
35

Abstract Data Types and Java Classes
The happiest way to deal with a man is never to tell him
anything he does not need to know.

ROBERT A. HEINLEIN

Time Enough for Love

2.1 CLASSES AND THEIR MEMBERS

2.2 USING A CLASS

2.3 PACKAGES

2.4 PARAMETERS, EQUALS METHODS, AND CLONES

CHAPTER SUMMARY

SOLUTIONS TO SELF-TEST EXERCISES

PROGRAMMING PROJECTS

Object-oriented programming (OOP) is an approach to pro-
gramming where data occurs in tidy packages called objects. Manipulation of an
object happens with functions called methods, which are part and parcel of their
objects. The Java mechanism to create objects and methods is called a class. In
fact, the keyword class at the start of each Java application program indicates
that the program is itself a class with its own methods to carry out tasks.

This chapter moves you beyond small Java application programs. Your goal
is to be able to write general purpose classes that can be used by many different
programs. Each general purpose class will capture a certain functionality, and an
application programmer can look through the available classes to select those
that are useful for the job at hand.

&&+$+$3377((55

2

35

java02.frm Page 35 Saturday, August 26, 2000 5:50 PM

36 Chapter 2 / Abstract Data Types and Java Classes

For example, consider a programmer who is writing an application to simulate
a Martian lander as it goes from orbit to the surface of Mars. This programmer
could use classes to simulate the various mechanical components of the lander—
the throttle that controls fuel flow, the rocket engine, and so on. If such classes
are readily available in a package of “mechanical component classes,” then the
programmer could select and use the appropriate classes. Typically, one
programming team designs and implements such classes, and other programmers
use the classes. The programmers who use the classes must be provided with a
specification of how the classes work, but they need no knowledge of how the
classes are implemented.

The separation of specification from implementation is an example of infor-
mation hiding, which was presented as a cornerstone of program design in
Chapter 1. Such a strong emphasis on information hiding is partly motivated by
mathematical research about how programmers can improve their reasoning
about data types that are used in programs. These mathematical data types are
called abstract data types, or ADTs—and therefore, programmers sometimes
use the term ADT to refer to a class that is presented to other programmers with
information hiding. This chapter presents two examples of such classes. The
examples illustrate the features of Java classes, with emphasis on information
hiding. By the end of the chapter you will be able to implement your own classes
in Java. Other programmers could use one of your classes without knowing the
details of how you implemented the class.

2.1 CLASSES AND THEIR MEMBERS

A class is a new kind of data type. Each of your classes includes various data,
such as integers, characters, and so on. In addition, a class has the ability to
include two other items: constructors and methods. Constructors are designed to
provide initial values to the class’s data; methods are designed to manipulate the
data. Taken together, the data, constructors, and methods of a class are called the
class members.

But this abstract discussion does not really tell you what a class is. We need
some examples. As you read the first example, concentrate on learning the tech-
niques for implementing a class. Also notice how you use a class written by
another programmer, without knowing details of the class’s implementation.

PROGRAMMING EXAMPLE: The Throttle Class

ADTs
emphasize the
specification
rather than the
implementation

Our first example of a class is a new data type to store and manipulate
the status of a mechanical throttle. An object of this new class holds
information about a throttle, as shown in the picture. The throttle is a
lever that can be moved to control fuel flow. The throttle we have in
mind has a single shutoff point (where there is no fuel flow) and a
sequence of several on positions where the fuel is flowing at

OFF

FAST

SLOW

java02.frm Page 36 Saturday, August 26, 2000 5:50 PM

Classes and Their Members37

progressively higher rates. At the topmost position, the fuel flow is fully on. At
intermediate positions, the fuel flow is proportional to the location of the lever.
For example, with six possible positions, and the lever in the fourth position, the
fuel flows at of its maximum rate.

A constructor is designed to provide initial values to a class’s data. The throt-
tle constructor permits a program to create a new throttle with a specified number
of “on positions” above the shutoff position. For instance, a throttle for a lawn
mower could specify six positions, whereas a throttle for a Martian lander could
specify 1000 positions. The throttle’s lever is initially placed in the shutoff
position.

Once a throttle has been initialized, there two methods to shift the throttle’s
lever: One of the methods shifts the lever by a given amount, and the other
method returns the lever to the shutoff position. We also have two methods to
examine the status of a throttle. The first of these methods returns the amount of
fuel currently flowing, expressed as a proportion of the maximum flow. For
example, this method will return approximately 0.667 when a six-position throt-
tle is in its fourth position. The other method returns a true-or-false value, telling
whether the throttle is currently on (that is, whether the lever is above the shutoff
position). Thus, the throttle has one constructor and four methods listed here:

one throttle
constructor and
four throttle
methods

• A constructor to create a new throttle with one shutoff position and a
specified number of on positions (the lever starts in the shutoff position)

• A method that returns the fuel flow, expressed as a proportion of the max-
imum flow

• A method to tell us whether the throttle is currently on

• A method to shift a throttle’s lever by a given amount

• A method to set the throttle’s lever back to the shutoff position

Defining a New Class

We’re ready to define a new Java class called Throttle. The new class includes
data (to store information about the throttle) plus the constructor and methods
listed above. Once the Throttle class is defined, a programmer can create
objects of type Throttle and manipulate those objects with the methods.

Here’s an outline of the Throttle class definition:

public class Throttle
declaring the
Throttle class

{
private int top; // The topmost position of the lever

 private int position; // The current position of the lever

}

4
6

This part of the class definition provides the implementations
of the constructor and methods.

java02.frm Page 37 Saturday, August 26, 2000 5:50 PM

38 Chapter 2 / Abstract Data Types and Java Classes

This class definition defines a new data type called Throttle. The definition
starts with the class head, which consists of the Java keywords public class,
followed by the name of the new class. The keyword public is necessary before
the class because we want to allow all other programmers (the “public”) to use
the new class. The name of the class may be any legal identifier. We chose the
name Throttle. We always use a capital letter for the first character of names
of new classes—this isn’t required by Java, but it’s a common programming
style, making it easy to identify class names.

three varieties of
class members
appear in the
class definition

The rest of the class definition, between the two brackets, lists all the compo-
nents of the class. These components are called members of the class and they
come in three varieties: instance variables, constructors, and methods.

Instance Variables

The first kind of member is a variable declaration. These variables are called
instance variables (or sometimes “member variables”). The Throttle has two
instance variables:

private int top; // The topmost position of the lever
private int position; // The current position of the lever

Each instance variable stores some piece of information about the status of an
object. For example, consider a throttle with six possible positions and the lever
in the fourth position. This throttle would have top=6 and position=4.

The keyword private occurs in front of each of our instance variables. This
keyword means that programmers who use the new class have no way to read or
assign values directly to the private instance variables. It is possible to have pub-
lic instance variables that can be accessed directly, but public instance variables
tend to reveal too much information about how a class is implemented, violating
the principle of information hiding. Therefore, our examples will use private
instance variables. All access to private instance variables is carried out through
the constructors and methods that are provided with the class.

Constructors

The second kind of member is a constructor. A constructor is a method that is
responsible for initializing the instance variables. For example, our constructor
creates a throttle with a specified number of on positions above the shutoff posi-
tion. This constructor sets the instance variable top to a specified number, and
sets position to zero (so that the throttle is initially shut off).

For the most part, implementing a constructor is no different than your past
work (such as implementing a method for a Java application). The primary dif-
ference is that a constructor has access to the class’s instance variables, and is
responsible for initializing these variables. Thus, a throttle constructor must pro-
vide initial values to top and position. Before you implement the throttle con-
structor, you must know the several rules that make constructors special:

java02.frm Page 38 Saturday, August 26, 2000 5:50 PM

Classes and Their Members39

• Before any constructor begins its work, all instance variables are assigned
Java “default values.” For example, the Java default value for any number
variable is zero.

• If an instance variable has an initialization value with its declaration, the
initialization value replaces the default value. For example, suppose we
have this instance variable:

int jackie = 42;

The instance variable jackie is first given its default value of zero; then
the zero is replaced by the initialization value of 42.

• The name of a constructor must be the same as the name of the class. In our
example, the name of the constructor is Throttle. This seems strange:
Normally we avoid using the same name for two different things. But it is
a requirement of Java that the constructor use the same name as the class.

• A constructor is not really a method, and therefore it does not have any
return value. Because of this, you must not write void (or any other return
type) at the front of the constructor’s head. The compiler knows that every
constructor has no return value, but a compiler error occurs if you actually
write void at the front of the constructor’s head.

With these rules, we can write the throttle’s constructor as shown here (with its
specification following the format from Section 1.1):

 ◆ Constructor for the Throttle
public Throttle(int size)

Construct a Throttle with a specified number of on positions.
Parameters:

size – the number of on positions for this new Throttle

Precondition:
size > 0.

Postcondition:
This Throttle has been initialized with the specified number of on
positions above the shutoff position, and it is currently shut off.

Throws: IllegalArgumentException
Indicates that size is not positive.

public Throttle(int size)
{

if (size <= 0)
throw new IllegalArgumentException("Size <= 0: " + size);

top = size;
// No assignment needed for position -- it gets the default value of zero.

}

This constructor sets top according to the parameter, size. It does not explicitly
set position, but the comment in the implementation indicates that we did not

java02.frm Page 39 Saturday, August 26, 2000 5:50 PM

40 Chapter 2 / Abstract Data Types and Java Classes

just forget about position—the default value of zero is its correct initial value.
The implementation is preceded by the keyword public to make it available to
all programmers.

a class may
have many
different
constructors

The throttle has just one constructor, just one way of setting the initial values
of the instance variables. Some classes may have many different constructors
that set initial values in different ways. If there are several constructors, then each
constructor must have a distinct sequence of parameters to distinguish it from the
other constructors.

No-Arguments Constructors

Some classes have a constructor with no parameters, called a no-arguments
constructor. In effect, a no-arguments constructor does not need any extra
information to set the initial values of the instance variables.

If you write a class with no constructors at all, then Java automatically pro-
vides a no-arguments constructor that initializes each instance variable to its
initialization value (if there is one) or to its default value (if there is no specified
initialization value). There is one situation where Java does not provide an auto-
matic no-arguments constructor, and you’ll see this situation when you write
subclasses in Chapter 13.

Methods

The third kind of class member is a method. A method does computations that
access the class’s instance variables. Classes tend to have two kinds of methods:

1. Accessor methods. An accessor method gives information about an object
without altering the object. In the case of the throttle, an accessor method can
return information about the status of a throttle, but it must not change the posi-
tion of the lever.

2. Modification methods. A modification method may change the status of
an object. For a throttle, a modification method may shift the lever up or down.

Each class method is designed for a specific manipulation of an object—in
our case, the manipulation of a throttle. To carry out the manipulations, each of
the throttle methods has access to the throttle’s instance variables, top and
position. The methods can examine top and position to determine the cur-
rent status of the throttle, or top and position can be changed in order to alter
the status of the throttle. Let’s look at the details of the implementations of the
throttle methods, beginning with the accessor methods.

Accessor Methods

Accessor methods provide information about an object without changing the
object. Accessor methods are often short, just returning the value of an instance

java02.frm Page 40 Saturday, August 26, 2000 5:50 PM

Classes and Their Members41

variable or performing a computation with a couple of instance variables. The
first of the throttle accessor methods computes the current flow as a proportion
of the maximum flow. The specification and implementation are shown here:

 ◆ getFlow
public double getFlow()

Get the current flow of this Throttle.
Returns:

the current flow rate (always in the range [0.0 ... 1.0]) as a proportion
of the maximum flow

public double getFlow()
{

return (double) position / (double) top;
}

accessor
methods often
have no
parameters

Accessor methods often have no parameters, no precondition, and only a simple
return condition in the specification. How does an accessor method manage with
no parameters? It needs no parameters because all of the necessary information
is available in the instance variables.

Pitfall: Integer Division Throws Away the Fractional Part

The getFlow implementation computes and returns a fractional value. For exam-
ple, if position is 4 and top is 6, then getFlow returns approximately 0.667. In order
to get a fractional result in the answer, the integer numbers position and top
cannot simply be divided with the expression position/top, since this would
result in an integer division (results in the quotient 0, discarding any remainder).
Instead, we must force Java to compute a fractional division by changing the integer
values to double values. For example, expression (double) position is a “cast”
that changes the integer value of position to a double value to use in the division.

