCurrent()
public void advance()

When we want to retrieve the elements of a sequence, we begin by activating
start. After activatingstart, thegetCurrent method returns the first element

of the sequence. Each time we callance, thegetCurrent method changes

so that it returns the next element of the sequence. For example, if a sequence
callednumbers contains the four numbers 37, 10, 83, and 42, then we can write
the following code to print the first three numbers of the sequence:

Prints 37
numbers.start(); ‘(////
System.out.println(numbers.getCurrent());

numbers.advance(); Prints 10
System.out.printin(numbers.getCurrent());4?////

numbers.advance(); Prints 83
System.out.printin(numbers.getCurrent()); <

One other method cooperates wibtCurrent. The isCurrent method
returns a boolean value to indicate whether there actually is a current element for
getCurrent to provide, or whether we have advanced right off the end of the
sequence.

Using all four of the methods with a for-loop, we can print an entire sequence,
as shown here for theimbers sequence:

for (numbers.start(); numbers.isCurrent(); numbers.advance())
System.out.println(numbers.getCurrent());

4~ 4

\

@ [o—

4‘9 java03.frm Page 135 Saturday, August 26, 2000 5:53 PM

*

Programming Project: The Sequence ADI35

The addBefore and addAfter Methods. There are two methods to add a nefw
element to a sequence, with these headers: 421

8.8
99.0

public void addBefore(double element)
public void addAfter(double element)

The first methodaddBefore, places a new element before the current elememZ:guence

For example, suppose that we have created the sequence shown in the ma
: ; grows by

and that the current element is 8.8. In this example, we want to add 10.0 tp ‘adding 10.0
sequence, immediately before the current element. When 10.0 is added tefbefore the
the current element, other elements in the sequence—such as 8.8 and 99 current
will move down the sequence to make room for the new element. After the adjement.
tion, the sequence has the four elements shown in the lower box.

If there is no current element, thetdBefore places the new element at th 42.1
front of the sequence. In any case, afteratfuBefore method returns, the new 10.0
element will be the current element. In the example shown in the margin, the| 8.8
becomes the new current element. 99.0

A second method, calledidAfter, also adds a new element to a sequenc
but the new element is addefier the current element. If there is no current ele-
ment, then theaddAfter method places the new element at the end of the
sequence (rather than the front). In all cases, when the method finishes, the new
element will be the current element.

EitheraddBefore oraddAfter can be used on an empty sequence to add the
first element.

The removeCurrent Method. The current element can be removed from a
sequence. The method for a removal has no parameters, but the precondition
requires that there is a current element; it is this current element that is removed,
as specified here:

o removeCurrent
public boolean removeCurrent()

Removes the current element from this sequence.

Precondition:
isCurrent() returnstrue. 3.7 | Before

Postcondition: 8.3 | the
The current element has been removed from this sequence. If thig w: 4.1 | removal
the final element of the sequence (with nothing after it), then after [the 3-1
removal there is no longer a current element; otherwise the new cyrre...
element is the one that used to be after the removed element.

. After 37
For example, supposzores is the four-element sequence shown at the top:gé 41

the box in the margin, and the highlighted 8.3 is the current element. Aftel agtioval | 31
vatingscores.removeCurrent(), the 8.3 has been deleted, and the 4.1 is how
the current element.

@ [o—

4~ 4]

—& @

%9 java03.frm Page 136 Saturday, August 26, 2000 5:53 PM

136 Chapter 3/ Collection Classes

3.1

The
skelter
seguence

3.7 |The
8.3 |helter
4.1 |sequence

49
9.3
25

The addA11 Method. The addA11 method is similar to the bag'sddAll
method. It allows us to place the contents of one sequence at the end of what we
already have. The method has this heading:

public void addA11(DoubleArraySeq addend)

As an example, suppose we create two sequences kelleer andskelter.
The sequences contain the elements shown in the box in the nhefigiar(has
four elements anskelter has three). We can then activate the method:

helter.addAl11(skelter);

After theaddA11 activation, thene1ter sequence will have seven elements: 3.7,
8.3,4.1, 3.1, 4.9, 9.3, 2.5 (its original four elements followed by the three ele-
ments ofskelter). The current element of tthe1ter sequence remains where

it was (at the number 8.3), and tflee1ter sequence still has its original three
elements.

The concatenation Method. The concatenation of two sequences is a new
sequence obtained by placing one sequence after the other. We will implement
concatenation with a static method that has the following two parameters:

public static DoubleArraySeq concatenation
(DoubTleArraySeq s1, DoubleArraySeq s2)

A concatenation is somewhat similar to the union of two bags. For example:

new DoubleArraySeq();
new DoubleArraySeq();

DoubleArraySeq partl
DoubleArraySeq part2

partl.addAfter(3.7);

partl.addAfter(9.5); . .
part2.addAfter(4.0); This computes the concatenation

’ of the two sequences, putting the
part2.addAfter(8.6); ‘(///Jesuﬁh7ath#dsequenca

DoubTleArraySeq total = DoubleArraySeq.concatenation(partl, part2);

After these statementsptal is the sequence consisting of 3.7, 9.5, 4.0, 8.6.
The new sequence computed dnncatenation has no current element. The
original sequencesgartl andpart2, are unchanged.

Notice the effect of having static method:concatenation is not activated
by any one sequence. Instead, the activation of

DoubleArraySeq.concatenation(partl, part2)

creates and returns a new sequence that includes the contentslofollowed
by the contents gfart2.

4~ 4

\

@ [o—

%9 java03.frm Page 137 Saturday, August 26, 2000 5:53 PM

*

Programming Project: The Sequence ADT37

The clone Method. As part of our specification, we require that a sequence
can be copied with alone method. The clone contains the same elements as
the original. If the original had a current element, then the clone has a current
element in the corresponding place. For example:

DoubTeArraySeq s = new DoubleArraySeq();
s.addAfter(4.2);

s.addAfter(1.5);

s.start();

IntArrayBag t = (DoubleArraySeq) s.clone();

At the point when the clone is made, the sequeritas two elements (4.2 and
1.5) and the current element is the 4.2. Therefokeill end up with the same

two elements (4.2 and 1.5) and its current element will be the number 4.2.
Subsequent changesdavill not affectt, nor vice versa.

Three Methods That Deal with Capacity. The sequence class has three meth-
ods for dealing with capacity—the same three methods that the bag has:

public int getCapacity()
public void ensureCapacity(int minimumCapacity)
public void trimToSize()

As with the bag, the purpose of these methods is to allow a programmer to
explicitly set the capacity of the collection. If a programmer does not explicitly
set the capacity, then the class will still work correctly, but some operations will
be less efficient because the capacity might be repeatedly increased.

The Sequence ADT—Documentation

The complete specification for this first version of our sequence class is
shown in Figure 3.10 on page 138. This specification is also available from the
DoubleArraySeq link at the web address

http://www.cs.colorado.edu/~main/docs/

When you read the specification, you'll see that the package name
is edu.colorado.collections. S0, you should create a subdirectory called
edu/colorado/collections for your implementation.

The specification also indicates some limitations—the same limitations that
we saw for the bag class. For exampleQ@ar0fMemoryError can occur in any
method that increases the capacity. Several of the methods thibWeaa1-
StateException to indicate that they have been illegally activated (with no cur-
rent element). Also, an attempt to move the capacity beyond the maximum
integer causes the class to fail by an arithmetic overflow.

After you've looked through the specifications, we’ll suggest a design that
uses three private instance variables.

@ [o—

4~ 4]

—& @

%9 java03.frm Page 138 Saturday, August 26, 2000 5:53 PM

138 Chapter 3/ Collection Classes

SIeIV|=NHIVM Specification for the DoubTeArraySeq Class

Class DoubleArraySeq

O public class DoubleArraySeq from the package edu.colorado.collections
A DoubleArraySeq keeps track of a sequence of double numbers. The sequence can have a
special “current element,” which is specified and accessed through four methods that are not
available in the bag classtart, getCurrent, advance andisCurrent).

Limitations:

(1) The capacity of a sequence can change after it's created, but the maximum capacity is
limited by the amount of free memory on the machine. The constraddafter, addBefore,
clone, andconcatenation will result in anoutOfMemoryError when free memory is
exhausted.

(2) A sequence’s capacity cannot exceed the largest integer 2,147,483,647
(Integer.MAX_VALUE). Any attempt to create a larger capacity results in failure due to an
arithmetic overflow.

Specification

o Constructor for the DoubleArraySeq
public DoubleArraySeq(int initialCapacity)
Initialize an empty sequence with a specified initial capacity. Note thatitihéter and
addBefore methods work efficiently (without needing more memory) until this capacity is
reached.

