=

é% java02.frm Page 35 Saturday, August 26, 2000 5:50 PM

Abstract Data Types and Java Classes CHAPTER
The happiest way to deal with a man is never to tell him 2
anything he does not need to know.

2.1
2.2
2.3
2.4

ROBERT A. HEINLEIN
Time Enough for Love

CLASSES AND THEIR MEMBERS

USING A CLASS

PACKAGES

PARAMETERS, EQUALS METHODS, AND CLONES
CHAPTER SUMMARY

SOLUTIONS TO SELF-TEST EXERCISES
PROGRAMMING PROJECTS

Object-oriented programmingdQP) is an approach to pro-

gramming where data occurs in tidy packages calbgects Manipulation of an
object happens with functions callegtthodshich are part and parcel of their
objects. The Java mechanism to create objects and methods is cdissl la

fact, the keyword:1ass at the start of each Java application program indicates
that the program is itself a class with its own methods to carry out tasks.

This chapter moves you beyond small Java application programs. Your goal
is to be able to write general purpose classes that can be used by many different
programs. Each general purpose class will capture a certain functionality, and an
application programmer can look through the available classes to select those
that are useful for the job at hand.

35

4 2k

*

4‘9 java02.frm Page 36 Saturday, August 26, 2000 5:50 PM

36 Chapter 2 / Abstract Data Types and Java Classes

ADTs
emphasize the
specification
rather than the
implementation

For example, consider a programmer who is writing an application to simulate
a Martian lander as it goes from orbit to the surface of Mars. This programmer
could use classes to simulate the various mechanical components of the lander—
the throttle that controls fuel flow, the rocket engine, and so on. If such classes
are readily available in a package of “mechanical component classes,” then the
programmer could select and use the appropriate classes. Typically, one
programming team designs and implements such classes, and other programmers
use the classes. The programmers who use the classes must be provided with a
specificationof how the classes work, but they need no knowledge of how the
classes aremplemented

The separation of specification from implementation is an exam oot
mation hiding which was presented as a cornerstone of program design in
Chapter 1. Such a strong emphasis on information hiding is partly motivated by
mathematical research about how programmers can improve their reasoning
about data types that are used in programs. These mathematical data types are
calledabstract data types,or ADTs—and therefore, programmers sometimes
use the term\DT to refer to a class that is presented to other programmers with
information hiding. This chapter presents two examples of such classes. The
examples illustrate the features of Java classes, with emphasis on information
hiding. By the end of the chapter you will be able to implement your own classes
in Java. Other programmers couiseone of your classes without knowing the
details ofhowyou implemented the class.

2.1 CLASSES AND THEIR MEMBERS

A class is a new kind of data type. Each of your classes includes vdatas
such as integers, characters, and so on. In addition, a class has the ability to
include two other itemgonstructorandmethodsConstructors are designed to
provide initial values to the class’s data; methods are designed to manipulate the
data. Taken together, the data, constructors, and methods of a class are called the
classmembers

But this abstract discussion does not really tell you what aisladte need
some examples. As you read the first example, concentrate on learning the tech-
niques for implementing a class. Also notice how you use a class written by
another programmer, without knowing details of the class’s implementation.

PROGRAMMING EXAMPLE: The Throttle Class

Our first example of a class is a new data type to store and manipulate
the status of a mechanical throttle. An object of this new class holds
information about a throttle, as shown in the picture. The throttle is a
lever that can be moved to control fuel flow. The throttle we have in
mind has a single shutoff point (where there is no fuel flow) and a
sequence of several on positions where the fuel is flowing at

4~ 4

.

45 java02.frm Page 37 Saturday, August 26, 2000 5:50 PM

—& @

Classes and Their Members37

progressively higher rates. At the topmost position, the fuel flow is fully on. At
intermediate positions, the fuel flow is proportional to the location of the lever.
For example, with six possible positions, and the lever in the fourth position, the
fuel flows at: of its maximum rate.

A constructor is designed to provide initial values to a class’s data. The throt-
tle constructor permits a program to create a new throttle with a specified number
of “on positions” above the shutoff position. For instance, a throttle for a lawn
mower could specify six positions, whereas a throttle for a Martian lander could
specify 1000 positions. The throttle’s lever is initially placed in the shutoff
position.

Once a throttle has been initialized, there two methods to shift the throttle’s
lever: One of the methods shifts the lever by a given amount, and the other
method returns the lever to the shutoff position. We also have two methods to
examine the status of a throttle. The first of these methods returns the amount of
fuel currently flowing, expressed as a proportion of the maximum flow. For
example, this method will return approximately 0.667 when a six-position throt-
tle is in its fourth position. The other method returns a true-or-false value, telling
whether the throttle is currently on (that is, whether the lever is above the shutoff
position). Thus, the throttle has one constructor and four methods listed here:

* A constructor to create a new throttle with one shutoff position andre throttle

specified number of on positions (the lever starts in the shutoff positior;?)?nsl{/f,ucgf and
our tnrottle
« A method that returns the fuel flow, expressed as a proportion of the maghods

imum flow
« A method to tell us whether the throttle is currently on
« A method to shift a throttle’s lever by a given amount
* A method to set the throttle’s lever back to the shutoff position

Defining a New Class

We're ready to define a new Java class caftetttle. The new class includes
data (to store information about the throttle) plus the constructor and methods
listed above. Once thehrottle class is defined, a programmer can create
objects of typ@hrottle and manipulate those objects with the methods.