The throttle’s second accessor method returns a true-or-false value indicating
whether the fuel flow is on. Here is this method with its specification:

 ◆ isOn
public boolean isOn()

Check whether this Throttle is on.
Returns:

If this Throttle’s flow is above zero, then the return value is true;
otherwise the return value is false.

public boolean isOn()
{

return (position > 0);
}

PITFALL

4
6

java02.frm Page 41 Saturday, August 26, 2000 5:50 PM

42 Chapter 2 / Abstract Data Types and Java Classes

Programming Tip: Use the Boolean Type for True-or-False Values

Java’s basic boolean type may be relatively unfamiliar. You should use the boolean
type for any true-or-false value such as the return value of the isOn method. The
return statement for a boolean method can be any boolean expression, for example
a comparison such as (position > 0). In this example, if position is greater
than zero, then the comparison is true, and isOn returns true. On the other
hand, if position is equal to zero, then the comparison is false, and isOn returns
false.

By the way, the name “boolean” is derived from the name of George Boole, a
19th-century mathematician who developed the foundations of a formal calculus of
logical values. Boole was a self-educated scholar with limited formal training. He
began his teaching career at the age of 16 as an elementary school teacher and
eventually took a position as professor at Queen’s College in Cork. As a dedicated
teacher, he died at the age of only 49—the result of pneumonia brought on by a
two-mile trek through the rain to lecture to his students.

Modification Methods

There are two more throttle methods. These two are modification methods,
which means that they are capable of changing the values of the instance vari-
ables. Here is the first modification method:

 ◆ shutOff
public void shutOff()

Turn off this Throttle.
Postcondition:

This Throttle’s flow has been shut off.

public void shutOff()
{

position = 0;
}

modification
methods are
usually void

Modification methods are usually void, meaning that there is no return value. In
the specification of a modification method, the method’s work is fully described
in the postcondition.

The throttle’s shutOff method has no parameters—it doesn’t need parame-
ters because it just moves the throttle’s position down to zero, shutting off the
flow. However, most modification methods do have parameters, such as a throt-
tle method to shift the throttle’s lever by a specified amount. This shift method
has one integer parameter called amount. If amount is positive, then the throttle’s
lever is moved up by that amount (but never beyond the topmost position). A
negative amount causes the lever to move down (but never below zero). The
specification and implementation appear at the top of the next page.

TIP

java02.frm Page 42 Saturday, August 26, 2000 5:50 PM

Classes and Their Members43

 ◆ shift
public void shift(int amount)

Move this Throttle’s position up or down.
Parameters:

amount – the amount to move the position up or down (a positive amount
moves the position up, a negative amount moves it down)

Postcondition:
This Throttle’s position has been moved by the specified amount. If the
result is more than the topmost position, then the position stays at the
topmost position. If the result is less than the zero position, then the
position stays at the zero position.

public void shift(int amount)
{

if (amount > top - position)
// Adding amount would put the position above the top.
position = top;

else if (position + amount < 0)
// Adding amount would put the position below zero.
position = 0;

else
// Adding amount puts position in the range [0...top].
position += amount;

}

This might be the first time you’ve seen the += operator. Its effect is to take the
value on the right side (such as amount) and add it to what’s already in the vari-
able on the left (such as position). This sum is then stored back in the variable
on the left side of +=.

The shift method requires care to ensure that the position does not go above
the topmost position nor below zero. For example, the first test in the method
checks whether (amount > top - position). If so, then adding amount to
position would push the position over top. In this case, we simply set
position to top.

It is tempting to write the test (amount > top - position) in a slightly dif-
ferent way, like this:

if
// Adding amount would put the position above the top.
position = top;

This seems okay at first glance, but there is a potential problem: What happens
if both position and amount are large integers such as 2,000,000,000? The
subexpression position + amount should be 4,000,000,000, but Java tries to
temporarily store the subexpression as a Java integer, which is limited to the
range −2,147,483,648 to 2,147,483,647. The result is an arithmetic overflow,
which is defined as trying to compute or store a number that is beyond the legal

(position + amount > top)

java02.frm Page 43 Saturday, August 26, 2000 5:50 PM

44 Chapter 2 / Abstract Data Types and Java Classes

range of the data type. When an arithmetic overflow occurs, the program might
stop with an error message or it might continue computing with wrong data.

We avoided the arithmetic overflow by rearranging the first test to avoid the
troublesome subexpression. The test we use is:

if
// Adding amount would put the position above the top.
position = top;

This test uses the subexpression top - position. Since top is never negative,
and position is in the range [0...top], the subexpression top - position is
always a valid integer in the range [0...top].

What about the second test in the method? In the second test, we use the sub-
expression position + amount, but at this point, position + amount can no
longer cause an arithmetic overflow. Do you see why? If position + amount is
bigger than top, then the first test would have been true and the second test is
never reached. Therefore, by the time we reach the second test, the subexpression
position + amount is guaranteed to be in the range [amount...top], and arith-
metic overflow cannot occur.

Pitfall: Potential Arithmetic Overflows

Check all arithmetic expressions for potential arithmetic overflow. The limitations for
Java variables and subexpressions are given in Appendix A. Often you can rewrite
an expression to avoid overflow, or you can use long variables (with a range from
−9,223,372,036,854,775,808 to 9,223,372,036,854,775,807). If overflow cannot be
avoided altogether, then include a note in the documentation to describe the situa-
tion that causes overflow.

the name of the
java file must
match the name
of the class

We have completed the Throttle class implementation and can now put the
complete definition in a file called Throttle.java, as shown in Figure 2.1. The
name of the file must be Throttle.java since the class is Throttle.

(amount > top - position)

PITFALL

Class Throttle

❖ public class Throttle
A Throttle object simulates a throttle that is controlling fuel flow.

(continued)

 FIGURE 2.1 Specification and Implementation for the Throttle Class

java02.frm Page 44 Saturday, August 26, 2000 5:50 PM

Classes and Their Members45

 (FIGURE 2.1 continued)

Specification

 ◆ Constructor for the Throttle
public Throttle(int size)

Construct a Throttle with a specified number of on positions.
Parameters:

size – the number of on positions for this new Throttle

Precondition:
size > 0.

Postcondition:
This Throttle has been initialized with the specified number of on positions above the
shutoff position, and it is currently shut off.

Throws: IllegalArgumentException
Indicates that size is not positive.

 ◆ getFlow
public double getFlow()

Get the current flow of this Throttle.
Returns:

the current flow rate (always in the range [0.0 ... 1.0]) as a proportion of the maximum flow

 ◆ isOn
public boolean isOn()

Check whether this Throttle is on.
Returns:

If this Throttle’s flow is above zero, then the return value is true; otherwise the return value
is false.

 ◆ shift
public void shift(int amount)

Move this Throttle’s position up or down.
Parameters:

amount – the amount to move the position up or down (a positive amount moves the position
up, a negative amount moves it down)

Postcondition:
This Throttle’s position has been moved by the specified amount. If the result is more than
the topmost position, then the position stays at the topmost position. If the result is less than
the zero position, then the position stays at the zero position.

 ◆ shutOff
public void shutOff()

Turn off this Throttle.
Postcondition:

This Throttle has been shut off. (continued)

java02.frm Page 45 Saturday, August 26, 2000 5:50 PM

46 Chapter 2 / Abstract Data Types and Java Classes

 (FIGURE 2.1 continued)

Implementation

// File: Throttle.java

public class Throttle
{
 private int top; // The topmost position of the throttle
 private int position; // The current position of the throttle

 {

if (size <= 0)
throw new IllegalArgumentException("Size <= 0: " + size);

top = size;
// No assignment needed for position -- it gets the default value of zero.

 }

 {
 return (double) position / (double) top;
 }

 {
 return (getFlow() > 0);
 }

 {
if (amount > top - position)

// Adding amount would put the position above the top.
position = top;

else if (position + amount < 0)
// Adding amount would put the position below zero.
position = 0;

else
// Adding amount puts position in the range [0...top].
position += amount;

 }

{
position = 0;

}

}

public Throttle(int size)

public double getFlow()

public boolean isOn()

public void shift(int amount)

public void shutOff()

java02.frm Page 46 Saturday, August 26, 2000 5:50 PM

Classes and Their Members47

Methods May Activate Other Methods

The throttle’s isOn method in Figure 2.1 has one change from the original
implementation. The change is highlighted here:

public boolean isOn()
{

return (> 0);
}

In this implementation, we have checked whether the flow is on by calling the
getFlow method rather than looking directly at the position instance variable.
Both implementations work: Using position directly probably executes quicker,
but you could argue that using getFlow makes the method’s intent clearer. Any-
way, the real purpose of this change is just to illustrate that one method can call
another to carry out a subtask. In this example, the isOn method calls getFlow.
An OOP programmer usually would use slightly different terminology, saying
that the isOn method activated the flow method. Activating a method is noth-
ing more than OOP jargon for “calling a method.”

Programming Tip: Private Versus Public

Our Throttle class follows a common pattern: The data about a throttle is stored
in private instance variables, indicated by the keyword private before each decla-
ration of an instance variable. A throttle is manipulated through public methods,
indicated by the keyword public before each implementation of a method.

The pattern of “private data, public methods” is a good idea. It forbids other pro-
grammers from using our instance variables in unintended ways. Later you will see
examples that include private methods (i.e., methods that can be activated within
other methods of the class, but may not be used by other programmers). For now,
though, the common pattern will serve you well.

Self-Test Exercises

1. Name and describe the three kinds of class members we have used. In
this section, which kinds of members were public and which were
private?

2. Write a new throttle constructor with no arguments. The constructor sets
the top position to 1 and sets the current position off.

3. Write another throttle constructor with two arguments: the total number
of positions for the throttle, and its initial position.

4. Add a new throttle method that will return true if the current flow is
more than half. The body of your implementation should activate get-
Flow.

getFlow()

TIP

java02.frm Page 47 Saturday, August 26, 2000 5:50 PM

48 Chapter 2 / Abstract Data Types and Java Classes

5. Design and implement a class called Clock. A Clock object holds one
instance of a time value such as 9:48 P.M. Have at least these public
methods:

• A no-arguments constructor that initializes the time to midnight—see
page 40 for the discussion of a no-arguments constructor

• A method to explicitly assign a given time—you will have to give
some thought to appropriate arguments for this method

• Methods to retrieve information: the current hour, the current minute,
and a boolean method to determine whether the time is at or before
noon

• A method to advance the time forward by a given number of minutes
(which could be negative to move the clock backward or positive to
move the clock forward)

2.2 USING A CLASS

programs can
create new
objects of a
class

How do you use a new class such as Throttle? Within any program, you may
create new throttles, and refer to these throttles by names that you define. We
can illustrate the general syntax for creating and using these objects by an
example.

Creating and Using Objects

Suppose a program needs a new throttle with 100 positions above the shutoff.
Within the program, we want to refer to the throttle by the name control. The
Java syntax has these parts:

Throttle control = new Throttle(100);

The first part of this statement—Throttle control—declares a new variable
called control. The control variable is capable of refering to a throttle. The
second part of the statement—new Throttle(100)—creates a new throttle and
initializes control to refer to this new throttle. A new throttle that is created in
this way is called a Throttle object.

There are a few points to notice about the syntax for creating a new Throttle
object: new is a keyword to create a new object; Throttle is the data type of the
new object; and (100) is the list of parameters for the constructor of the new
object. So, we are creating a new throttle and 100 is the argument for the con-
structor, so the new throttle will have 100 positions above the shutoff.

java02.frm Page 48 Saturday, August 26, 2000 5:50 PM

Using a Class 49

Once the throttle is created, we can refer to the throttle by the name that we
selected: control. For example, suppose we want to shift the lever up to its third
notch. We do this by calling the shift method, as shown here:

control.shift(3);

Calling a method always involves these four pieces:

1. Start with a reference to the object that you are manipulating. In this
example, we want to manipulate control, so we begin with “control”.
Remember that you cannot just call a method—you must always indicate
which object is being manipulated.

how to use a
method

2. Next, place a single period.

3. Next, write the name of the method. In our example, we call the shift
method, so we write “control.shift”—which you can pronounce
“control dot shift.”

4. Finally, list the parameters for the method call. In our example, shift
requires one parameter, which is the amount (3) that we are shifting the
throttle. Thus, the entire statement is control.shift(3);

Our example called the shift method. As you’ve seen before, OOP program-
mers like their own terminology and they would say that we activated the
shift method. In the rest of the text, we’ll try to use “activate” rather than
“call.” (This will keep us on the good side of OOP programmers.)