Postcondition:
This sequence is empty and has an initial capacity of 10.

Throws: outOfMemoryError
Indicates insufficient memory fofiew double[10].

o Second Constructor for the DoubleArraySeq
public DoubleArraySeq(int initialCapacity)
Initialize an empty sequence with a specified initial capacity. Note thatitihéter and
addBefore methods work efficiently (without needing more memory) until this capacity is
reached.

Parameters:

initialCapacity — the initial capacity of this sequence
Precondition:

initialCapacity iS non-negative.
Postcondition:

This sequence is empty and has the given initial capacity.

Throws: I11egalArgumentException
Indicates thainitialCapacity is negative.

Throws: outOfMemoryError

Indicates insufficient memory fofiew double[initialCapacity].
(continued)

4~ 4

\

%9 java03.frm Page 139 Saturday, August 26, 2000 5:53 PM

—& @

Programming Project: The Sequence ADTI39

(FIGURE 3.10 continued)

v addAfter and addBefore
public void addAfter(double element)
public void addBefore(double element)

Adds a new element to this sequence, either before or after the current element. If this new
element would take this sequence beyond its current capacity, then the capacity is increased
before adding the new element.

Parameters:
element — the new element that is being added

Postcondition:
A new copy of the element has been added to this sequence. If there was a current element,
thenaddAfter places the new element after the current elemenidasdfore places the
new element before the current element. If there was no current elementdhérer
places the new element at the end of this sequenceiéBtore places the new element at
the front of this sequence. In all cases, the new element becomes the new current element of
this sequence.

Throws: outOfMemoryError
Indicates insufficient memory to increase the size of this sequence.

Note:
An attempt to increase the capacity beyomekger.MAX_VALUE will cause this sequence to
fail with an arithmetic overflow.

o addAll
public void addA11(DoubleArraySeq addend)
Place the contents of another sequence at the end of this sequence.

Parameters:
addend — a sequence whose contents will be placed at the end of this sequence

Precondition:
The parametegddend, is not null.

Postcondition:
The elements froraddend have been placed at the end of this sequence. The current element
of this sequence remains where it was, andiidend is also unchanged.

Throws: Nul1PointerException
Indicates thatddend is null.

Throws: outOfMemoryError
Indicates insufficient memory to increase the capacity of this sequence.

Note:
An attempt to increase the capacity beyomekger.MAX_VALUE will cause this sequence to
fail with an arithmetic overflow.

(continued)

.

4~ 4

—&| @

%9 java03.frm Page 140 Saturday, August 26, 2000 5:53 PM

140 Chapter 3/ Collection Classes

(FIGURE 3.10 continued)

o advance
public void advance()
Move forward, so that the current element is now the next element in this sequence.

Precondition:
isCurrent() returnstrue.

Postcondition:
If the current element was already the end element of this sequence (with nothing after it),
then there is no longer any current element. Otherwise, the new element is the element
immediately after the original current element.

Throws: I11egalStateException
Indicates that there is no current elemengds@nce may not be called.

o clone
public Object clone()
Generate a copy of this sequence.

Returns:
The return value is a copy of this sequence. Subsequent changes to the copy will not affect
the original, nor vice versa. The return value must be typecasbthteArraySeq before
it is used.

Throws: outOfMemoryError
Indicates insufficient memory for creating the clone.

o concatenation
public static DoubleArraySeq concatenation
(DoubleArraySeq s1, DoubleArraySeq s2)
Create a new sequence that contains all the elements from one sequence followed by another.

Parameters:
s1 — the first of two sequences
s2 — the second of two sequences

Precondition:
Neithers1 norsz2 is null.
Returns:
a new sequence that has the elemenis @fllowed by the elements @b (with no current
element)
Throws: Nul1PointerException
Indicates that one of the arguments is null.

Throws: outOfMemoryError
Indicates insufficient memory for the new sequence.

Note:
An attempt to increase the capacity beyomrekger.MAX_VALUE will cause this sequence to
fail with an arithmetic overflow.
(continued)

4~ 4

\

%9 java03.frm Page 141 Saturday, August 26, 2000 5:53 PM

—&| @

Programming Project: The Sequence ADT41

(FIGURE 3.10 continued)

o ensureCapacity
public void ensureCapacity(int minimumCapacity)
Change the current capacity of this sequence.
Parameters:
minimumCapacity — the new capacity for this sequence
Postcondition:
This sequence’s capacity has been changed to ahieastimCapacity.
Throws: outOfMemoryError
Indicates insufficient memory fofiew double[minimumCapacity].

o getCapacity
pubTlic int getCapacity()
Accessor method to determine the current capacity of this sequenceidB&fore and
addAfter methods works efficiently (without needing more memory) until this capacity is
reached.
Returns:
the current capacity of this sequence

o getCurrent
public double getCurrent()
Accessor method to determine the current element of this sequence.
Precondition:
isCurrent() returnstrue.
Returns:
the current element of this sequence

Throws: I11egalStateException
Indicates that there is no current element.

o isCurrent
public boolean isCurrent()
Accessor method to determine whether this sequence has a specified current element that can
be retrieved with thgetCurrent method.
Returns:
true (there is a current element) ft1se (there is no current element at the moment)

o removeCurrent

public void removeCurrent()

Remove the current element from this sequence.

Precondition:
isCurrent() returnstrue.

Postcondition:
The current element has been removed from this sequence, and the following element (if
there is one) is now the new current element. If there was no following element, then there
iS now no current element.

Throws: I11egalStateException
Indicates that there is no current elementesveCurrent may not be called. (continued)

4~ 4

.

*

%9 java03.frm Page 142 Saturday, August 26, 2000 5:53 PM

142 Chapter 3/ Collection Classes

(FIGURE 3.10 continued)

0 size
public int size()
Accessor method to determine the number of elements in this sequence.

Returns:
the number of elements in this sequence

o start
public void start()
Set the current element at the front of this sequence.

Postcondition:
The front element of this sequence is now the current element (but if this sequence has no
elements at all, then there is no current element).

o trimToSize
pubTlic void trimToSize()
Reduce the current capacity of this sequence to its actual size (i.e., the number of elements it
contains).

Postcondition:
This sequence’s capacity has been changed to its current size.

Throws: OutOfMemoryError
Indicates insufficient memory for altering the capacity.

The Sequence ADT—Design

Our suggested design for the sequence ADT has three private instance variables.
The first variablegata, is an array that stores the elements of the sequence. Just
like the bag,data is a partially filled array, and a second instance variable,
called manyItems, keeps track of how much of theata array is currently

being used. Therefore, the used part of the array extendsdieoaio] to
data[manyItems-1]. The third instance variableurrentIndex, gives the

index of the current element in the array (if there is one). Sometimes a sequence
has no current element, in which casarentIndex will be set to the same
number asmanyItems (since this is larger than any valid index). The complete
invariant of our ADT is stated as three rules:

1. The number of elements in the sequence is stored in the instance variable
manyIltems.

2. For an empty sequence (with no elements), we do not care what is stored
in any ofdata; for a nonempty sequence, the elements of the sequence
are stored from the front to the enddinta[0] to data[manyItems-1],
and we don't care what is stored in the restaaf.

3. If there is a current element, then it lieslana[currentIndex]; if there
is no current element, thearrentIndex equalsnanyItems.

4~ 4

\

—&| @

%9 java03.frm Page 143 Saturday, August 26, 2000 5:53 PM

Programming Project: The Sequence ADTI43

As an example, suppose that a sequence contains four numbers, with the current
element atlata[2]. The instance variables of the object might appear as shown
here:

data

3 1.4 6 9 -..

ol (11 [2] ([31 [4] I[5]

currentIndex

manyItems

2 4

In this example, the current element isdata[2], so thegetCurrent()
method would return the number 6. At this point, if we cadldeance(), then
currentIndex would increase to 3, an@tCurrent () would then return the 9.

Normally, a sequence has a current element, and the instance variable
currentIndex contains the location of that current element. But if there is no
current element, thecurrentIndex contains the same valuemasyItems. In
the above example, durrentIndex was 4, then that would indicate that there
is no current element. Notice that this value (4) is beyond the used part of the
array (which stretches frodata[0] to data[3]).

The stated requirements for the instance variables form the invariant ofirtvegiant of the
sequence ADT. You should place this invariant at the top of your implementatior
file (DoubleArraySeq.java). We will leave most of this implementation file up
to you, but we will offer some hints and a bit of pseudocode.