As another example, here is a sequence of several statements to set a throttle
to a certain point, and then print the throttle’s flow:

final int SIZE = 8; // The size of the Throttle
final int SPOT = 3; // Where to move the Throttle’s lever

Throttle small = new Throttle(SIZE);

small.shift(SPOT);
System.out.print("My small throttle is now at position ");
System.out.println(SPOT + " out of " + SIZE + “.”);
System.out.println("The flow is now: " + small.getFlow());

Notice how the return value of small.getFlow is used directly in the output
statement. As with any other method, the return value of an accessor method can
be used as part of an output statement or other expression. The output from this
code is:

My small throttle is now at position 3 out of 8.
The flow is now: 0.375

java02.frm Page 49 Saturday, August 26, 2000 5:50 PM

50 Chapter 2 / Abstract Data Types and Java Classes

A Program with Several Throttle Objects

A single program may have many throttle objects. For example, this code will
declare two throttle objects, shifting each throttle to a different point:

Throttle tiny = new Throttle(4);
Throttle huge = new Throttle(10000);

tiny.shift(2);
huge.shift(2500);

Here’s an important concept to keep in mind:

In the example above, tiny has its own instance variables (top will be 4 and
position will be 2); huge also has its own instance variables (top will be 10000
and position will be 2500). When we activate a method such as tiny.shift,
the method uses the instance variables from tiny; when we activate
huge.shift, the method uses the instance variables from huge.

The variables in our examples—control, small, tiny, huge—are called
reference variables because they are used to refer to objects (in our case,
throttles). There are several differences between a reference variable (used by
Java for all classes) and an ordinary variable (used by Java for the primitive data
types of int, char, and so on). Let’s look at these differences, beginning with a
special value called null that is used only with reference variables.

Null References

The creation of a new object can be separated from the declaration of a variable.
For example, the following two statements can occur far apart in a program:

Throttle control;
...
control = new Throttle(100);

Once both statements finish, control refers to a newly created throttle with 100
positions. But what is the status of control between the statements? At this
point, control does not yet refer to any throttle, because we haven’t yet created a
throttle. In this situation, we can assign a special value to control, indicating that
control does not yet refer to anything. The value is called the null reference, writ-
ten with the keyword null in Java. So we could change the above example to this:

Throttle control = null;
...

control = new Throttle(100);

When a program has several objects of the same type, each
object has its own copies of the instance variables.

In this area, control
does not refer to
anything.

java02.frm Page 50 Saturday, August 26, 2000 5:50 PM

Using a Class 51

Sometimes a program finishes using an object. In this case, the program may
explicitly set a reference variable to null, as shown here:

Throttle control = new Throttle(100);

// Various statements that use the Throttle appear next...
...

// Now we are done with the control Throttle, so we can set
// the reference to null.
control = null;

Once a reference variable is no longer needed, it’s a good idea to set it to null,
allowing Java to economize on certain resources (such as the memory used by a
throttle).

Pitfall: Null Pointer Exception

When a variable such as control becomes null, it no longer refers to any
throttle. If control is null, then it is a programming error to activate a method
such as control.shift. The result is an exception called NullPointer-
Exception.

Assignment Statements with Reference Variables

The usual assignment statement may be used with reference variables. For
example, we might have two Throttle variables t1 and t2, and an assignment
such as is permitted. But what is the effect of the assignment? For
starters, if t1 is null, then the assignment also makes t2 null. Here
is a more complicated case where t1 is not null:

Throttle t1;
Throttle t2;

t1 = new Throttle(100);
t1.shift(25);

The effect of the assignment is somewhat different than assignments
for integers or other primitive data types. The effect of is to “make t2

Null Reference

Sometimes a reference variable does not refer to anything.
This is a null reference , and the value of the variable is
called null .

PITFALL

t2 = t1
t2 = t1

t2 = t1;

t2 = t1
t2 = t1

java02.frm Page 51 Saturday, August 26, 2000 5:50 PM

52 Chapter 2 / Abstract Data Types and Java Classes

refer to the same object that t1 is already refering to.” In other words, we have
two reference variables (t1 and t2), but we created only one throttle (with one
new statement). This one throttle has 100 positions, and is currently in the 25th

position. After the assignment statement, both t1 and t2 refer to this one throttle.
As an example, let’s start with the two declarations:

Throttle t1;
Throttle t2;

We now have two variables, t1 and t2. If these variables are declared in a
method, then they don’t yet have an initial value (not even null). We can draw
this situation with a question mark for each value, as shown here:

The next two statements are:

t1 = new Throttle(100);
t1.shift(25);

These statements create a new throttle for t1 to refer to, and shift the throttle’s
position to 25. We will draw a separate box for the throttle and indicate its
instance variables (top at 100 and position at 25). To show that t1 refers to
this throttle, we draw an arrow from the t1 box to the throttle, like this:

At this point, we can execute the assignment:

After the assignment, t2 will refer to the same object that t1 refers to, as shown
here:

Throttle t1 ? Throttle t2 ?

Throttle t1 Throttle t2 ?

A Throttle
object

top 100

position 25

t2 = t1;

Throttle t1 Throttle t2

A Throttle
object

top 100

position 25

java02.frm Page 52 Saturday, August 26, 2000 5:50 PM

Using a Class 53

There are now two references to the same throttle, which can cause some
surprising results. For example, suppose we shift t2 down five notches and then
print the flow of t1, like this:

t2.shift(-5);
System.out.println(“Flow of t1 is: “ + t1.getFlow());

What flow rate is printed? The t1 throttle was set to position 25 out of 100, and
we never directly altered its position. But t2.shift(-5) moves the throttle’s
position down to 20. Since t1 refers to this same throttle, t1.getFlow now
returns 20/100, and the output statement prints “Flow of t1 is: 0.2”. Here’s the
entire code that we executed and the final situation drawn as a picture:

Throttle t1;
Throttle t2;

t1 = new Throttle(100);
t1.shift(25);
t2 = t1;
t2.shift(-5);

The situation of an assignment statement contrasts with a program that
actually creates two separate throttles for t1 and t2. For example, two separate
throttles can be created with each throttle in the 25th position out of 100, as shown
in the code at the top of the next page.

Assignment Statements with Reference Variables

If t1 and t2 are reference variables, then the assignment
 is allowed.

If t1 is null, then the assignment also makes t2 null.

If t1 is not null, then the assignment changes t2 so that it
refers to the same object that t1 already refers to. At this
point, changes can be made to that one object through either
t1 or t2.

Throttle t1

Throttle t2

A Throttle
object

top 100

position 20

t2 = t1

java02.frm Page 53 Saturday, August 26, 2000 5:50 PM

54 Chapter 2 / Abstract Data Types and Java Classes

Throttle t1;
Throttle t2;

t1 = new Throttle(100);
t1.shift(25);
t2 = new Throttle(100);
t2.shift(25);

With this code, we have two separate throttles:

Changes that are now made to one throttle will not effect the other, because
there are two completely separate throttles.

Clones

A programmer sometimes needs to make an exact copy of an existing object.
The copy must be just like the existing object, but separate. Subsequent changes
to the copy should not alter the original, nor should subsequent changes to the
original alter the copy. A separate copy such as this is called a clone.

An assignment operation does not create a clone, and in fact the
Throttle class does not permit the easy creation of clones. But many other
classes have a special method called clone for just this purpose. Writing a useful
clone method has some requirements that may not be evident just now, so we
will postpone a complete discussion until Section 2.4.

Testing for Equality

A test for equality (t1 == t2) can be carried out with reference variables. The
equality test (t1 == t2) is true if both t1 and t2 are null, or if they both refer
to the exact same object (not two different objects that happen to have the same
values for their instance variables). An inequality test (t1 != t2) can also be
carried out. The result of an inequality test is always the opposite of an equality
test. Let’s look at two examples.

Throttle t1 Throttle t2

A Throttle
object

top 100

position 25 A Throttle
object

top 100

position 25

t2 = t1

java02.frm Page 54 Saturday, August 26, 2000 5:50 PM

Using a Class 55

The first example creates just one throttle; t1 and t2 both refer to this throttle
as shown in the following picture:

Throttle t1;
Throttle t2;

t1 = new Throttle(100);
t1.shift(25);
t2 = t1;

At this point in the computation, (t1 == t2) is true. Both reference variables
refer to the same object.

On the other hand, consider this code, which creates two separate throttles:

Throttle t1;
Throttle t2;

t1 = new Throttle(100);
t1.shift(25);
t2 = new Throttle(100);
t2.shift(25);

After this computation, (t1 == t2) is false. The two throttles have the same
value (with top at 100 and position at 25), but the equality test returns false
because they are two separate throttles.

Test for Equality with Reference Variables

For reference variables t1 and t2, the test (t1 == t2) is
true if both references are null, or if t1 and t2 refer to the
exact same object (not two different objects that happen to
have the same values for their instance variables).

Throttle t1

Throttle t2

A Throttle
object

top 100

position 25

Throttle t1

Throttle t2

A Throttle
object

top 100

position 25 A Throttle
object

top 100

position 25

java02.frm Page 55 Saturday, August 26, 2000 5:50 PM

56 Chapter 2 / Abstract Data Types and Java Classes

Terminology Controversy: “The Throttle That t Refers To”

A declaration such as declares a reference
variable t, and makes it refer to a newly created throttle. We can then talk about
“the throttle that t refers to.” This is the correct terminology, but sometimes a
programmer’s thinking is clarified by shortening the terminology and saying
things like “the throttle t is on” rather than “the throttle that t refers to is on.”

Which is right? In general, use the longer terminology when there may be
several different variables referring to the same throttle. Otherwise use the shorter
phrase “the throttle t is on,” but somewhere, deep in your mind, remember that
you are shortening things for convenience and that the longer phrase is right.

Self-Test Exercises

6. Write some Java code that creates a new throttle with six positions, shifts
the throttle halfway up (to the third position), and prints the current flow.

7. A method declares a Throttle variable called control, but there is not
yet a throttle. What value should be assigned to control?

8. Suppose that control is a null reference. What happens if a program
tries to activate control.shift?

9. What is the output of this code:
Throttle t1;

Throttle t2;

t1 = new Throttle(100);

t2 = t1;

t1.shift(40);

t2.shift(2);

System.out.println(t1.getFlow());

10. Consider the code from the previous question. At the end of the compu-
tation, is (t1 == t2) true or false?

11. Write some code that will make t1 and t2 refer to two different throttles
with 100 positions each. Both throttles are shifted up to position 42. At
the end of your code, is (t1 == t2) true or false?

2.3 PACKAGES

You now know enough to write a Java application program that uses a throttle.
The Throttle class would be in one file (Throttle.java from Figure 2.1 on
page 46) and the program that uses the Throttle class would be in a separate
file. However, there’s one more level of organization that will make it easier for
other programmers to use your classes. The organization, called a Java package,
is a group of related classes put together in a way that makes it easy for
programs to use the classes.

Throttle t = new Throttle(42)

java02.frm Page 56 Saturday, August 26, 2000 5:50 PM

Packages 57

Declaring a Package

The first step in declaring a package of related classes is to decide on a name for
the package. For example, perhaps we are declaring a bunch of Java classes to
simulate various real-world devices such as a throttle. A good short name for the
package is the simulations package. But there’s a problem with good short
names: Other programmers might decide to use the same good short name for
their packages, resulting in the same name for two different packages.

use your Internet
domain name

The solution is to include your Internet domain name as part of the package
name. For example, at the University of Colorado the Internet domain name is
colorado.edu (my e-mail address is main@colorado.edu). Therefore, instead
of using the package name simulations, I will use the longer package name
edu.colorado.simulations (package names may include a “dot” as part of the
name). Many programmers follow this convention, using the Internet domain
name in reverse. The only likely conflicts are with other programmers at your
own Internet domain, and those conflicts can be prevented by internal
cooperation.

Once you have decided on a package name, a package declaration must be
made at the top of each source file of the package. The package declaration con-
sists of the keyword package followed by the full package name and a semico-
lon. The declaration appears at the start of each source file, before any class
declarations. For example, the start of Throttle.java is changed to include the
package declaration shown here:

package edu.colorado.simulations;

The revised Throttle.java, with a package declaration, is shown in Figure
2.2. Some Java development environments require you to create a directory
structure for your classes to match the structure of package names. For example,
suppose that you are doing your code development in your own directory called
classes, and you want to use the edu.colorado.simulations package. Then
you would follow these steps:

• Make sure that your Java development environment can find and run any
classes in your classes directory. The exact method of setting this up
varies from one environment to another, but a typical approach is to define
a system CLASSPATH variable to include your own classes directory.

• Underneath the classes directory, create a subdirectory called edu.

• Underneath edu, create a subdirectory called colorado.

• Underneath colorado, create a subdirectory called simulations.

• All the .java and .classes files for the package must be placed in the
simulations subdirectory.

If the edu.colorado.simulations package has other classes, then their files
are also placed in the simulations subdirectory, and the package declaration is
placed at the start of each .java file.

java02.frm Page 57 Saturday, August 26, 2000 5:50 PM

58 Chapter 2 / Abstract Data Types and Java Classes

Implementation

// File: Throttle.java from the package edu.colorado.simulations
// Documentation is in Figure 2.1 on page 44 or from the Throttle link in
// http://www.cs.colorado.edu/~main/docs/

package edu.colorado.simulations;

public class Throttle
{
 private int top; // The topmost position of the throttle
 private int position; // The current position of the throttle

 {

if (size <= 0)
throw new IllegalArgumentException("Size <= 0: " + size);

top = size;
// No assignment needed for position -- it gets the default value of zero.

 }

 {
 return (double) position / (double) top;
 }

 {
 return (getFlow() > 0);
 }

 {
if (amount > top - position)

// Adding amount would put the position above the top.
position = top;

else if (position + amount < 0)
// Adding amount would put the position below zero.
position = 0;

else
// Adding amount puts position in the range [0...top].
position += amount;

}
(continued)

 FIGURE 2.2 Defining Throttle.java as Part of the edu.colorado.simulations Package

the package
declaration

public Throttle(int size)

public double getFlow()

public boolean isOn()

public void shift(int amount)

java02.frm Page 58 Saturday, August 26, 2000 5:50 PM

Packages 59

The Import Statement to Use a Package

a program can
use an entire
package or just
parts of a
package

Once a package is set up and in the correct directory, the package’s .java files
can be compiled to create the various .class files. Then any other code that you
write may use part or all of the package. To use another package, a .java file
places an import statement after its own package statement but before anything
else. An import statement for an entire package has the keyword import
followed by the package name plus “.*” and a semicolon. For example, we
can import the entire edu.colorado.simulations package with the import
statement:

import edu.colorado.simulations.*;

If only a few classes from a package are needed, then each class can be imported
separately. For example, this statement imports only the Throttle class from
the edu.colorado.simulations package:

import edu.colorado.simulations.Throttle;

After this import statement, the Throttle class can be used . For example, a
program can declare a variable:

Throttle control;

A sample program using our throttle appears in Figure 2.3. The program
creates a new throttle, shifts the throttle fully on, and then steps the throttle back
down to the shut off position.

The JCL Packages

The Java language comes with many useful packages called the Java Class
Libraries (JCL). Any programmer can use various parts of the JCL by includ-
ing an appropriate import statement. In fact, one of the packages, java.lang, is
so useful that it is automatically imported into every Java program. Some parts
of the JCL are described in Appendix D.

 (FIGURE 2.2 continued)

}

{
position = 0;

}

}

public void shutOff()

java02.frm Page 59 Saturday, August 26, 2000 5:50 PM

60 Chapter 2 / Abstract Data Types and Java Classes

Java Application Program

// FILE: ThrottleDemonstration.java
// This small demonstration program shows how to use the Throttle class
// from the edu.colorado.simulations package.

import edu.colorado.simulations.Throttle;

class ThrottleDemonstration
{

 {
 final int SIZE = 8; // The size of the demonstration Throttle

 Throttle small = new Throttle(SIZE);

System.out.println("I am now shifting a Throttle fully on, and then I");
 System.out.println("will shift it back to the shut off position.");

 small.shift(SIZE);
 while (small.isOn())
 {

System.out.println("The flow is now " + small.getFlow());
small.shift(-1);

 }

 System.out.println("The flow is now off");
 }
}

Output from the Application

I am now shifting a Throttle fully on, and then I
will shift it back to the shut off position.
The flow is now 1.0
The flow is now 0.875
The flow is now 0.75
The flow is now 0.625
The flow is now 0.5
The flow is now 0.375
The flow is now 0.25
The flow is now 0.125
The flow is now off

 FIGURE 2.3 Implementation of the Throttle Demonstration Program with an Import Statement

the import
statement

public static void main(String[] args)

java02.frm Page 60 Saturday, August 26, 2000 5:50 PM

Parameters, Equals Methods, and Clones61

More about Public, Private, and Package Access

As you have seen, the Throttle class uses private instance variables (to keep
track of the current status of a throttle) and public methods (to access and
manipulate a throttle). The keywords public and private are called the access
modifiers because they control access to the class members.

What happens if you declare a member with no access modifier—neither
public nor private? In this case, the member can be accessed only by other
classes in the same package. This kind of access is called default access (because
there is no explicit access modifier); some programmers call it package access,
which is a nice descriptive name. We won’t use package access much because
we prefer the pattern of private instance variables with public methods.

One other kind of access—protected access—will be discussed later when we
cover derived classes and inheritance.

Self-Test Exercises

12. Suppose you are writing a package of classes for a company that has the
Internet domain knafn.com. The classes in the package perform various
statistical functions. Select a good name for the package.

13. Describe the directory structure that must be set up for the files of the
package in the previous question.

14. Write the import statement that must be present to use the package from
the previous two questions.

15. What import statement is needed to use the java.lang package?
16. Describe public access, private access, and package access. What key-

words are needed to obtain each kind of access for a method?

2.4 PARAMETERS, EQUALS METHODS, AND CLONES

Every programmer requires an unshakable understanding of methods and their
parameters. This section illustrates these issues and other issues that arise in
Java, such as how to test whether two objects are equal to each other and how to
make a copy of an object. The examples use a new class called Location, which
will be placed in a package called edu.colorado.geometry.

The purpose of a Location object is to store the coordinates of a single point
on a plane, as in the picture shown here. The location p in the picture lies at coor-
dinates x = –1.0 and y = 0.8. For future reference, you should know that

x

-2 -1 0 1 2
-2

-1

0

1

2 y

p

Java has a similar class called Point in the java.awt package. But
Java’s Point class is limited to integer coordinates and used primarily to
describe points on a computer’s screen. I thought about using the same
name Point for the example class of this section, but I decided against it
because a program might want to use both classes. It’s not legal to
import two different classes with the same names (though you can use a
full type name such as java.awt.Point without an import statement).

java02.frm Page 61 Saturday, August 26, 2000 5:50 PM

62 Chapter 2 / Abstract Data Types and Java Classes

The Location Class

Figure 2.4 shows several sample locations.
We’ll use these sample locations to describe
the Location constructor and methods.

• There is a constructor to initialize a loca-
tion. The constructor’s parameters provide
the initial coordinates. For example, the
location p in Figure 2.4(a) can be con-
structed with the statement:
Location p = new Location(-1, 0.8);

• There is a modification method to shift a
location by given amounts along the x and
y axes, as shown in Figure 2.4(b).

• There is a modification method to rotate a
location by 90° in a clockwise direction
around the origin, as shown in Figure
2.4(c).

• There are two assessor methods that allow
us to retrieve the current x and y coordi-
nates of a location.

• There are a couple of methods to perform
computations such as the distance between
two locations. These are static methods—
we’ll discuss the importance of the static
property in a moment.

• There are three methods called clone,
equals, and toString. These methods
have special importance for Java classes.
The clone method allows a programmer to
make an exact copy of an object. The
equals method tests whether two different
objects are identical. The toString method
generates a string that represents an object.
Special considerations for implementing
these three methods are discussed next.

The Location class is small, yet it forms the basis for an actual data type that
is used in drawing programs and other graphics applications. All the methods
and the constructor are listed in the specification of Figure 2.5. The figure also
shows one way to implement the class. After you’ve looked through the figure,
we’ll discuss that implementation.

x

-2 -1 0 1 2
-2

-1

0

1

2
y

p

(a) The white dot
labeled p is a
location with
coordinates
x = -1.0 and
y = 0.8 .

(c) The black dot
labeled r was
obtained by rotating
p by 90° in a
clockwise direction
around the origin.
The coordinates of r
are x = 0.8 and
y = 1.0 .

x

-2 -1 0 1 2
-2

-1

0

1

2 y

p

q

(b) The black dot
labeled q was
obtained by shifting
p by 1.3 units along
the x axis and by
-1.4 units along the
y axis. The
coordinates of q are
x = 0.3 and
y = -0.6 .

-2 -1 0 1 2
-2

-1

0

2
y

1
p

x
r

FIGURE 2.4 Three Locations in a Plane

java02.frm Page 62 Saturday, August 26, 2000 5:50 PM

Parameters, Equals Methods, and Clones63

Class Location

❖ public class Location from the package edu.colorado.geometry
A Location object keeps track of a location on a two-dimensional plane.

Specification

 ◆ Constructor for the Location
public Location(double xInitial, double yInitial)

Construct a Location with specified coordinates.

Parameters:
xInitial – the initial x coordinate of this Location
yInitial – the initial y coordinate of this Location

Postcondition:
This Location has been initialized at the given coordinates.

 ◆ clone
public Object clone()

Generate a copy of this Location.

Returns:
The return value is a copy of this Location. Subsequent changes to the copy will not affect
the original, nor vice versa. Note that the return value must be typecast to a Location before
it can be used.

 ◆ distance
public static double distance(Location p1, Location p2)

Compute the distance between two Locations.

Parameters:
p1 – the first Location
p2 – the second Location

Returns:
the distance between p1 and p2

Note:
The answer is Double.POSITIVE_INFINITY if the distance calculation overflows. The answer
is Double.NaN if either Location is null.

(continued)

 FIGURE 2.5 Specification and Implementation for the Location Class

java02.frm Page 63 Saturday, August 26, 2000 5:50 PM

64 Chapter 2 / Abstract Data Types and Java Classes

 (FIGURE 2.5 continued)

 ◆ equals
public boolean equals(Object obj)

Compare this Location to another object for equality.
Parameters:

obj – an object with which this Location is compared
Returns:

A return value of true indicates that obj refers to a Location object with the same value as
this Location. Otherwise the return value is false.

Note:
If obj is null or it is not a Location object, then the answer is false.

 ◆ getX and GetY
public double getX() –and– public double getY()

Get the x or y coordinate of this Location.
Returns:

the x or y coordinate of this Location

 ◆ midpoint
public static Location midpoint(Location p1, Location p2)

Generates and returns a Location halfway between two others.
Parameters:

p1 – the first Location
p2 – the second Location

Returns:
a Location that is halfway between p1 and p2

Note:
The answer is null if either p1 or p2 is null.

 ◆ rotate90
public void rotate90()

Rotate the Location 90° in a clockwise direction.
Postcondition:

This Location has been rotated clockwise 90° around the origin.

 ◆ shift
public void shift(double xAmount, double yAmount)

Move this Location by given amounts along the x and y axes.
Postcondition:

This Location has been moved by the given amounts along the two axes.
Note:

The shift may cause a coordinate to go above Double.MAX_VALUE or below
–Double.MAX_VALUE. In these cases, subsequent calls of getX or getY will return
Double.POSITIVE_INFINITY or Double.NEGATIVE_INFINITY.

(continued)

java02.frm Page 64 Saturday, August 26, 2000 5:50 PM

Parameters, Equals Methods, and Clones65

 (FIGURE 2.5 continued)

 ◆ toString
public String toString()

Generate a string representation of this Location.
Returns:

a string representation of this Location

Implementation

// File: Location.java from the package edu.colorado.geometry
// Documentation is available on pages 63–64 or from the Location link in
// http://www.cs.colorado.edu/~main/docs/

package edu.colorado.geometry;

public class Location implements Cloneable
{
 private double x; // The x coordinate of the Location
 private double y; // The y coordinate of the Location

 {
 x = xInitial;
 y = yInitial;
 }

 { // Clone a Location object.
 Location answer;

 try
 {
 answer = (Location) super.clone();
 }
 catch (CloneNotSupportedException e)
 { // This exception should not occur. But if it does, it would indicate a programming

// error that made super.clone unavailable. The most common cause would be
// forgetting the “implements Cloneable” clause at the start of the class.

 throw new RuntimeException
("This class does not implement Cloneable.");

 }

 return answer;
 }

(continued)

the meaning of
“implements Cloneable”
and the clone method are
discussed on page 76

public Location(double xInitial, double yInitial)

public Object clone()

java02.frm Page 65 Saturday, August 26, 2000 5:50 PM

66 Chapter 2 / Abstract Data Types and Java Classes

 (FIGURE 2.5 continued)

 {
 double a, b, c_squared;

 // Check whether one of the Locations is null.
 if ((p1 == null) || (p2 == null))
 return Double.NaN;

 // Calculate differences in x and y coordinates.
 a = p1.x - p2.x;
 b = p1.y - p2.y;

 // Use Pythagorean Theorem to calculate the square of the distance
 // between the Locations.
 c_squared = a*a + b*b;

 return Math.sqrt(c_squared);
 }

 {
if (obj instanceof Location)

 {
 Location candidate = (Location) obj;
 return (candidate.x == x) && (candidate.y == y);
 }
 else
 return false;

}

 {
 return x;

}

 {
 return y

}

(continued)

public static double distance(Location p1, Location p2)

the meaning of a static
method is discussed
on page 68

the Java constant,
double.NaN, is
discussed on page 70

public boolean equals(Object obj)

the equals method is
discussed on page 73

public double getX()

public double getY()

java02.frm Page 66 Saturday, August 26, 2000 5:50 PM

Parameters, Equals Methods, and Clones67

 (FIGURE 2.5 continued)

 {
double xMid, yMid;

 // Check whether one of the Locations is null.
 if ((p1 == null) || (p2 == null))
 return null;

// Compute the x and y midpoints.
xMid = (p1.x/2) + (p2.x/2);
yMid = (p1.y/2) + (p2.y/2);

// Create a new Location and return it.
 Location answer = new Location(xMid, yMid);
 return answer;
 }

{
 double xNew;
 double yNew;

 // For a 90 degree clockwise rotation, the new x is the original y
 // and the new y is –1 times the original x.
 xNew = y;
 yNew = -x;
 x = xNew;
 y = yNew;
 }

 {
 x += xAmount;
 y += yAmount;
 }

{
return "(x=" + x + " y=" + y + ")";

 }

}

public static Location midpoint(Location p1, Location p2)

public void rotate90()

public void shift(double xAmount, double yAmount)

public String toString()

java02.frm Page 67 Saturday, August 26, 2000 5:50 PM

68 Chapter 2 / Abstract Data Types and Java Classes

Static Methods

The implementation of the Location class has several features that may be new
to you. Some of the features are in a method called distance, with this
specification:

 ◆ distance
public static double distance(Location p1, Location p2)

Compute the distance between two Locations.
Parameters:

p1 – the first Location
p2 – the second Location

Returns:
the distance between p1 and p2

For example, consider the locations p and s in
Figure 2.6. Along a straight line, the distance
between these two locations is about 3.36.
Using the distance method, we can create
these two locations and print the distance
between them as follows:

Location p = new Location(-1, 0.8);
Location s = new Location(1.7, -1.2);

double d = Location.distance(p, s);
System.out.println(d);

This code prints the distance between the two
locations—a little bit more than 3.36.