The Sequence ADT—Pseudocode for the Implementation

The removeCurrent Method. This method removes the current element from
the sequence. First check that the precondition is validi@@arent()). Then
remove the current element by shifting each of the subsequent elements leftward
one position. For example, suppose we are removing the current element from
the sequence drawn here:

data

3 1.4| 6 9 1.1 IIII!E..

(ol (11 [2]1 (31 [4] [5]

manyItems

1
currentIndex >

What is the current element in this picture? It is the 1.4, gimceentIndex is
1 anddata[1] contains 1.4.

.
4~ ~s

%9 java03.frm Page 144 Saturday, August 26, 2000 5:53 PM

—&| @

144 Chapter 3 / Collection Classes

In the case of the bag, we could remove an element such as 1.4 by copying the
final element (1.1) onto the 1.4. But this approach won't work fosdogience
because the elements would lose their sequence order. Instead, each element after
the 1.4 must be moved leftward one position. The 6 moves dearan[2] to
data[1l]; the 9 moves fromdata[3] todata[2]; the 1.1 moves fromata[4]
todata[3]. This is a lot of movement, but a small for-loop suffices to carry out
all the work. This is the pseudocode:

for (i = the index after the current element < manyItems; i++)
Move an element frordata[i] back todata[i-1];

When the loop completes, you should redueeyItems by one. The final
result for our example is:

data

3 6 9 1.1-..

(ol (1] [2] ([31 [4]1 [5]

currentIndex

manyItems

1 4

After the removal, the value iburrentIndex is unchanged. In effect, this
means that the element that was just after the removed element is now the cur-
rent element. You must check that the method works correctly for boundary val-
ues—removing the first element and removing the end element. In fact, both
these cases work fine. When the end element is remowedentIndex will

end up with the same value menyItems, indicating that there is no longer a
current element.

The addBefore Method. If there is a current element, theddBefore must
take care to put the new element just before the current position. Elements that
are already at or after the current position must be shifted rightward to make
room for the new element. We suggest that you start by shifting elements at the
end of the array rightward one position each until you reach the position for the
new element.

For example, suppose you are putting 1.4 at the loektiat{ 1] in the following
sequence:

data

3 6 9 1.1-'.

(o] (11 [2]1 ([3]1 [4] [5]

manyItems

1 4

currentIndex

@ [o—

4~ 4]

%9 java03.frm Page 145 Saturday, August 26, 2000 5:53 PM

i

Programming Project: The Sequence ADT45

You would begin by shifting the 1.1 rightward fratata[3] to data[4]; then
move the 9 fromdata[2] to data[3]; then the 6 moves fromata[1] right-
ward todata[2]. At this point, the array looks like this:

data

3 6 9 1.1 IIIIt:..

ol (11 [2]1 ([3]1 [4] [5]

Of coursedata[1] actually still contains a 6 since we just copied the 6 from
data[1] todata[2]. But we have drawdata[1] as an empty box to indicate
thatdata[1] is now available to hold the new element (the 1.4 that we are put-
ing in the sequence). At this point we can place the 1d4ta[1] and add one

to manyItems, as shown here:

data

3 1.4| 6 9 1.1 IIIII::..

ol (11 [2]1 (31 [4] [5]

manyItems

1 5

currentIndex

The pseudocode for shifting the elements rightward uses a for-loop. Each iter-
ation of the loop shifts one element, as shown here:

for (i = manyItems; data[i] is the wrong spot fogTement ; i--)
datal[i] = data[i-1];

The key to the loop is the tedata[1i] is the wrong spot foglement . How do

we test whether a position is the wrong spot for the new element? A position is
wrong if (i > currentIndex). Can you now write the entire method in Java?
(See the solution to Self-Test Exercise 15, and don't forget to handle the special
case when there is no current element.)

Other Methods. The other sequence methods are straightforward; for exam-
ple, theaddAfter method is similar taddBefore. Some additional useful meth-

ods are described in Programming Project 4 on page 168. You'll also need to be
careful that you don’t mindlessly copy the implementation of a bag method. For
example, theoncatenation method is similar to the bagi®ion method, but

there is one extra step that concatenation must take (itwsatentIndex to
manyItems).

@ [o—

4~ 4]

4‘9 java03.frm Page 146 Saturday, August 26, 2000 5:53 PM

—& @

146 Chapter 3/ Collection Classes

Self-Test Exercises

15. Write the sequencedsldBefore method.

16. Suppose that a sequence has 24 elements, and there is no current ele-
ment. According to the invariant of the ADT, whatig rentIndex?

17. Suppose is a sequence with 10 elements and you activateart() and
then activate g.advance() three times. What value is then in
g.currentIndex?

18. What are good boundary values to testth@veCurrent method?

19. Write a demonstration program that asks the user for a list of family
member ages, then prints the list in the same order that it was given.

20. Write a new method to remove a specified element from a sequence. The
method has one parameter (the element to remove).

21. For a sequence of numbers, suppose that you insert 1, then 2, then 3, and
S0 on up tn. What is the big® time analysis for the combined time of
inserting alln numbers withaddAfter? How does the analysis change if
you insertn first, thenn-1, and so on down to 1—always usiudH-

Before instead ohddAfter?

22. Which of the ADTs—the bag or the sequenceeustbe implemented
by storing the elements in an array? (Hint: We are not beyond asking a
trick question.)

3.4 APPLETS FOR INTERACTIVE TESTING

When you implement a new class, it's useful to have a small interactive test pro-
gram to help you test the class methods. Such a program can be written as a Java
applet, which is a Java program written in a special format to have a graphical
user interface. The graphical user interface is also called a GUI (pronounced
“gooey”), and it allows a user to interact with a program by clicking the mouse,
typing information into boxes, and performing other familiar actions. With a
Java applet, GUIs are easy to create even if you've never run into such goo
before.

This section shows a pattern for developing such applets. To illustrate the pat-
tern, we’ll implement an applet that lets you test three of the bag’'s methods
(size, add, andcountOccurrences). When the bag applet starts, a GUI is cre-
ated, similar to the drawing in Figure 3.11(a).

By the way, the word “applet” means a particular kind of Java program, so you
might show Figure 3.11 to your boss and say, “My applet created this nice GUL.”
But you can also use the word “applet” to talk about the GUI itself, such as “The
applet in Figure 3.11(a) has three buttons in its middle section.” And in fact,
there are three buttons in that applet—the rectangles labieled), add(), and
countOccurrences().

@ [o—

4~ 4]

2
&

é% java03.frm Page 147 Saturday, August 26, 2000 5:53 PM

Applets for Interactive Testing147

S(CIUIICRN Two Views of the Applet to Test the IntArrayBag Class

(a) When the applet
first opens, the applet
has the components
shown here.

(b) The user interacts
with the applet by
typing information and
clicking on the buttons
with the mouse. In this
example, the user has
typed 42 into the add
text field, and then
clicked the add button.
The applet responds
with a message “42
has been added to the
bag,” written in the
text area at the bottom
of the applet.

Eﬁﬁpplet Viewer: BagApplet.class

This test program has created a bag. [s

Press huttons to activate the bag's methods.

gizel)

add() ||
countOcecurrences() ”

| am ready foryour first action.

Applet started.

Eﬁﬁpplet Viewer: BagApplet.class

This test program has created a bag.

Press huttons to activate the bag's methods.

gizel)

addiy] [42
cuuntOccurrenJ&() ”

| am ready foryour first action.
42 has been added to the hag.

Applet started.

%9 java03.frm Page 148 Saturday, August 26, 2000 5:53 PM

—& @

148 Chapter 3/ Collection Classes

The appletin Figure 3.11 is intended to be used by the programmer who wrote
theIntArrayBag class, to check interactively that the class is working correctly.
When the applet starts, two sentences appear at thaiop:test program has
created a bag. Press buttons to activate the bag’s methods.” Above these
sentences are some extra items, shown here;

B3 Applet Viewer: BagApplet.class Hi=1E3

Anplet
This test program has created a bag.

Fress huttons to activate the bag's methods.

The display above our sentences is created automatically by the applet display
mechanism. The exact form of this display varies from one system to another,
but the dark bar across the top generally contains controls suchi®s the in the
top right corner. Clicking on th#& with the mouse closes the applet on this
particular system.

A series of buttons appears in the middle part of the applet, like this:

size() |
add() I
countOccurrences) ||

To test the bag, the user clicks on the various buttons. For example, the user can
click onsizefy) and a new message will appear in the large text area at the bottom

of the applet. The message will tell the current size of the bag, as obtained by

activating thesize () method. If you click on this button right at the start, you'll

get the messagé@tie bag’s size is 0.”