The distance method is modified by an
extra keyword: static. The static keyword
means that the method is not activated by any
one object. In other words, we do not write
p.distance or s.distance. Instead we write
Location.distance.

Because the distance method is not activated by any one object, the method
does not have direct access to the instance variables of a location that activates
the method. Within the distance implementation, we cannot write simply x or y
(the instance variables). Instead, the implementation must carry out its compu-
tation based on the arguments that it’s given. For example, if we activate
Location.distance(p, s), then the distance method works with its two
arguments p and s. These two arguments are both Location objects. Let’s exam-
ine exactly what happens when an argument is an object rather than a primitive
value such as an integer.

The distance
between p and s
can be computed
with the
Pythagorean
Theorem.

Horizontal distance:

Vertical distance:

Distance between the locations =

a 2.7=

b 2.0=

a2 b2+ 2.72 2.02+ about 3.36= =

-2 -1 0 1 2
-2

-1

0

1

2

p

s

FIGURE 2.6 The Distance between Locations

b

a

distance

java02.frm Page 68 Saturday, August 26, 2000 5:50 PM

Parameters, Equals Methods, and Clones69

Parameters That Are Objects

What happens when Location.distance(p, s) is activated? For example,
suppose we have the two declarations shown previously for p and s. After these
declarations, we have these two separate locations:

Now we can activate the method Location.distance(p, s), which has an
implementation that starts like this:

public static distance(Location p1, Location p2)
{

...

“parameters”
versus
“arguments”

The names used within the method (p1 and p2) are usually called parameters to
distinguish them from the values that are passsed in (p and s). On the other
hand, the values that are passed in (p and s) are called the arguments. Anyway,
the first step of any method activation is to use the arguments to provide initial
values for the parameters. Here’s the important fact you need to know about
objects:

In our example, Location.distance(p, s), the parameters p1 and p2 are
initialized to refer to the two locations that we created, like this:

Location p
Location s

A Location
object

x -1.0

y 0.8 A Location
object

x 1.7

y -1.2

When a parameter is an object, such as a Location, then
the parameter is initialized so that it refers to the same object
that the actual argument refers to.

Location p
Location s

A Location
object

x -1.0

y 0.8 A Location
object

x 1.7

y -1.2

Location p1 Location p2

java02.frm Page 69 Saturday, August 26, 2000 5:50 PM

70 Chapter 2 / Abstract Data Types and Java Classes

Within the body of the distance method we can access p1 and p2. For exam-
ple, we can access p1.x to obtain the x coordinate of the first parameter. This
kind of access is okay in a static method. The only forbidden expression is a
direct x or y (without a qualifier such as p1).

be careful about
changing the
value of a
parameter

Some care is needed in accessing a parameter that is an object. For instance,
any change to p1.x will affect the actual argument p.x. We don’t want the
distance method to make changes to its arguments; it should just compute the
distance between the two locations and return the answer. This computation
occurs in the implementation of distance on page 66.

The implementation also handles a couple of special cases. One special case
is when an argument is null. In this case, the corresponding parameter will be
initialized as null, and the distance method executes this code:

// Check whether one of the Locations is null.
if ((p1 == null) || (p2 == null))

return Double.NaN;

the “not-a-
number”
constant

If either parameter is null, then the method returns a Java constant named
Double.NaN. This is a constant that a program uses to indicate that a double
value is “not a number.”

Another special case for the distance method is the possibility of a numerical
overflow. The numbers obtained during a computation may go above the largest
double number or below the smallest double number. These numbers are pretty
large, but the possibility of overflow still exists. When an arithmetic expression
with double numbers goes beyond the legal range, Java assigns a special constant
to the answer. The constant is named Double.POSITIVE_INFINITY if it is too
large (above about 1.7308), and it is named Double.NEGATIVE_INFINITY if it is
too small (below about −1.7308). Of course, these constants are not really “infin-
ity.” They are merely indications to the programmer that a computation has over-
flowed. In the distance method, we indicate the possibility of overflow with the
following comment:

Note:
The answer is Double.POSITIVE_INFINITY if the distance calculation
overflows. The answer is Double.NaN if either Location is null.

The Return Value of a Method May Be an Object

The return value of a method may also be an object, such as a Location object.
For example, the Location class has this static method that creates and returns a
new location that is halfway between two other locations. The method’s specifi-
cation and implementation are shown at the top of the next page.

the “infinity”
constant

java02.frm Page 70 Saturday, August 26, 2000 5:50 PM

Parameters, Equals Methods, and Clones71

 ◆ midpoint
public static Location midpoint(Location p1, Location p2)

Generates and returns a Location halfway between two others.
Parameters:

p1 – the first Location
p2 – the second Location

Returns:
a Location that is halfway between p1 and p2

Note:
The answer is null if either Location is null.

public static Location midpoint(Location p1, Location p2)
 {

double xMid, yMid;

 // Check whether one of the Locations is null.
 if ((p1 == null) || (p2 == null))
 return null;

// Compute the x and y midpoints.
xMid = (p1.x/2) + (p2.x/2);
yMid = (p1.y/2) + (p2.y/2);

// Create a new Location and return it.
 Location answer = new Location(xMid, yMid);
 return answer;
 }

The method creates a new location using the local variable answer, and then
returns this location. Often the return value is stored in a local variable such as
answer, but not always. For example, we could have eliminated answer by
combining the last two statements in our implementation to a single statement:

return new Location(xMid, yMid);

Either way—with or without the local variable—is fine.
Here’s an example to show how the static midpoint method is used. The

method creates two locations and then computes their midpoint:

Location low = new Location(0, 0);
Location high = new Location(1000, 5280);
Location medium = Location.midpoint(low, high);

In this example, the answer from the midpoint method is stored in a variable
called medium. After the three statements, we have three locations, drawn at the
top of the next page.

java02.frm Page 71 Saturday, August 26, 2000 5:50 PM

72 Chapter 2 / Abstract Data Types and Java Classes

Programming Tip: How to Choose the Names of Methods

Accessor methods: The name of a boolean accessor method will usually begin
with “is” followed by an adjective (such as “isOn”). Methods that convert to another
kind of data start with “to” (such as “toString”). Other accessor methods start with
“get” or some other verb followed by a noun that describes the return value (such
as “getFlow”).

Modification methods: A modification method can be named by a descriptive verb
(such as “shift”) or or a short verb phrase (such as “shutOff”).

Static methods that return a value: Try to use a noun that describes the return
object (such as “distance” or “midpoint”).

Rules like these make it easier to determine the purpose of a method.

Java’s Object Type

One of the Location methods is an accessor method called equals with this
heading:

public boolean equals(Object obj)

An accessor method with this name has a special meaning in Java. Before we
discuss that meaning, you need to know a bit about the parameter type
“Object.” In Java, Object is a kind of “super data type” that encompasses all
data except the eight primitive types. So a primitive variable (byte, short, int,
long, char, float, double, or boolean) is not an Object, but everything else
is. A String is an Object, a Location is an Object, even an array is an
Object.

Location low A Location
object

x 0

y 0

Location high A Location
object

x 1000

y 5280

Location medium A Location
object

x 500

y 2640

TIP

java02.frm Page 72 Saturday, August 26, 2000 5:50 PM

Parameters, Equals Methods, and Clones73

Using and Implementing an Equals Method

As your programming progresses, you’ll learn a lot about Java’s Object type,
but to start you need just a few common patterns that use Object. For example,
many classes implement an equals method with the heading that we have seen.
An equals method has one argument: an Object called obj. The method
should return true if obj has the same value as the object that activated the
method. Otherwise, the method returns false. Here is an example to show how
the equals method works for the Location class:

Location p = new Location(10, 2); // Declare p at coordinates (10,2)
Location s = new Location(10, 0); // Declare s at coordinates (10,0)

After these two declarations, we have two separate locations:

In this example, p and s refer to two separate objects with different values (their
y coordinates are different), so both p.equals(s) and s.equals(p) are false.

Here’s a slightly different example:

Location p = new Location(10, 2); // Declare p at coordinates (10,2)
Location s = new Location(10, 0); // Declare s at coordinates (10,0)
s.shift(0, 2); // Move s to (10,2)

We have the same two declarations, but afterward we shift the y coordinate of s
so that the two separate locations have identical values, like this:

Now p and s refer to identical locations, so both p.equals(s) and
s.equals(p) are true. However, the test (p == s) is still false. Remember
that (p == s) returns true only if p and s refer to the exact same location (as
opposed to two separate locations that happen to contain identical values).

Location s
Location p

A Location
object

x 10

y 2 A Location
object

x 10

y 0

Location p

A Location
object

x 10

y 2 A Location
object

x 10

y 2

Location s

java02.frm Page 73 Saturday, August 26, 2000 5:50 PM

74 Chapter 2 / Abstract Data Types and Java Classes

a location can be
compared to any
object

The argument to the equals method can be any object, not just a location. For
example, we can try to compare a location with a string, like this:

Location p = new Location(10, 2);
System.out.println(p.equals("10, 2"); // Prints false.

This example prints false; a Location object is not equal to the string "10, 2"
even if they are similar. You can also test to see whether a location is equal to null,
like this:

Location p = new Location(10, 2);
System.out.println(p.equals(null)); // Prints false.

The location is not null, so the result of p.equals(null) is false. Be careful
with the last example: The argument to p.equals may be null and the answer
will be false. However, when p itself is null, it is a programming error to acti-
vate any method of p. Trying to activate p.equals when p is null results in a
NullPointerException (see page 51).

implementing an
equals method

Now you know how to use an equals method. How do you write an equals
method so that it returns true when its argument has the same value as the object
that activates the method? A typical implementation follows an outline that is
used for the equals method of the Location class, as shown here:

public boolean equals(Object obj)
{

if ()
 {

}
else

return false;
}

the instanceof
operator

The method starts by determining whether obj actually refers to a Location
object. In pseudocode we wrote this as “obj is actually a Location”. In Java,
this is accomplished with the test . This test
uses the keyword instanceof, which is a boolean operator. On the left of the
operator is a variable, such as obj. On the right of the operator is a class name,
such as Location. The test returns true if it is valid to convert the object (obj)
to the given data type (Location). In our example, suppose that obj does not
refer to a valid Location. It might be some other type of object, or perhaps it is
simply null. In either case, we go to the else-statement and return false.

On the other hand, suppose that is true, so the
code enters the first part of the if-statement. Then obj does refer to a Location

obj is actually a Location

Figure out whether the location that obj refers to has the same
value as the location that activated this method. Return true if
they are the same, otherwise return false.