The user can also activatéd or countOccurrences, but these methods each
need an argument. For example, to add the number 42 to the bag, the user types
the number 42 in the white box next to #uel button, then click add{y . The
result of adding 42 is shown in Figure 3.11(b). After elements have been added, the
user can testountOccurrences. For example, to count the occurrences of the
number 10, the user types 10 in the box byth@tOccurrences button and then
clicks eauntdccurrences() . The applet activatesuntOccurrences(10) and prints
the method’s return value in the large text area at the bottom.

Anyway, that's the behavior that we want. Let’s look at an outline of the Java
programming technigues to produce such behavior, as shown in Figure 3.12.

.
4~ ~s

%9 java03.frm Page 149 Saturday, August 26, 2000 5:53 PM

i

Applets for Interactive Testing149

Se]UIx{=cHal Outline for the Interactive Applet to Test the IntArrayBag class

Java Applet Outline

// FILE: BagApplet.java

1. Import statements. These statements import the class that is being tested

and also the Java classes that are needed by the applet. For this applet, e must
import theIntArrayBag class:

import edu.colorado.collections.IntArrayBag;
Most applets will also have these three import statements:

import java.applet.Applet; // Provides the Applet class.
import java.awt.*; // Provides Button class, etc.
import java.awt.event.¥; // Provides ActionEvent, ActionListener.

’ public class BagApplet extends Applet
{
// Declare an IntArrayBag object for the Applet to manipulate:
2. The class IntArrayBag b = new IntArrayBag();
definition.

3. Declarations of the applet’s components.These are the

declarations of buttons, text areas, and other GUI components that
appear in the applet.

public void init()

{]
}

4. Thedinit method.

5. Implementations of the action listeners. This code tells the
applet what to do when each of the buttons is pressed.

6. Implementations of other methods. These are methods thaJt
are activated from withinn1it to carry out various subtasks.

@ [o—

%9 java03.frm Page 150 Saturday, August 26, 2000 5:53 PM

—& @

150 Chapter 3/ Collection Classes

Six Parts of a Simple Interactive Applet

Figure 3.12 on page 149 shows an outline for the Java code of the applet that
tests thelntArrayBag. The same outline can be used for an applet that interac-
tively tests any class. The code has six parts, which we’ll discuss now.

1. Import statements. As with any Java program, we begin with a collection
of import statements to tell the compiler about the other classes that we’ll be
using. In the case of the bag applet, we imporfLthérrayBag class (using the
statemenimport edu.colorado.collections.IntArrayBag;). Mostapplets
also have these three import statements:

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

abstract The first import statement provides a class caligdl et, which we’ll use in a
windowing moment. The other two import statements provide items fromalistract
toolkit windowing toolkit (the “AWT”), which is a collection of classes for drawing

buttons and other GUI items.

2. The class definition. After the import statements, we define a class, much
like any other Java class. This class definition begins with the line:

public class IntArrayBag Applet extends Applet

inheritance: the The definition continues down to the last closing bracket of the file. The class
BagApplet gets for the bag applet is call@&dgApplet, which is certainly a good name, but what
a bunch of does ‘xtends Applet” mean? It means that tiBagApplet class will not be
?;thggfe';rggss written entirely by us. Instead, the class begins by already having all the non-
private methods of another class calkeglet. We imported th@pplet class
from java.applet.Applet, and it is provided as part of the Java language so
that a class such @&agApplet does not have to start from scratch. The act of
obtaining methods from another class is cailidaritance. The class that pro-
vides these methods (such asApglet class) is called thsuperclass and the
new class (such @agApplet) is called theextended classChapter 13 studies
inheritance in detail, but for now all you need to know is thaBtgpplet
obtains a bunch of methods from theplet class without having to do any-
thing more thanéxtends Applet.”
At the top of the class we define amtArrayBag instance variable:

IntArrayBag b = new IntArrayBag();

This bagb, will be manipulated when the user clicks on the applet’s buttons. In
general, an interactive test applet will have one or more objects declared here,
and these objects are manipulated by clicking the applet’s buttons.

.
4~ ~s

%9 java03.frm Page 151 Saturday, August 26, 2000 5:53 PM

*

Applets for Interactive Testing151

3. Declarations of the applet's components An applet’s components are the
buttons and other items that are displayed when the applet runs. These compo-
nents are declared as instance variables of the class. Our bag applet has several
kinds of components: buttons (suchl siza(}), text fields (which are the white
rectangles next to some of the buttons), and a text area (which is the large rectan-
gle in the bottom third of the applet). In all, there are six important components

in the bag applet, represented by these six instance variables:

Button sizeButton = new Button("size()");

Button addButton = new Button("add()");

TextField elementText = new TextField(10);

Button countOccurrencesButton = new Button("countOccurrences()");
TextField targetText = new TextField(10);

TextArea feedback = new TextArea(7, 60);

All the instance variables are declared near the top of the class definition, before
any of the method definitions. They cannot have the usual private access
because they'll be accessed from other classes that we’ll see shortly. But before
that, let's look at the three kinds of components: button, text field, and text area.
A button is a grey rectangle with a label. When a button is created, the dwutton
structor is given a string that is printed in the middle of the button. For example,
this declaration creates a button cakédeButton, and the label on the button
is the string $ize()"

Button sizeButton = new Button(“size()”);

The bag applet has threetton objects:sizeButton, addButton, andcount-
OccurrencesButton.

A text field is a white rectangle that can display one line of text. A text fielekt field
is set up so that the program’s user can click on the field and type information,
and the applet can then read that information. Our applet has two text fields, one
next to theadd button and one next to theuntOccurrences button. The
TextField class has a constructor with one argument—an integer that specifies
approximately how many characters can fit in the text field. For example, one of
our text fields is declared as:

TextField elementText = new TextField(10);

TheelementText text field can hold about 10 characters. The user can actually
type beyond 10 characters, but only 10 characters of a long string will be dis-
played. We plan to displayiementText right beside thadd button, like this:

To test theadd method, the user will type a number in the text field and click on
the add button.

.
4~ ~s

%9 java03.frm Page 152 Saturday, August 26, 2000 5:53 PM

—& @

152 Chapter 3/ Collection Classes

text area A text areais like a text field with more than one line. Its constructor has two
arguments that specify the number of rows and columns of text to display. Our
bag applet has one text area, declared like this:

TextArea feedback = new TextArea(7, 60);

This large text area appears at the bottom of the applet. The intention is to use
the text area to display messages to the user.

The declarations we have seen created the three kinds of components:
Button, TextField, andTextArea. All three classes are part of theva.awt
package that is imported by our applet. When we declare a button (or other com-
ponent) and create it with the constructor, it does not immediately appear in the
GUI. How do the objects get placed in the GUI? Also, how does the applet know
what to do when the user clicks on a button or takes some other action? The
answers to these two questions lie in a special applet method-csiliedvhich
we’ll discuss next.

4. Theinit method. A Java application program has a special static method
calledmain. A Java applet does not hawgin. Instead, an applet has a special
nonstatic method callethit. When an applet runs, the runtime system creates
an object of the applet class, and activates () for that object. There are sev-
eral other applet methods that the runtime system also activates at various times,
but an interactive test program needs amlyt.

Ourinit method carries out four kinds of actions:

A. The add method.We can add one of the interactive components to the
GUIL. This is done with an applet method caléeld. The method has one
argument, which is the component that is being added to the GUI. For
example, one of our buttons isizeButton, SO we can write the

statement:
the applet’s add add(sizeButton);
method As components are added, the GUI fills up from left to right. If there is no

room for a component on the current line, then the GUI moves down and
starts a new row of components. Later you can learn more sophisticated
ways of laying out the components of a GUI, but the simple left-to-right
method used by an applet is a good starting point.

B. Displaying messagesWe can display messages in the GUI. Each mes-
sage is a fixed string that provides some information to the user. Each of
these messages i abel object (from the packaggava.awt). To create
and display a message, we activate, with a newly createtlabel as the
argument. For example:

add(new Label("This test program has created a bag"));

printing a The Label constructor has one argument, which is the string that you
message in the want to display. The add method will put the message in the next available
GUI spot of the GUI.

.
4~ ~s

—& @

%9 java03.frm Page 153 Saturday, August 26, 2000 5:53 PM

Applets for Interactive Testing153

C. New lines and horizontal lines.If our applet class has other methods

(besidesinit), then we can activate these other methods. For example,
we plan to have two other methods in Iih@ArrayBag class:
void addNewLine(); addNewlLine

void addHorizontalLine(Color c); addHorizontalLine

TheaddNewLine method forces the GUI to start a new line, even if there’s
room for more components on the current line. The second method,
addHorizontallLine, draws a horizontal line in the specified color. We'll
have to define these two methods as paRaghpplet.Java, but they
won't be difficult. (The data typ€olor is part ofjava.lang. It includes
Color.blue and twelve other colors plus the ability to define your own
colors.)

. Activate methods of the componentsThe buttons and other compo-

nents have methods that can be activated. For example, one of the meth-
ods of aTextArea is calledappend. The method has one argument,
which is a string, and this string is appended to the end of what's already
in the text field. One of the statements in éait method will activate
append in this way:

feedback.append(“I am ready for your first action.\n”); append

This causes the messagedm ready for your first action.” to be
written in thefeedback text field (with a newline charactgs at the end
of the message).

The most important method for buttons involves a new kind of objection listener
called an action listener. An action listener is object that an applbects
programmer creates to describe the action that should be taken when
certain events occur. Our bag applet will have a different kind of action
listener for each of the three buttons:

Kind of Action Listener Purpose

Sizelistener Describes the actions to be taken when
sizeButton is clicked.

AddListener Describes the actions to be taken when
addButton is clicked.

CountOccurrenceslListener Describes the actions to be taken when
countOccurrencesButton is clicked.

Each kind of action listener is actually a new class that we’ll define in a
moment. But the only thing you need to know for thét method is how
to connect an action listener toBatton. The solution is to activate a

ﬁ%

\

@ [o—

%9 java03.frm Page 154 Saturday, August 26, 2000 5:53 PM

—& @

154 Chapter 3/ Collection Classes

method calledaddActionListener for eachButton. For example, to
connectsizeButton to its action listener, we place this statement in the
init method:

sizeButton.addActionListener(new SizelListener());

Notice thataddActionListener is a method of thButton class, and its one
argument is a newizelistener object. Of course, we still need to implement
the SizelListener class, as well as the other two action listener classes. But
first, let's summarize all the pieces that are part ofithiec method for the
BagApplet. Within init, we expect to activate these methods to carry our
work:

e add—anApplet method to add the buttons and other components to the
display

* addNewlLine andaddHorizontallLine—two methods that we will write
for theBagApplet

e feedback.append—a method of th@extField to place the message “I
am ready for your first action” ifieedback (aTextField object)

¢ addActionListener—a method that will be called once for each of the
three buttons

The completeinit implementation is shown in Figure 3.13 on page 156.
We've used just one method that we haven't yet mentioned. That one method
(setEditable) is summarized in Figure 3.14 on page 157 along with the other
applet-oriented methods that we have used or plan to use.

5. Implementations of the action listeners. The next step of the applet imple-
mentation is to design and implement three action listener classes—one for each
of our three buttons. The purpose of an action listener is to describe the actions
that are carried out when a button is pushed.

Here's the Java syntax for defining an action listener class—the blank line is
filled in with your choice of a name for the action listener class.

class implements ActionlListener

void actionPerformed(ActionEvent event)

{

}
}

The phraseimplements ActionListener” informs the Java compiler that the
class will have a certain method that is specified imtit@onListener inter-

face that is part ofjava.awt.*. The method, calledctionPerformed, is
shown with “...” to indicate its body. ThectionPerformed method will be
executed when an action occurs in the action listener's component, such as

.

4~ 4

%9 java03.frm Page 155 Saturday, August 26, 2000 5:53 PM

*

Applets for Interactive Testing155

clicking a button. For example, here is the complete definition of the action lis-
tener that handles the clicking of { sizey| button of our test applet:

class SizelListener implements ActionListener an action
listener for
void actionPerformed(ActionEvent event) sizeButton

feedback.append("The bag has size " + b.size() + ".\n");

}
}

This declares a class callgtkzeListener, which includes its owactionPer-
formed method. For most classes, the class definition would go in a separate file
calledSizeListener.java. But a separate file is undesirable here because the
actionPerformed method needs access to two instance variables: thedral)

the text areafeedback. The necessary access can be provided by placing the
entireSizelListener definition within theBagApplet. This is an example of an
inner class,where the definition of one class is placed inside of another. An
inner class has two key properties:

» The larger class that encloses an inner class may use the inner class; but
the inner class may not be used elsewhere.

* The inner class may access nonprivate instance variables and methods of
the larger class. Some Java implementations also permit an inner class to
access private instance variables of the larger class. But other implemen-
tations forbid private access from an inner class. (Java implementations
that are built into web browsers are particularly apt to forbid the private
access.)

So, by makingizeListener an inner class, thectionPerformed method can
activatefeedback.append to print a message in tifeedback component of
the applet. The message itself includes an activation xifze (), so an entire
message is something likeHe bag has size 42.”

The actionPerformed Method

The SizeListener class is an inner class, declared within
BagApplet. Therefore, its actionPerformed method has
access to the instance variables of the BagApplet.

By the way, theactionPerformed method has a parameter callegnt. For
more complex actions, thevent can provide more information about exactly
which kind of action triggered thectionPerformed method.

(Text continues on page 158)

@ [o—

4~ 4]

%9 java03.frm Page 156 Saturday, August 26, 2000 5:53 PM

*

156 Chapter 3/ Collection Classes

FIGURE 3.13 Implementation of the BagApplet’s init Method

Implementation

public void init()

{
// Some messages for the top of the Applet:
add(new Label("This test program has created a bag."));
add(new Label("Press buttons to activate the bag's methods."));
addHorizontalLine(Color.blue);
// The Button for testing the size method:
add(sizeButton);
addNewLine();
// The Button and TextField for testing the add method:
add(addButton);
add(elementText) ;
addNewLine();
// The Button and TextField for testing the countOccurrences method:
add(countOccurrencesButton);
add(targetText);
addNewLine();
// A TextArea at the bottom to write messages:
addHorizontalLine(Color.blue);
addNewLine();
feedback.setEditable(false);
feedback.append("I am ready for your first action.\n");
add(feedback);
// Tell the Buttons what they should do when they are clicked:
sizeButton.addActionListener(new SizelListener());
addButton.addActionListener(new AddListener());
countOccurrencesButton.addActionListener(new CountOccurrencesListener());
}

i

%9 java03.frm Page 157 Saturday, August 26, 2000 5:53 PM

Applets for Interactive Testing157

SICIUI ST Guide to Building an Applet for Interactive Testing

Methods to Call from an Applet or from a Class That Extends an Applet

add (component) The component may be any of Java’s AWT
components such as Button, TextArea, or Text-
Field. As components are added, the applet fills
up from left to right. If there is no room for
a component on the current line, then the
applet moves down and starts a new row of

components.
addNewLine() These are not actually Applet methods—you’ll
addHorizontalLine(Color c) need to define them if you want to use them

(see page 160).

Constructors for Three Useful Applet Components

Button(String label) Creates a button with a given label.

TextField(int size) Creates a white box for the user to type infor-
mation. The size is the number of characters.

TextArea(int rows, int columns) Creates a box with the given number of rows
and columns—often for displaying information
to the user.

Six Useful Methods for a Component

b.setActionListener We use b.setActionListener for a Button b. The
(ActionListener act) ActionlListener, act, describes the actions to
take when the Button b is pressed. See

page 154 for information on how to create an

ActionListener.
t.append(String message) We use t.append for a TextArea t. The specified
message is added to the end of the TextArea.
t.getText() We use t.getText for a TextField t. The method

returns a copy of the String that the user has
typed in the field.

t.setEditable(boolean editable) The component t can be a TextArea or a Text-
Field. The boolean parameter tells whether you
want the user to be able to type text into the

component.

t.requestFocus() We use these methods with a TextField. The

t.selectA11() requestFocus method causes the mouse to go
to the field, and selectAll causes all text to be
highlighted.

c.setSize(int width, int height) This method may be used with any component

c. The component’s width and height are set to
the given values in pixels.

ﬁ%

e

\

@ [o—

—& @

%9 java03.frm Page 158 Saturday, August 26, 2000 5:53 PM

158 Chapter 3/ Collection Classes

registering an
ActionListener

Once an action listener is created, it must be registered with its particular but-
ton. The registration is made in theit method. Our applet had these three
statements to register the threaionListener objects:

sizeButton.addActionListener(new SizelListener());
addButton.addActionListener(new AddListener());
countOccurrencesButton.addActionlListener

(new CountOccurrencesListener());

For example, the first of these statements creates at¥Wistener and reg-
isters it with the buttosizeButton.