(obj instanceof Location)

(obj instanceof Location)

java02.frm Page 74 Saturday, August 26, 2000 5:50 PM

Parameters, Equals Methods, and Clones75

object. We need to determine whether the x and y coordinates of obj are the same
as the location that activated the method. Unfortunately, we can’t just look at
obj.x and obj.y because the compiler thinks of obj as a bare object with no x
and y instance variables. The solution is an expression . This
expression is called a typecast, as if we were pouring obj into a casting mold that
creates a Location object. The expression can be used to initialize a Location
reference variable, like this:

Location candidate = (Location) obj;

The typecast, on the right side of the declaration, consists of the new data type
(Location) in parentheses, followed by the reference variable that is being
cast. After this declaration, candidate is a reference variable that refers to
the same object that obj refers to. However, the compiler does know that
candidate refers to a Location object, so we can look at candidate.x and
candidate.y to see if they are the same as the x and y coordinates of the object
that activated the equals method. The complete implementation looks like this:

public boolean equals(Object obj)
{

if (obj instanceof Location)
 {

Location candidate = (Location) obj;
return (candidate.x == x) && (candidate.y == y);

}
else

return false;
}

The implementation has the return statement:

return (candidate.x == x) && (candidate.y == y);

The boolean expression in this return statement is true if candidate.x and
candidate.y are the same as the instance variables x and y. As with any
method, these instance variables come from the object that activated the method.
For future reference, the details of using a typecast are given in Figure 2.7.

Pitfall: Class Cast Exception

Suppose that you have a variable such as obj, which is an Object. You can try a
typecast to use the object as if it were another type. For example, we used the type-
cast .

What happens if obj doesn’t actually refer to a Location object? The result is
a runtime exception called ClassCastException. To avoid this, you must ensure
that a typecast is valid before trying to execute the cast. For example, the
instanceof operator can validate the actual type of an object before a typecast.

(Location) obj

PITFALL

Location candidate = (Location) obj

java02.frm Page 75 Saturday, August 26, 2000 5:50 PM

76 Chapter 2 / Abstract Data Types and Java Classes

Every Class Has an Equals Method

You may write a class without an equals method, but Java automatically
provides an equals method anyway. The equals method that Java provides is
actually taken from the Object class, and it works exactly like the == operator.
In other words, it returns true only when the two objects are the exact same
object—but it returns false for two separate objects that happen to have the
same values for their instance variables.

Using and Implementing a Clone Method

Another feature of our Location class is a method with this heading:

public Object clone()

The purpose of a clone method is to create a copy of an object. The copy is
separate from the original, so that subsequent changes to the copy won’t change

FIGURE 2.7 Typecasts

A Simple Pattern for Typecasting an Object

A common situation in Java programming is a variable or other expression that is an Object, but
the program needs to treat the Object as a specific data type such as Location. The problem is
that when a variable is declared as an Object, that variable cannot immediately be used as if it
were a Location (or some other type). For example, consider the parameter obj in the equals
method of the Location class:

public boolean equals()

Within the implementation of the equals method, we need to treat obj as a Location rather
than a mere Object. The solution has two parts: (1) Check that obj does indeed refer to a valid
Location, and (2) Declare a new variable of type Location, and initialize this new variable to
refer to the same object that obj refers to, like this:

public boolean equals(Object obj)
{

if (obj instanceof Location)
{

Location candidate = (Location) obj;
...

The expression , used in the declaration of candidate, is a typecast to tell
the compiler that obj may be used as a Location.

Object obj

The parameter, obj, is an Object

Use the instanceof operator to check that

After this declaration, candidate refers to

obj is a valid Location

the Location object that obj also refers to.

(Location) obj

java02.frm Page 76 Saturday, August 26, 2000 5:50 PM

Parameters, Equals Methods, and Clones77

the original, nor will subsequent changes to the original change the copy.
Here’s an example showing how the clone method is used for the Location
class:

Location p = new Location(10, 2); // Declare p at (10,2)
Location s = (Location) p.clone(); // Initialize as a copy of p

The expression p.clone() activates the clone method for p. The method cre-
ates and returns an exact copy of p, which we use to initialize the new location
s. After these two declarations, we have two separate locations, as shown in this
picture:

As you can see, s and p have the same values for their instance variables, but the
two objects are separate. Changes to p will not affect s, nor will changes to s
affect p.

Pitfall: A Typecast Is Needed to Use the Clone Return Value

The data type of the return value of the clone method is actually an Object and
not a Location. This is a requirement of Java. Because of this requirement, we
usually cannot use the clone return value directly. For example, we cannot write a
declaration:

Location s = p.clone();

Instead, we must apply a typecast to the clone return value, converting it to a
Location before we use it to initialize the new variable s, like this:

Location s = ;

Cloning is considerably different than using an assignment statement. For
example, consider this code that does not make a clone:

Location p = new Location(10, 2); // Declare p at coordinates (10,2)
Location s = p; // Declare s and make it refer

 // to the same object that p
// refers to

Location p

Location s

A Location
object

x 10

y 2
A Location

object

x 10

y 2

PITFALL

this has a compile-time error

(Location) p.clone()

java02.frm Page 77 Saturday, August 26, 2000 5:50 PM

78 Chapter 2 / Abstract Data Types and Java Classes

After these two declarations, we have just one location, and both variables refer
to this location:

This is the situation with an ordinary assignment. Subsequent changes to the
object that p refers to will affect the object that s refers to, because there is only
one object.

implementing a
clone method

You now know how to use a clone method. How do you implement such a
method? You should follow a three-step pattern outlined here:

1. Modify the class head. You must add the words “implements Cloneable”
in the class head, as shown here for the Location class:

public class Location

The modification informs the Java compiler that you plan to implement certain
features that are specified elsewhere in a format called an interface. The full
meaning of interfaces will be discussed in Chapter 5. At the moment, it is
enough to know that implements Cloneable is necessary when you implement
a clone method.

By the way, “Cloneable” is a misspelling of “Clonable.” Some future version
of Java may correct the spelling, but for now it’s nice to know that spell checkers
haven’t completely taken over the world.

2. Use super.clone to make a copy. The implementation of a clone method
should begin by making a copy of the object that activated the method. The best
way to make the copy is to follow this pattern from the Location class:

public Object clone()
{ // Clone a Location object.

Location answer;

try
{

answer = (Location) super.clone();
}
catch (CloneNotSupportedException e)
{

throw new RuntimeException
("This class does not implement Cloneable.");

}
...

Location p
Location s

A Location
object

x 10

y 2

implements Cloneable

java02.frm Page 78 Saturday, August 26, 2000 5:50 PM

Parameters, Equals Methods, and Clones79

In an actual implementation, you would use the name of your own class (rather
than Location), but otherwise you should follow this pattern exactly.

It’s useful to know what’s happening in this pattern. The pattern starts by
declaring a local Location variable called answer. We then have this block:

try
{

answer = (Location) super.clone();
}

This is an example of a try block. If you plan extensive use of Java exceptions,
then you should read all about try blocks in Appendix C. But for your first try
block, all you need to know is that the code in the try block is executed, and the
try block will be able to handle some of the possible exceptions that may arise in
the code. In this example, the try block has just one assignment statement:

. The right side of the assignment
activates a method called super.clone(). This is actually the clone method
from Java’s Object type. It checks that the Location class specifies that it
“implements Cloneable,” and then correctly makes a copy of the location,
assigning the result to the local variable answer.

After the try block is a sequence of one or more catch blocks. Each catch block
can catch and handle an exception that may arise in the try block. Our example
has one catch block:

catch (CloneNotSupportedException e)
{

throw new RuntimeException
("This class does not implement Cloneable.");

}

This catch block will handle a CloneNotSupportedException. This exception
is thrown by the clone method from Java’s Object type when a programmer
tries to call super.clone(), without including the implements Cloneable
clause as part of the class definition. The best solution is to throw a new Run-
timeException, which is the general exception used to indicate a programmer
error.

Anyway, after the try and catch blocks, the local variable answer refers to an
exact copy of the location that activated the clone method, and we can move to
the third part of the clone implementation.

3. Make necessary modifications and return. The answer is present, and it
refers to an exact copy of the object that activated the clone method. Sometimes,
further modifications must be made to the copy before returning. You’ll see the
reasons for such modifications in Chapter 3. However, the Location clone needs
no modifications, so the end of the clone method consists of just the return
statement: .

answer = (Location) super.clone()

return answer

java02.frm Page 79 Saturday, August 26, 2000 5:50 PM

80 Chapter 2 / Abstract Data Types and Java Classes

The complete clone implementation for the Location class looks like this,
including an indication of the likely cause of the CloneNotSupportedException:

public Object clone()
{ // Clone a Location object.

Location answer;

try
{

answer = (Location) super.clone();
}
catch (CloneNotSupportedException e)
{ // This exception should not occur. But if it does, it would indicate a

// programming error that made super.clone unavailable. The
 // most common cause would be forgetting the
 // “implements Cloneable” clause at the start of the class.
 throw new RuntimeException
("This class does not implement Cloneable.");

}

return answer;
}

The method returns the local variable, answer, which is a Location object.
This is allowed, even though the return type of the clone method is Object. A
Java Object may be anything except the eight primitive types. It might be better
if the actual return type of the clone method was Location rather than Object.
Using Location for the return type would be more accurate and would make
the clone method easier to use (without having to put a typecast with every
usage). Unfortunately, the improvement is not allowed: The return type of the
clone method must be Object.

Programming Tip: Always Use super.clone for Your Clone Methods

Perhaps you thought of a simpler way to create a clone. Instead of using
super.clone and the try/catch blocks, could you write this code:

Location answer = new Location(x, y);
return answer;

You could combine these into one statement: .
This creates and returns a new location, using the instance variables x and y to
initialize the new location. These instance variables come from the location that
activated the clone method, so answer will indeed be a copy of that location. This
is a nice direct approach, but the direct approach will encounter problems when we
start building new classes that are based on existing classes (See page 655).
Therefore, it is better to stick with the pattern that uses super.clone and a try/
catch block.

TIP

return new Location(x, y)

java02.frm Page 80 Saturday, August 26, 2000 5:50 PM

Parameters, Equals Methods, and Clones81

Programming Tip: When to Throw a Runtime Exception

A RuntimeException is thrown to indicate a programming error. For example, the
clone method from Java’s Object type is not supposed to be called by an object
unless that object’s class has implemented the Cloneable interface. If we detect
that the exception has been thrown by the Object clone method, then the pro-
grammer probably forgot to include the “implements Cloneable” clause.

When you throw a RuntimeException, include a message with your best
guess about the programming error.

A Demonstration Program for the Location Class

As one last example, let’s look at a program that creates two locations called
still and mobile. Both are initially placed at x = −2 and y = −1.5, as shown in
Figure 2.8(a). To be more precise, the still location is placed at this spot, and
then mobile is initialized as a clone of the still location. Because the mobile
location is a clone, later changes to one location will not affect the other.

The still location is at: (x=-2.0 y=-1.5)
The mobile location is at: (x=-2.0 y=-1.5)
Distance between them: 0.0
These two locations have equal coordinates.

I will rotate one location by two 90 degree turns.
The still location is at: (x=-2.0 y=-1.5)
The mobile location is at: (x=2.0 y=1.5)
Distance between them: 5.0
These two locations have different coordinates.

TIP

The program prints some infor-
mation about both locations, and
then the mobile location undergoes
two 90° rotations as shown in Fig-
ure 2.8(b). The information about
the locations is then printed a sec-
ond time.

The complete program is shown
in Figure 2.9 on page 82. Pay par-
ticular attention to the specified-
Rotation method, which illus-
trates some important principles
about what happens when a param-
eter is changed within a method.
We’ll look at those principles in a
moment, but first let’s take a look at
the complete output from the pro-
gram, as shown here:

(a) The still and
mobile locations
are initially
placed at x = –2
and y = –1.5.

FIGURE 2.8

(b) The still
(black) location
remains at the
same spot, but
the mobile
(white) location
undergoes two
90° rotations.

java02.frm Page 81 Saturday, August 26, 2000 5:50 PM

82 Chapter 2 / Abstract Data Types and Java Classes

Java Application Program

// FILE: LocationDemonstration.java
// This small demonstration program shows how to use the Location class
// from the edu.colorado.geometry package.

import edu.colorado.geometry.Location;

class LocationDemonstration
{

{
 final double STILL_X = -2.0;
 final double STILL_Y = -1.5;

final int ROTATIONS = 2;

 Location still = new Location(STILL_X, STILL_Y);
 Location mobile = (Location) still.clone();
 printData(still, mobile);

 System.out.println("I will rotate one location by two 90 degree turns.");
 specifiedRotation(mobile, ROTATIONS);
 printData(still, mobile);
 }

// Rotate a Location p by a specified number of 90 degree clockwise rotations.

{
 while (n > 0)
 {

p.rotate90();
n--;

 }
 }

 // Print some information about two locations: s (a “still” location) and m (a “mobile” location).