Let's look at the second action listener class for our apidet:istener.
This action listener handles the actionadifButton, which is shown here along
with theTextField that's right beside it in the applet:

What actions should occur when the user clickati@utton? The text should

be read from th&extField. This text is aString, such as “42", but it can

be converted to its value as an integer by using the Java method
Integer.parseInt. The methodInteger.parseInt has one argument (a
String which should contain an integer value), and the return value isthe
value of theString. Once we know the value of the integer provided by the
user, we can add it to the bla@nd print an appropriate message in the applet's
feedback area. Following these ideas, we have this first try at implementing
AddListener:

class AddListener implements ActionListener

{
void actionPerformed(ActionEvent event)
{
String userInput = elementText.getText();
int element = Integer.parseInt(userInput);
b.add(element);
feedback.append(element + " has been added to the bag.\n");
}
}

The actionPerformed method defined here uses three of the applet’s instance
variables: (1)elementText, which is theTextField where the user typed a
number; (2) the bap, where the new element is added; and (3)rtheArea
feedback, where a message is printed providing feedback to the user.

The method works fine, though a problem arises if the user forgets to type a
number in theTextField before clicking the button. In this caseNumber-
FormatException will occur whenlInteger.parselnt tries to convert the
user’s string to an integer.

4~ 4

\

—&| @

%9 java03.frm Page 159 Saturday, August 26, 2000 5:53 PM

Applets for Interactive Testing159

The best solution to this problem is to “catch” the exception when it occaegghing the
rather than allowing the exception to stop the applet. The syntax for catchipngsaible

NumberFormatException looks like this: exception
try
{
. ..code that might throw a NumberFormatException. . .
}
catch (NumberFormatException e)
{
...code to execute if the NumberFormatException happens. . .
}

The wordstry andcatch are Java keywords for handling exceptions. The full
power oftry andcatch are described in Appendix C. For our purposes, we'll fol-
low the preceding pattern to write a better versioaddt istener:

class AddListener = implements ActionListener an action
{ listener for
void actionPerformed(ActionEvent event) addButton
{
try
{

String userInput = elementText.getText();
int element = Integer.parseInt(userInput);
b.add(element);
feedback.append
(element + " has been added to the bag.\n");

}

catch (NumberFormatException e)

{
feedback.append

("Type an 1integer before clicking button.\n");

elementText.requestFocus();
elementText.selectAl1();

}

}

If a NumberFormatException occurs, then the code in thetch block is exe-

cuted. This code prints a message in the feedback area of the applet, then acti-
vates two methods farTementText (which is theTextField where the user

was supposed to type a number):

elementText.requestFocus();
elementText.selectAl1();

@ [o—

*

%9 java03.frm Page 160 Saturday, August 26, 2000 5:53 PM

160 Chapter 3/ Collection Classes

requestFocus
and selectAll

implementation
of
addHorizontalLine

implementation
of addNewLine

The requestFocus method causes the mouse cursor to jump intoréxe-
Field, and theselectA11 method causes any text in the field to be highlighted.
So now, if the user forgets to type a number, the applet will print a nice error
message and provide a second chance.

Our applet needs one more action listener forth@tOccurrences button.
That implementation is part of Figure 3.2 on page 112.

6. Implementations of other methods. Our applet has two other methods that
we’'ve mentioned: (13ddHorizontalLine, which draws a horizontal line in a
specified color; and (2)ddNewLine, which causes a new line to start in the GUI,
even if there's room for more components on the current line.

Our addHorizontalLine doesn't really draw a line. Instead, it adds a com-
ponent called @anvas to the applet. Aanvas is another applet component, like
aButton, primarily used for drawing graphical images. The size of#heas
can be set ipixels, which are the individual dots on a computer screen. Today’s
typical screens have about 100 pixels per inch,Gamaas that is only one pixel
high looks like a horizontal line. Here’s our implementation:

private void addHorizontalLine(Color c)
{
// Add a Canvas 10000 pixels wide but
// only 1 pixel high, which acts as
// a horizontal line.
Canvas 1line = new Canvas();
Tine.setSize (10000, 1);
Tine.setBackground(c);
add(1ine);

Notice that the Canvas is 10,000 pixels wide, which is wide enough to span even
the largest applet—at least on today’s computer screens.

Our last methodaddNewL1ine, works by callingaddHorizontalLine with
the color set to the background color of the applet. In effect, we are drawing a
horizontal line, but it is invisible since it’s the same color as the applet’s back-
ground.

The implementation afddNewL i ne is given in Figure 3.15 as part of the com-
plete applet. Look through the implementation with an eye toward how it can be
expanded to test all of the bag’s methods or to test a different class such as the
DoubleArraySeq class.

@ [o—

%9 java03.frm Page 161 Saturday, August 26, 2000 5:53 PM

i

Applets for Interactive Testing161

FIGURE 3.15 Complete Implementation of the BagApplet

Java Applet Implementation

// File: BagApplet.java
// This applet is a small example to illustrate how to write an interactive applet that
// tests the methods of another class. This first version tests three of the IntArrayBag methodes.

import edu.colorado.collections.IntArrayBag;

import java.applet.Applet;

import java.awt.*; // Imports Button, Canvas, TextArea, TextField
import java.awt.event.*; // Imports ActionEvent, ActionListener

public class BagApplet extends Applet

{
// An IntArrayBag for this applet to manipulate:
IntArrayBag b = new IntArrayBag();

// These are the interactive components that will appear in the applet.

// We declare one Button for each IntArrayBag method that we want to be able to
// test. If the method has an argument, then there is also a TextField

// Where the user can enter the value of the argument.

// At the bottom, there is a TextArea to write messages.

Button sizeButton = new Button("size()");

Button addButton new Button("add()");

TextField elementText = new TextField(10);

Button countOccurrencesButton = new Button("countOccurrences()");
TextField targetText = new TextField(10);

TextArea feedback = new TextArea(7, 60);

public void init()

|| See the implementation in Figure 3.13 on page 156.

class SizelListener implements ActionlListener

{
public void actionPerformed(ActionEvent event)
{
feedback.append("The bag has size " + b.size() + ".\n");
}
} (continued)

@ [o—

%9 java03.frm Page 162 Saturday, August 26, 2000 5:53 PM

—&| @

162 Chapter 3/ Collection Classes

(FIGURE 3.15 continued)

class AddListener implements ActionlListener

{
public void actionPerformed(ActionEvent event)
{
try
{
String userInput = elementText.getText();
int element = Integer.parseInt(userInput);
b.add(element);
feedback.append(element + " has been added to the bag.\n");
}
catch (NumberFormatException e)
{
feedback.append("Type an integer before clicking button.\n”);
elementText.requestFocus();
elementText.selectA11();
}
}
3
class CountOccurrenceslListener implements ActionListener
{
public void actionPerformed(ActionEvent event)
{
try
{
String userInput = targetText.getText();
int target = Integer.parseInt(userInput);
feedback.append(target + " occurs ");
feedback.append(b.countOccurrences(target) + “times.\n”);
}
catch (NumberFormatException e)
{
feedback.append("Type a target before clicking button.\n");
targetText.requestFocus();
targetText.selectAl1();
}
}
}

(continued)

%9 java03.frm Page 163 Saturday, August 26, 2000 5:53 PM

i

Applets for Interactive Testing163

(FIGURE 3.15 continued)

private void addHorizontalLine(Color c)

{
// Add a Canvas 10000 pixels wide but only 1 pixel high, which acts as
// a horizontal line to separate one group of components from the next.
Canvas Tine = new Canvas();
Tine.setSize(10000,1);
Tine.setBackground(c);
add(1line);

}

private void addNewLine()

{
// Add a horizontal line in the background color. The line itself is
// invisible, but it serves to force the next component onto a new line.
addHorizontalLine(getBackground());

How to Compile and Run an Applet

An applet can be compiled just like any other Java program. For example, using
the Java Development Kit we can comg@itgApplet.java with the command
line:

javac BagApplet.java

You may have some other way of compiling Java programs in your development
environment, but the result will be the same. The act of compiling produces the
file BagApplet.class. The compilation will probably produce three other files
with names such a@agApplet$SizelListener.class. These are the compiled
versions of the inner classes.

Applets were actually created to run as part of a page that you view overglets were
Internet with a web browser. These pages are chtietlpages which stands created to be
for “hyper-text markup language.” So, to run BmApplet, we need a small viewed over the
html file. The file, calledagApplet.html, should be created by you in the sam&ternet
directory aagApplet.class, and it should contain the two lines of html code
shown at the top of the next page.

%9 java03.frm Page 164 Saturday, August 26, 2000 5:53 PM

—&| @

164 Chapter 3/ Collection Classes

<applet code="BagApplet.class" width=480 height=340>
</applet>

The first line, containingapplet. . .> tells the web browser that you are going
to start an applet. Usually, you will have at least three pieces of information
about the applet:

code = "BagApplet.class" Tells the browser where to
find the compiled class.

width = 480 Sets the applet’s size in pix-

height = 340 els. Today’s typical screens

have about 100 pixels per
inch, so a size of 480 x 340
is about 4.8 inches by 3.4
inches.

Many Java development environments have a feature to automatically create a
small html file such as this.

Once the html file is in place, you can run the applet in one of two ways. One
approach is to run aappletviewer, which is a tool that reads an html file and
runs any applets that it finds. The Java Development Kit has an appletviewer that
is executed from the command line. For example, to run the JDK appletviewer
you change to the directory that contaBagApplet.html and type the com-
mand:

appletviewer BagApplet.html

This command runs the applet, resulting in the display shown in Figure 3.11 on
page 147.

The applet can also be displayed by putting it in a location that’'s available to
your web browser. My latest information about this approach is available at
http://www.cs.colorado.edu/~main/java.html.

Beyond theinit Method

Our test applet needed to define only thét method. More complex applets
can also be created, involving graphical images plus interaction. Graphical
applets will generally provide other methods calladrt, paint, update,

stop, anddestroy. A good resource iSraphic Java Mastering the AWMy
David M. Geary.

Self-Test Exercises

23. Write three declarations of instance variables that might appear in an applet.
Include a constructor activation in each declaration. The first declaration is a
button with the label “Mmm, good.” The second declaration is for a text

@ [o—

4~ 4]

4‘9 java03.frm Page 165 Saturday, August 26, 2000 5:53 PM

*

Chapter Summary 165

field of 15 characters. The third declaration is for a text area with 12 rows
and 60 columns.

24. Write three statements that could appear indthe method of an applet.
The statements should take the three components from the previous exer-
cise and add them to the applet’s GUI.

25. Write a statement that could appear inithet method of an applet to
display the message “FREE Consultation!”

26. Describe the technigue used in the implementatioaddfiorizon-
talLine.

27. Write a new action listenethat can be registered to a button of the
BagApplet. The actionPerformed method should print feedback to
indicate how many copies of the numbers 1 through 10 appear in the
applet’s bag.

28. Suppose thatis a button in th@agApplet. Write a statement that could
appear in theinit method to create an action listener of the previous
exercise and register it to the button

29. Suppose that is aString that may or may not contain a sequence of
digits representing a valid integer. Writeray-catch statement that will
try to convert the&string to an integer and print two times this integer. If
the String does not represent a valid integer, then an error message
should be printed.

CHAPTER SUMMARY

» A collection classs an ADT where each object contains a collection of
elements. Bags and sequences are two examples of collection classes.

* The simplest implementations of collection classes uysartlly filled
array. Using a partially filled array requires each object to have at least
two instance variables: the array itself and anvariable to keep track of
how much of the array is being used.

* When a collection class is implemented with a partially filled array, the
capacity of the array should grow as elements are added to the collection.
The class should also provide explicit methods to allow a programmer to
control the capacity of the array.

* In a collection class, some methods allocate additional memory (such as
changing the capacity of an array). These methods have the possibility of
throwing anOutOfMemoryError (when the machine runs out of meryjor

» A class may have other instance variables that are references to objects or
arrays. In such a case, thkone method must carry out extra work. The
extra work creates a new object or array for each such instance variable to
refer to.

.
4~ ~s

%9 java03.frm Page 166 Saturday, August 26, 2000 5:53 PM

*

166 Chapter 3/ Collection Classes

¢ When you design an ADT, always make an explicit statement of the rules
that dictate how the instance variables are used. These rules are called the
invariant of the ADTand should be written at the top of the implementa-
tion file for easy reference.

« Small ADTs can be tested effectively with iateractive test applehat
follows the standard format of tiBagApplet in Section 3.4.

Solutions to Self-Test Exercises

1. int 1i; argument list. For example:
int[] b; IntArrayBag.union(bl, b2)
b = new int[1000];
for (i = 1; i <= 1000; i++) 11. The two statements can be replaced by one:
b[i-1] = 1; data[index] = data[--manyItems]; When
--manyItems appears as an expression, the
2. b.length variable manyItems is decremented by one,
. and the resulting value is the value of the
3. 42 (sincea andb refer to the same array) expression. (On the other hand, nifiny-
4. 0 (sinceb is a clone of) Items-- appears as an expression, the value
. of the expression is the value wednyItems
5. The array referred to by the parameter in the prior to subtracting one.) Similarly, the last

method is the same as the array referred to by
the actual argument. So, the actual argument
will have its first component changed to 42.

two statements ohdd can be combined to
data[manyItems++] = element;

. For the incorrect implementation afidA11,

6. void copyFront(int[] a, int[] b, int n) suppose we have a bagand we activate
// Precondition: a.length and b.length are b.addA11(b). Then the private instance
// both greater than or equal to n. variable manyItems is the same variable as
// Postcondition: n integers have been cop- addend.manyItems. Each iteration of the
// ied from the front of a to the front of b. loop adds 1 tomanyItems, and hence
{ int i addend.manyItems is also increasing, and the

for (i = 0; i < n; i+4) loop never ends. : ,
b[i]l = a[il; One warning: Some collection classes in
} the Java libraries have addA11 method that
fails for the statemerit.addA11(b). The rea-
7. 3| 2 We don’t care what son is improved efficiency. So, before you use
appears beyond anaddA11 method, check the specification for
[0] [1] data[1l]. restrictions.

8. When the 11th element is added, théd . At the end of the clone implementation we
method will increase the capacity. need an additional statement to make a sepa-

rate copy of the data array for the clone to use.

9. See the two rules on page 114. If we don’t make this copy, then our own data

10. A static method is not activated by any one array and the clone's data array will be one

particular object. It is activated by writing the

and the same (see the pictures on page 123).

class name, a dot, the method name, and the 14. System.arrayCopy(x, 10, y, 33, 16);

ﬁ%

ﬁ%

\

i

15.

16.
17.

18.

19.

20.

21.

%9 java03.frm Page 167 Saturday, August 26, 2000 5:53 PM

void addBefore(double element)
{
int i;
if (manyItems == data.length)
{ // Tryto double the capacity
ensureCapacity(manyItems*2 + 1);

}

if (lisCurrent())
currentIndex = 0;
for
(i=manyItems; i>currentIndex; i--)
data[i] = data[i-1];
datal[currentIndex] = element;
manyIltems++;

}
24

g.currentIndex will be 3 (since the 4th ele-
ment occurs adata[3]).

The removeCurrent method should be tested 27,

when the sequence’s size is just 1, and when
the sequence is at its full capacity. At full
capacity you should try removing the first ele-
ment, and the last element of the sequence.

Your program can be similar to Figure 3.2 on
page 111.

Here is our method’s heading, with a postcon-
dition:

void remove(int target);

// Postcondition: If target was in the

// sequence, then the first copy of target

// has been removed, and the element after

// the removed element (if there is one)

// becomes the new current element; other-

// wise the sequence remains unchanged.

The easiest implementation searches for the 28,

index of the target. If this index is found, then
setcurrentIndex to this index, and activate
the ordinaryremoveCurrent method.

The total time to add 1, 2, ...n, with add-
After isO(n). The total time to add, n-1,...,

1 with addBefore is O(n?. The larger time
for the second approach is because an additior
at the front of the sequence requires all of the
existing elements to be shifted right to make
room for the new element. Hence, on the

22.

23.

24,
25.

26.

29.

ﬁ%

Solutions to Self-Test Exercise467

second addition, one element is shifted. On
the third addition, two elements are shifted.
And so on to the" element which needs-1
shifts. The total number of shifts is
1+2+...+0-1), which isO(n?. (To show that
this sum isO(n?), use a technique similar to
Figure 1.3 on page 21.)

Neither of the classeswustuse an array. In
later chapters we will see both classes imple-
mented without arrays.