 {
 System.out.println("The still location is at: " + s.toString());
 System.out.println("The mobile location is at: " + m.toString());
 System.out.println("Distance between them: " + Location.distance(s, m));
 if (s.equals(m))
 System.out.println("These two locations have equal coordinates.");
 else

System.out.println("These two locations have different coordinates.");
 System.out.println();
 }
}

 FIGURE 2.9 A Demonstration Program for the Location Class

public static void main(String[] args)

public static void specifiedRotation(Location p, int n)

public static void printData(Location s, Location m)

java02.frm Page 82 Saturday, August 26, 2000 5:50 PM

Parameters, Equals Methods, and Clones83

What Happens When a Parameter Is Changed within a Method?

Let’s examine the program’s specifiedRotation method to see exactly what
happens when a parameter is changed within a method. Here is the method’s
implementation:

// Rotate a Location p by a number of 90 degree clockwise rotations.
public static void specifiedRotation(Location p, int n)
{

while (n > 0)
{

p.rotate90();
n--;

}
}

The method rotates the location p by n 90° clockwise rotations.
In Java, a parameter that is a reference variable (such as the Location p) has

different behavior than a parameter that is one of the eight primitive types (such
as int n). Here is the difference:

• When a parameter is one of the eight primitive types, the actual argument
provides an initial value for that parameter. To be more precise, the
parameter is implemented as a local variable of the method and the argu-
ment is used to initialize this variable. Changes that are made to the
parameter do not affect the actual argument.

• When a parameter is a reference variable, the parameter is initialized so
that it refers to the same object as the actual argument. Subsequent
changes to this object do affect the actual argument’s object.

For example, suppose that we have initialized a location called mobile at the
coordinates x = −2 and y = −1.5. Suppose that we also have an integer variable
called rotations, with a value of 2, as shown here:

Now, suppose the program activates specifiedRotation(mobile, rotations).
The method’s first parameter, p, is initialized to refer to the same location that
mobile refers to. And the method’s second parameter, n, is initialized with the
value 2 (from the rotations argument). So, when the method begins its work,
the situation looks like the picture at the top of the next page.

Location mobile int rotations

A Location
object

x -2

y -1.5

2

java02.frm Page 83 Saturday, August 26, 2000 5:50 PM

84 Chapter 2 / Abstract Data Types and Java Classes

The method now executes its loop:

while (n > 0)
{

p.rotate90();
n--;

}

The first iteration of the loop rotates the location by 90° and decreases n to 1.
The second iteration does another rotation of the location and decreases n to 0.
Now the loop ends, with these values for the variables:

Notice the difference between the two kinds of parameters. The integer parame-
ter n has changed to zero without affecting the actual argument rotations. On
the other hand, rotating the location p has changed the object that mobile refers
to. When the method returns, the parameters p and n disappear, leaving the
situation shown at the top of the next page.

Location mobile int rotations

A Location
object

x -2

y -1.5

2

Location p int n 2

Location mobile int rotations

A Location
object

x 2

y 1.5

2

Location p int n 0

java02.frm Page 84 Saturday, August 26, 2000 5:50 PM

Parameters, Equals Methods, and Clones85

Self-Test Exercises

17. Write some code that declares two locations: one at the origin and the
other at the coordinates x = 1 and y = 1. Print the distance between the
two locations, then create a third location that is at the midpoint between
the first two locations.

18. The location’s distance method is a static method. What effect does
this have on how the method is used? What effect does this have on how
the method is implemented?

19. What is the purpose of the Java constant Double.NaN?
20. What is the result when you add two double numbers and the answer is

larger than the largest possible double number?
21. In the midpoint method we used the expression (p1.x/2) + (p2.x/2).

Can you think of a reason why this expression is better than
(p1.x + p2.x)/2?

22. Implement an equals method for the Throttle class from Section 2.1.
23. If you don’t implement an equals method for a class, then Java automat-

ically provides one. What does the automatic equals method do?
24. Implement a clone method for the Throttle class from Section 2.1.
25. When should a program throw a RuntimeException?

Java Parameters

The eight primitive types (byte, short, int, long, char,
float, double, or boolean): The parameter is initialized
with the value of the argument. Subsequent changes to the
parameter do not affect the argument.

Reference variables: When a parameter is a reference
variable, the parameter is initialized so that it refers to the
same object as the actual argument. Subsequent changes to
this object do affect the actual argument’s object.

Location mobile int rotations

A Location
object

x 2

y 1.5

2

java02.frm Page 85 Saturday, August 26, 2000 5:50 PM

86 Chapter 2 / Abstract Data Types and Java Classes

26. Suppose that a method has an int parameter called x, and the body of
the method changes x to zero. When the method is activated, what hap-
pens to the argument that corresponds to x?

27. Suppose that a method has a Location parameter called x, and the body
of the method activates x.rotate90(). When the method is activated,
what happens to the argument that corresponds to x?

CHAPTER SUMMARY

• In Java, object-oriented programming (OOP) is supported by implement-
ing classes. Each class defines a collection of data, called its instance
variables. In addition, a class has the ability to include two other items:
constructors and methods. Constructors are designed to provide initial
values to the class’s data; methods are designed to manipulate the data.
Taken together, the instance variables, constructors, and methods of a
class are called the class members.

• We generally use private instance variables and public methods. This
approach supports information hiding by forbidding data components of a
class to be directly accessed outside of the class.

• A new class can be implemented in a Java package that is provided to
other programmers to use. The package includes documentation to tell
programmers what the new class does without revealing the details of how
the new class is implemented.

• A program uses a class by creating new objects of that class, and activat-
ing these objects’ methods through reference variables.

• When a method is activated, each of its parameters is initialized. If a
parameter is one of the eight primitive types, then the parameter is initial-
ized by the value of the argument, and subsequent changes to the parame-
ter do not affect the actual argument. On the other hand, when a parameter
is a reference variable, the parameter is initialized so that it refers to the
same object as the actual argument. Subsequent changes to this object do
affect the actual argument’s object.

• Java programmers must understand how these items work for classes:
— the assignment operator (x = y)
— the equality test (x == y)
— a clone method to create a copy of an object
— an equals method to test whether two separate objects are equal to

 — each other

java02.frm Page 86 Saturday, August 26, 2000 5:50 PM

Solutions to Self-Test Exercises87

SOLUTIONS TO SELF-TEST EXERCISES
?Solutions to Self-Test Exercises

1. We have used private instance variables,
public constructors, and public methods.

2. In this solution, the assignment to position is
not really needed since position will be
given its default value of zero before the con-
structor executes. However, including the
assignment makes it clear that we intended for
position to start at zero:
public Throttle()
{

top = 1;
position = 0;

}

3. Notice that our solution has the precondition
that size is positive, and initial lies in the
range from zero to size.
public Throttle(int size, int initial)
{

if (size <= 0)
throw new
IllegalArgumentException
("Size <= 0:" + size);

if (initial < 0)
throw new
IllegalArgumentException
("Initial < 0:" + initial);

if (initial > size)
throw new
IllegalArgumentException
("Initial too big:" + initial);

top = size;
position = initial;

}

4. The method implementation is:
public boolean isAboveHalf()
{

return (getFlow() > 0.5);
}

5. You’ll find part of a solution in Figure 13.1 on
page 618.

6. The program should include the following
statements:
Throttle exercise = new Throttle(6);
exercise.shift(3);
System.out.println(exercise.flow());

7. The control should be assigned the value of
null. By the way, if it is an instance variable of
a class, then it is initialized to null.

8. A NullPointerException is thrown.

9. Both t1 and t2 refer to the same throttle,
which has been shifted up 42 positions. So the
output is 0.42.

10. At the end of the code (t1 == t2) is true since
there is only one throttle that both variables
refer to.

11. Here is the code (and at the end t1==t2 is
false since there are two separate throttles):
Throttle t1;
Throttle t2;
t1 = new Throttle(100);
t2 = new Throttle(100);
t1.shift(42);
t2.shift(42);

12. com.knafn.statistics

13. Underneath your classes directory, create a
subdirectory com. Underneath com create a
subdirectory knafn. Underneath knafn create
a subdirectory statistics. Your package is
placed in the statistics subdirectory.

14. import com.knafn.statistics.*;

15. Java automatically imports java.lang; no
explicit import statement is needed.

java02.frm Page 87 Saturday, August 26, 2000 5:50 PM

88 Chapter 2 / Abstract Data Types and Java Classes

PROGRAMMING PROJECTS
PROGRAMMING PROJECTS

16. Public access is obtained with the keyword
public, and it allows access by any program.
Private access is obtained with the keyword
private, and it allows access only by the
methods of the class. Package access is
obtained with no keyword, and it allows
access within the package but not elsewhere.

17. Here is the code:
Location p1 = new Location(0, 0);

Location p2 = new Location(1, 1);

System.out.println

(Location.distance(p1, p2));

Location p3 =

Location.midpoint(p1, p2);

18. A static method is not activated by any one
object. Instead, the class name is placed in
front of the method to activate it. For example,
the distance between two locations p1 and p2
is computed by:
Location.distance(p1, p2);

Within the implementation of a static
method, we cannot directly refer to the
instance variables.

19. The constant Double.NaN is used when there
is no valid number to store in a double vari-
able (“not a number”).

20. The result is the constant
Double.POSITIVE_INFINITY.

21. The alternative (p1.x + p2.x)/2 has a subex-
pression p1.x + p2.x which could result in an
overflow.

22. Here is the implementation for the throttle:
public boolean equals(Object obj)
{

if (obj instanceof Throttle)
{
Throttle candidate = (Throttle) obj;
return

(candidate.top==top)
&&
(candidate.position==position);

}
else
return false;

}

23. The automatic equals method returns true
only when the two objects are the exact same
object (as opposed to two separate objects that
have the same value).

24. The solution is the same as the Location
clone on page 65, but change the Location
type to Throttle.

25. A runtimeException indicates a program-
ming error. When you throw a Runtime-
Exception, you should provide an indication
of the most likely cause of the error.

26. The argument remains unchanged.

27. The object that the argument refers to has
been rotated 90°.

Specify, design, and implement a class that
can be used in a program that simulates a
combination lock. The lock has a circular

knob, with the numbers 0 through 39 marked on the
edge, and it has a three-number combination, which
we’ll call x, y, z. To open the lock, you must turn the
knob clockwise at least one entire revolution, stop-
ping with x at the top; then turn the knob counter-
clockwise, stopping the second time that y appears at
the top; finally turn the knob clockwise again,

1 stopping the next time that z appears at the top. At
this point, you may open the lock.

Your Lock class should have a constructor that
initializes the three-number combination. Also pro-
vide methods:

(a) To alter the lock’s combination to a new
three-number combination

(b) To turn the knob in a given direction until a
specified number appears at the top

(c) To close the lock

java02.frm Page 88 Saturday, August 26, 2000 5:50 PM

Programming Projects 89

(d) To attempt to open the lock
(e) To inquire the status of the lock (open or

shut)
(f) To tell what number is currently at the top

Specify, design, and implement a class
called Statistician. After a statistician is
initialized, it can be given a sequence of

double numbers. Each number in the sequence is
given to the statistician by activating a method
called nextNumber. For example, we can declare a
statistician called s, and then give it the sequence of
numbers 1.1, –2.4, 0.8 as shown here:

Statistician s = new Statistician;
s.nextNumber(1.1);
s.nextNumber(-2.4);
s.nextNumber(0.8);

After a sequence has been given to a statistician,
there are various methods to obtain information
about the sequence. Include methods that will pro-
vide the length of the sequence, the last number of
the sequence, the sum of all the numbers in the
sequence, the arithmetic mean of the numbers (i.e.,
the sum of the numbers divided by the length of the
sequence), the smallest number in the sequence, and
the largest number in the sequence. Notice that the
length and sum methods can be called at any time,
even if there are no numbers in the sequence. In this
case of an “empty” sequence, both length and sum
will be zero. The other methods should return
Double.NaN if they are called for an empty
sequence.

Notes: Do not try to store the entire sequence
(because you don’t know how long this sequence
will be). Instead, just store the necessary informa-
tion about the sequence: What is the sequence
length, what is the sum of the numbers in the se-
quence, what are the last, smallest, and largest num-
bers? Each of these pieces of information can be
stored in a private instance variable that is updated
whenever nextNumber is activated.

Write a new static method to allow you to
“add” two statisticians from the previous
project. If s1 and s2 are two statisticians,

then the result of adding them should be a new stat-

2

3

istician that behaves as if it had all of the numbers of
s1 followed by all of the numbers of s2.

Specify, design, and implement a class that
can be used to keep track of the position of
a location in three-dimensional space. For

example, consider the location drawn here:

The location shown in the picture has three coordi-
nates: x = 2.5, y = 0, and z= 2.0. Include methods to
set a location to a specified point, to shift a location
a given amount along one of the axes, and to retrieve
the coordinates of a location. Also provide methods
that will rotate the location by a specified angle
around a specified axis.

To compute these rotations, you will need a bit of
trigonometry. Suppose you have a location with co-
ordinates x, y, and z. After rotating this location by
an angle , the location will have new coordinates,
which we’ll call , , and . The equations for the
new coordinates use the java.lang methods
Math.sin and Math.cos, as shown here:

After a rotation around the x-axis:

After a rotation around the y-axis:

After a rotation around the z-axis:

4

x-axis

y-axis

z-axis

Coordinates of
this location:
x = 2.5
y = 0
z = 2.0

θ
x' y' z'

θ
x' x=
y' y θ() z θ()sin–cos=
z' y θ() z θ()cos+sin=

θ
x' x θ() z θ()sin+cos=
y' y=
z' x– θ() z θ()cos+sin=

θ
x' x θ() y θ()sin–cos=
y' x θ() y θ()cos+sin=
z' z=

java02.frm Page 89 Saturday, August 26, 2000 5:50 PM

90 Chapter 2 / Abstract Data Types and Java Classes

In three-dimensional space, a line segment is
defined by its two endpoints. Specify, design,
and implement a class for a line segment.

The class should have two private instance variables
that are 3D locations from the previous project.

Specify, design, and implement a class for a
card in a deck of playing cards. The class
should contain methods for setting and

retrieving the suit and rank of a card.

Specify, design, and implement a class that
can be used to hold information about a
musical note. A programmer should be able

to set and retrieve the length of the note and the
value of the note. The length of a note may be a six-
teenth note, eighth note, quarter note, half note, or
whole note. A value is specified by indicating how
far the note lies above or below the A note that
orchestras use in tuning. In counting “how far,” you
should include both the white and black notes on a
piano. For example, the note numbers for the octave
beginning at middle C are shown here:

The constructor should set a note to a middle C
quarter note. Include methods to set a note to a spec-
ified length and value. Write methods to retrieve in-
formation about a note, including methods to tell
you the letter of the note (A, B, C, etc.), whether the
note is natural or sharp (i.e., white or black on the pi-
ano), and the frequency of a note in hertz. To calcu-
late the frequency, use the formula ,
where n is the note number. Feel free to include oth-
er useful methods.

5

6

7

C D E GF A B

-9 -7 -5 -2-4 0 2

C# D# G#F# A#

-8 -6 -1-3 1

Note
numbers
for the
octave of
middle C

440 2n 12⁄×

A one-variable quadratic expression is an
arithmetic expression of the form

, where a, b, and c are some
fixed numbers (called the coefficients) and x is a
variable that can take on different values. Specify,
design, and implement a class that can store infor-
mation about a quadratic expression. The construc-
tor should set all three coefficients to zero, and
another method should allow you to change these
coefficients. There should be accessor methods to
retrieve the current values of the coefficients. There
should also be a method to allow you to “evaluate”
the quadratic expression at a particular value of x
(i.e., the method has one parameter x, and returns the
value of the expression).

Also write the following static methods to per-
form these indicated operations:

public static Quadratic sum(
Quadratic q1,
Quadratic q2

)
// Postcondition: The return value is the
// quadratic expression obtained by adding
// q1 and q2. For example, the c coefficient
// of the return value is the sum of q1’s c
// coefficient and q2’s c coefficient.

public static Quadratic scale(
double r,
Quadratic q

)
// Postcondition: The return value is the
// quadratic expression obtained by
// multiplying each of q’s
// coefficients by the number r.

Notice that the first argument of the scale method
is a double number (rather than a quadratic expres-
sion). For example, this allows the method activa-
tion Quadratic.scale(3.14, q) where q is a
quadratic expression.

This project is a continuation of the previous
project. For a quadratic expression such
as , a real root is any double

number x such that . For example,
the quadratic expression has one of its

8
ax2 bx c+ +

ax2 bx c+ +

9
ax2 bx c+ +

ax2 bx c+ + 0=
2x2 8x 6+ +

java02.frm Page 90 Saturday, August 26, 2000 5:50 PM

Programming Projects 91

real roots at , because substituting
in the formula yields the value:

There are six rules for finding the real roots of a qua-
dratic expression:

(1) If a, b, and c are all zero, then every value of
x is a real root.

(2) If a and b are zero, but c is nonzero, then there
are no real roots.

(3) If a is zero, and b is nonzero, then the only
real root is .

(4) If a is nonzero and , then there are
no real roots.

(5) If a is nonzero and , then there is
one real root .

(6) If a is nonzero, and , then there are
two real roots:

Write a new method that returns the number of real
roots of a quadratic expression. This answer could
be 0, or 1, or 2, or infinity. In the case of an infinite
number of real roots, have the method return 3. (Yes,
we know that 3 is not infinity, but for this purpose it
is close enough!) Write two other methods that cal-
culate and return the real roots of a quadratic expres-
sion. The precondition for both methods is that the
expression has at least one real root. If there are two
real roots, then one of the methods returns the small-
er of the two roots, and the other method returns the
larger of the two roots. If every value of x is a real
root, then both methods should return zero.

Specify, design, and implement a class that
can be used to simulate a lunar lander, which
is a small spaceship that transports astro-

nauts from lunar orbit to the surface of the moon.
When a lunar lander is constructed, the following
items should be initialized as follows:

x 3–= x 3–=
2x2 8x 6+ +

2 32–()× 8 3–()× 6+ + 0=

x c b⁄–=

b2 4ac<

b2 4ac=
x b 2⁄ a–=

b2 4ac>

x
b– b

2 4ac––
2a

--------------------------------------=

x
b– b2 4ac–+

2a
--------------------------------------=

10

(1) Current fuel flow rate as a fraction of the
maximum fuel flow (initially zero)

(2) Vertical speed of the lander (initially zero
meters/sec)

(3) Altitude of the lander (specified as a parame-
ter of the constructor)

(4) Amount of fuel (specified as a parameter of
the constructor)

(5) Mass of the lander when it has no fuel (spec-
ified as a parameter of the constructor)

(6) Maximum fuel consumption rate (specified
as a parameter of the constructor)

(7) Maximum thrust of the lander’s engine (spec-
ified as a parameter of the constructor)

Don’t worry about other properties (such as horizon-
tal speed).

The lander has accessor methods that allow a
program to retrieve the current values of any of the
preceding seven items. There are only two modifica-
tion methods, described below.

The first modification method changes the cur-
rent fuel flow rate to a new value ranging from 0.0
to 1.0. This value is expressed as a fraction of the
maximum fuel flow.

The second modification method simulates the
passage of a small amount of time. This time, called
t, is expressed in seconds and will typically be a
small value such as 0.1 seconds. The method will
update the first four values in the preceding list, to
reflect the passage of t seconds. To implement this
method, you will require a few physics formulas list-
ed below. These formulas are only approximate, be-
cause some of the lander’s values are changing
during the simulated time period. But if the time
span is kept short, these formulas will suffice.

Fuel flow rate: Normally, the fuel flow rate does
not change during the passage of a small amount of
time. But there is one exception: If the fuel flow rate
is greater than zero, and the amount of fuel left is
zero, then you should reset the fuel flow rate to zero
(because there is no fuel to flow).

Velocity change: During t seconds, the velocity
of the lander changes by approximately this amount
(measured in meters/sec):

t
f
m
---- 1.62–

 ×

java02.frm Page 91 Saturday, August 26, 2000 5:50 PM

92 Chapter 2 / Abstract Data Types and Java Classes

The value m is the total mass of the lander, measured
in kilograms (i.e., the mass of a lander with no fuel,
plus the mass of any remaining fuel). The value f is
the thrust of the lander’s engine, measured in new-
tons. You can calculate f as the current fuel flow rate
times the maximum thrust of the lander. The number
–1.62 is the downward acceleration from gravity on
the moon.

Altitude change: During t seconds, the altitude
of the lander changes by meters, where v is the
vertical velocity of the lander (measured in meters/
sec, with negative values downward).

Change in remaining fuel: During t seconds,
the amount of remaining fuel is reduced by
kilograms. The value of r is the current fuel flow
rate, and c is the maximum fuel consumption (mea-
sured in kilograms per second).

We suggest that you calculate the changes to the
four items in the order just listed. After all the
changes have been made, there are two further ad-
justments. First, if the altitude has dropped below
zero, then reset both altitude and velocity to zero (in-
dicating that the ship has landed). Second, if the total
amount of remaining fuel drops below zero, then re-
set this amount to zero (indicating that we have run
out of fuel).

In this project you will design and imple-
ment a class that can generate a sequence
of pseudorandom integers, which is a

sequence that appears random in many ways. The
approach uses the linear congruence method, ex-
plained below. The linear congruence method starts
with a number called the seed. In addition to the
seed, three other numbers are used in the linear con-
gruence method, called the multiplier , the incre-
ment, and the modulus. The formula for generating

t v×

t r c××

11

a sequence of pseudorandom numbers is quite sim-
ple. The first number is:

(multiplier * seed + increment) % modulus

This formula uses the Java % operator, which com-
putes the remainder from an integer division.

Each time a new random number is computed,
the value of the seed is changed to that new number.
For example, we could implement a pseudorandom
number generator with multiplier = 40, incre-
ment = 3641, and modulus = 729. If we choose the
seed to be 1, then the sequence of numbers will pro-
ceed as shown here:

First number
= (multiplier * seed + increment) % modulus
= (40 * 1 + 3641) % 729
= 36
and 36 becomes the new seed.

Next number
= (multiplier * seed + increment) % modulus
= (40 * 36 + 3641) % 729
= 707
and 707 becomes the new seed.

These particular values for multiplier, increment,
and modulus happen to be good choices. The pattern
generated will not repeat until 729 different numbers
have been produced. Other choices for the constants
might not be so good.

For this project, design and implement a class
that can generate a pseudorandom sequence in the
manner described. The initial seed, multiplier, incre-
ment, and modulus should all be parameters of the
constructor. There should also be a method to permit
the seed to be changed, and a method to generate
and return the next number in the pseudorandom
sequence.

java02.frm Page 92 Saturday, August 26, 2000 5:50 PM

Programming Projects 93

Add a new method to the random number
class of the previous project. The new
method generates the next pseudorandom

number but does not return the number directly. In-
stead, the method returns this number divided by the
modulus. (You will have to cast the modulus to a
double number before carrying out the division; oth-
erwise, the division will be an integer division,
throwing away the remainder.)

The return value from this new member function
is a pseudorandom double number in the range
[0..1). (The square bracket, ‘[‘, indicates that the
range does include 0, but the rounded parenthesis,
‘)’, indicates that the range goes up to 1, without ac-
tually including 1.)

Run some experiments to determine the dis-
tribution of numbers returned by the new
pseudorandom method from the previous

project. Recall that this method returns a double
number in the range [0..1). Divide this range into
ten intervals, and call the method one million times,
producing a table such as shown here:

Range Number of Occurrences
[0.0..0.1) 99889
[0.1..0.2) 100309
[0.2..0.3) 100070
[0.3..0.4) 99940
[0.4..0.5) 99584
[0.5..0.6) 100028
[0.6..0.7) 99669
[0.7..0.8) 100100
[0.8..0.9) 100107
[0.9..1.0) 100304

Run your experiment for different values of the
multiplier, increment, and modulus. With good
choices of the constants, you will end up with about

12

13

10% of the numbers in each interval. A pseudoran-
dom number generator with this equal-interval be-
havior is called uniformly distributed.

This project is a continuation of the previous
project. Many applications require pseudo-
random number sequences that are not uni-

formly distributed. For example, a program that
simulates the birth of babies can use random num-
bers for the birth weights of the newborns. But these
birth weights should have a Gaussian distribution.
In a Gaussian distribution, numbers form a bell-
shaped curve in which values are more likely to fall
in intervals near the center of the overall distribu-
tion. The exact probabilities of falling in a particular
interval can be computed by knowing two numbers:
(1) a number called the variance, which indicates
how widely spread the distribution appears, and (2)
the center of the overall distribution, called the me-
dian. For this kind of distribution, the median is
equal to the arithmetic average (the mean) and equal
to the most frequent value (the mode).

Generating a pseudorandom number sequence
with an exact Gaussian distribution can be difficult,
but there is a good way to approximate a Gaussian
distribution using uniformly distributed random
numbers in the range [0..1). The approach is to
generate three pseudorandom numbers , , and

, each of which is in the range [0..1). These
numbers are then combined to produce the next
number in the Gaussian sequence. The formula to
combine the numbers is:

Next number in the Gaussian sequence

Add a new method to the random number class,
which can be used to produce a sequence of pseudo-
random numbers with a Gaussian distribution.

14

r1 r2
r3

= median 2 r1 r2 r3+ +() 3–×() variance×+

java02.frm Page 93 Saturday, August 26, 2000 5:50 PM

94 Chapter 2 / Abstract Data Types and Java Classes

java02.frm Page 94 Saturday, August 26, 2000 5:50 PM