Button b = new Button("Mmm, good");
TextField f = new TextField(15);
TextArea a = new TextArea(1l2, 60);

add(b); add(f); add(a);

add
(new Label("FREE Consultation!"));

The “horizontal line” is actually @anvas that
is one pixel high and very wide.

class InfolListener

implements ActionListener

{
public void
actionPerformed(ActionEvent event)

{
int i;
int count;
for (1 = 1; i <= 10; 'i++)
{
count = b.countOccurrences(i);
feedback.append
(i + " occurs " + count + ".\n");
}
}

}

b.addActionListener
(new InfolListener());

try

{
int value = Integer.parselnt(s);
System.out.println(2 * value);

}

catch (NumberFormatException e)

{
System.out.println("Not number™);

}

ﬁ%

\

%9 java03.frm Page 168 Saturday, August 26, 2000 5:53 PM

—& @

168 Chapter 3/ Collection Classes

E PROGRAMMING PROJECTS

1 For the IntArrayBag class, implement a the front of the sequence; (3) a method to add a new
new method calleégquals with a boolean element at the end of the sequence; (4) a method that

returnvalue and one parameter. The param- makes the last element of the sequence become the

eter, called, is anothefintArrayBag. The method current element; (5) a method that returns frede-

returnstrue if b and the bag that activates the meth- ment of the sequence (starting with tH& & the

od have exactly the same number of every element.front); (6) a method that makes tHedlement be-

Otherwise the method returfisise. Notice thatthe =~ come the current element.

locations of the elements in the data arrays are not

necessarily the same. It is only the number of occur-

rences of each element that must be the same. 5 Implement an applet for interactive testing
The worst-case time for the method should be of the sequence class from the previous
O(mn), wheremis the size of the bag that activates project.

the method and is the size ob.

. 6 A bag can contain more than one copy of an
2 A black box test of a class is a program element. For example, the chapter describes
that tests the correctness of a class without a bagthat containsthe number4 and two
directly examininghe privateinstancevari- copies of the number 8. This bag behavior is differ-
ables of the class. You can imagine that the privateent from aset, which can contain only a single copy
instance variables are inside an opaque black boxof any given element. Write a new collection class

where they cannot be seen, so all testing must occuicalled Set0fInt, which is similar to a bag, except
only through activating the public methods. that a set can contain only one copy of any given

Write a noninteractive black box test program for element. You'll need to change the specification a
the IntArrayBag class. Make sure that you test the pijt. For example, instead of the bagiaintOccur-

boundary values, such as an empty bag, a bag witfrences method, you'll want a method such as this:
just one element, and a full bag.

boolean contains(int target)
// Postcondition: The return value is true if
3 Expand theBagApplet from Figure 3.15 on // target is in the set; otherwise the return
page 161. The expanded versioshould // value is false.
havethreebagsandbuttonsto activate any
method of any bag. Also include a button that will Make an explicit statement of the invariant of the set
carry out an action such as: ADT. Do a time analysis for each operation. At this
bl = IntArrayBag.union(b2, b3). point, an efficient implementation is not needed. For
example, just adding a new element to a set will take
linear time because you'll need to check that the new
4 Implement the sequence class from Section element isn't already present. Later we’ll explore
3.3. You may wish to provide some more efficient implementations.
additional useful methods, such as: You may also want to add additional methods to
(1) a method to add a new element at the front of your set ADT, such as a method for subtracting one
the sequence; (2) a method to remove the element aset from another.

@ [o—

4~ 4]

%9 java03.frm Page 169 Saturday, August 26, 2000 5:53 PM

*

Programming Projects 169

7 Rewrite the sequence class using a new class 10 Specify, design, and implement a collection
name,DoubleArraySortedSeq. In the new class that can hold up to five playing cards.
class,the add methodalways puts the new Call the classPokerHand, and include a
element so that all the elements stay in order from method with a boolean return value to allow you to
smallest to largest. There is addBefore or add- compare two poker hands. For two hardsndy,
After method. All the other methods are the same the relationx.beats(y) means thak is a better
as the original sequence ADT. hand thary. If you do not play in a weekly poker
game yourself, then you may need to consult a card

) o .) rule book for the rules on the ranking of poker
8 A one-variablepolynomial is an arithmetic hands.

expression of the form:

2 k
Ay + agX + X% + ... +axX

The highest exponerk, is called thedlegreeof the 11 Specify, design, and implement a class that

polynomial, and the constargs, a, ... are toe keeps track of rings stacked on a peg, rather
efficients. For example, here are two polynomials like phonograph records on a spindle. An
with degree three: example with five rings is shown here:

2.1+ 4.8+ 0.1¢% + (=7.1)x°

2.9+ 0.&+10.1x% + 1.7x°

Specify, design, and implement a class for polyno- Rings stacked
mials. Spend some time thinking about operations
that make sense on polynomials. For example, you
can write a method that adds two polynomials. An-
other method should evaluate the polynomial for a
given value ok.

on a peg

The peg may hold up to 64 rings, with each ring
9 Specify, design, and implement a class that having its own diameter. Also, there is a rule that
can be one player in a game of tic-tac-toe. requires each ring to be smaller than any ring under-
The constructor should specify whether the neath it. The class’s methods should include: (a) a
object is to be the first player (X's) or the second constructor that placesrings on the peg (where
player (O’s). There should be a method to ask the may be as large as 64). Thesings have diameters
object to make its next move, and a method that tellsfrom n inches (on the bottom) to one inch (on the
the object what the opponent’s next move is. Also top); (b) an accessor method that returns the number
include other useful methods, such as a method toof rings on the peg; (c) an accessor method that re-
ask whether a given spot of the tic-tac-toe board is turns the diameter of the topmost ring; (d) a method
occupied, and if so, whether the occupation is with that adds a new ring to the top (with the diameter of
an X or an O. Also, include a method to determine the ring as a parameter to the method); (e) a method
when the game is over, and whether it was a draw,that removes the topmost ring; (f) a method that
an X win, or an O win. prints some clever representation of the peg and its
Use the class in two programs: a program that rings. Make sure that all methods have appropriate
plays tic-tac-toe against the program’s user, and apreconditions to guarantee that the rule about ring
program that has two tic-tac-toe objects that play sizes is enforced. Also spend time designing appro-
against each other. priate private instance variables.

@ [o—

4~ 4]

*

%9 java03.frm Page 170 Saturday, August 26, 2000 5:53 PM

ﬁ%

170 Chapter 3/ Collection Classes

12 In this project, you will design and imple- Towers(int nj;

ment a class calleT@owers, which is part // Precondition: 1 <= n <= 64.

of a program that lets a child play a game // Postcondition: The towers have been initialized
called Towers of Hanoi. The game consists of three// with n rings on the first peg and no rings on
pegs and a collection of rings that stack on the pegs// the other two pegs. The diameters of the first
The rings are different sizes. The initial configura- // Peg’s rings are from one inch (on the top) to n
tion for a five-ring game is shown here, with the first // inches (on the bottom).

tower having rings from one inch (on the top) to five . . .
inches (on the bottom). int countRings(int pegNumber)
// Precondition: pegNumber is 1, 2, or 3.

// Postcondition: The return value is the number

// of rings on the specified peg.
Initial configuration for
a five-ring game of int getTopDiameter(int pegNumber)
Towers of Hanoi // Precondition: pegNumber is 1, 2, or 3.

// Postcondition: If countRings(pegNumber) > 0,
// then the return value is the diameter of the top
// ring on the specified peg; otherwise the return
The rings are stacked in decreasing order of their// value is zero.
size, and the second and third towers are initially
empty. During the game, the child may transfer void move(int startPeg, int endPeg)
rings one-at-a-time from the top of one peg to the top// Precondition: startPeg is a peg number
of another. The goal is to move all the rings from the // (1, 2, or 3), and coutRings(startPeg) > O;
first peg to the second peg. The difficulty is that the // endPeg is a different peg number (not equal
child may not place a ring on top of one with a small- // to startPeg), and if endPeg has at least one
er diameter. There is the one extra peg to hold rings// ring, then getTopDiameter(startPeg) is
temporarily, but the prohibition against a larger ring // less than getTopDiameter(endpeg).
on a smaller ring applies to it as well as the other two// Postcondition: The top ring has been moved
pegs. A solution for a three-ring game is shown at// from startPeg to endPeg.
the bottom of the page. Thewers class must keep Also include a method so thatrawers object may
track of the status of all three pegs. You might use be displayed easily.
an array of three pegs, where each peg is an objec Use theTowers object in a program that allows a
from the previous project. Thewers methods are child to play Towers of Hanoi. Make sure that you
specified in the next column. don’t allow the child to make any illegal moves.

ell oL Ebd 1L

At game start After 1 move After 2 moves After 3 moves
After 4 moves After 5 moves After 6 moves After 7 moves

4~ 4

\

@ [o—