Here’s an outline of thehrottle class definition:

public class Throttle

{ declaring the
private int top; // The topmost position of the lever Throttle class
private int position; // The current position of the lever

This part of the class definition provides the implementations
of the constructor and methods.

.
4~ ~s

4‘9 java02.frm Page 38 Saturday, August 26, 2000 5:50 PM

—& @

38 Chapter 2 / Abstract Data Types and Java Classes

This class definition defines a new data type callecbttle. The definition

starts with theclass headwhich consists of the Java keyworglsh1ic class,
followed by the name of the new class. The keywuitdl i c is hecessary before
theclass because we want to allow all other programmers (the “public”) to use
the new class. The name of the class may be any legal identifier. We chose the
nameThrottle. We always use a capital letter for the first character of names
of new classes—this isn't required by Java, but it's a common programming
style, making it easy to identify class names.

three varieties of The rest of the class definition, between the two brackets, lists all the compo-
class members nents of the class. These components are calgdbersof the class and they
appear in the come in three varieties: instance variables, constructors, and methods.

class definition
Instance Variables

The first kind of member is a variable declaration. These variables are called
instance variables(or sometimes “member variables”). Therottle has two
instance variables:

private int top; // The topmost position of the lever
private int position; // The current position of the lever

Each instance variable stores some piece of information about the status of an
object. For example, consider a throttle with six possible positions and the lever
in the fourth position. This throttle would hawvep=6 andposition=4.

The keywordbrivate occurs in front of each of our instance variables. This
keyword means that programmers who use the new class have no way to read or
assign values directly to the private instance variables. It is possible to have pub-
lic instance variables that can be accessed directly, but public instance variables
tend to reveal too much information about how a class is implemented, violating
the principle of information hiding. Therefore, our examples will use private
instance variables. All access to private instance variables is carried out through
the constructors and methods that are provided with the class.

Constructors

The second kind of member is a constructor. A constructor is a method that is
responsible for initializing the instance variables. For example, our constructor
creates a throttle with a specified number of on positions above the shutoff posi-
tion. This constructor sets the instance variableto a specified number, and
setsposition to zero (so that the throttle is initially shut off).

For the most part, implementing a constructor is no different than your past
work (such as implementing a method for a Java application). The primary dif-
ference is that a constructor has access to the class’s instance variables, and is
responsible for initializing these variables. Thus, a throttle constructor must pro-
vide initial values taop andposition. Before you implement the throttle con-
structor, you must know the several rules that make constructors special:

.
4~ ~s

%9 java02.frm Page 39 Saturday, August 26, 2000 5:50 PM

—&| @

Classes and Their Members39

» Before any constructor begins its work, all instance variables are assigned
Java “default values.” For example, the Java default value for any number
variable is zero.

» If an instance variable has an initialization value with its declaration, the
initialization value replaces the default value. For example, suppose we
have this instance variable:

int jackie = 42;
The instance variablgackie is first given its default value of zero; then
the zero is replaced by the initialization value of 42.

» The name of a constructor must be the same as the name of the class. In our
example, the name of the constructofigottle. This seems strange:
Normally weavoidusing the same name for two different things. But it is
a requirement of Java that the constructor use the same name as the class.

» A constructor is not really a method, and therefore it does notdmyve
return value. Because of this, you mostwrite void (or any other return
type) at the front of the constructor’s head. The compiler knows that every
constructor has no return value, but a compiler error occurs if you actually
write void at the front of the constructor’s head.

With these rules, we can write the throttle’s constructor as shown here (with its
specification following the format from Section 1.1):

o Constructor for the Throttle
public Throttle(int size)
Construct ahrottle with a specified number of on positions.
Parameters:
size — the number of on positions for this nBwottle
Precondition:
size > 0.
Postcondition:
ThisThrottle has been initialized with the specified number of on
positions above the shutoff position, and it is currently shut off.
Throws: I11egalArgumentException
Indicates thatize is not positive.

public Throttle(int size)

if (size <= 0)

throw new ITlegalArgumentException("Size <= 0:
top = size;
// No assignment needed for position -- it gets the default value of zero.

+ size);

This constructor setsop according to the parametet,ze. It does not explicitly
setposition, but the comment in the implementation indicates that we did not

.
4~ ~s

4‘9 java02.frm Page 40 Saturday, August 26, 2000 5:50 PM

*

40 Chapter 2/ Abstract Data Types and Java Classes

just forget abouposition—the default value of zero is its correct initial value.
The implementation is preceded by the keyward11ic to make it available to
all programmers.

a class may The throttle has just one constructor, just one way of setting the initial values

have many of the instance variables. Some classes may have many different constructors
different that set initial values in different ways. If there are several constructors, then each
constructors constructor must have a distinct sequence of parameters to distinguish it from the

other constructors.

No-Arguments Constructors

Some classes have a constructor with no parameters, calledrguments
constructor. In effect, a no-arguments constructor does not need any extra
information to set the initial values of the instance variables.

If you write a class with no constructors at all, then Java automatically pro-
vides a no-arguments constructor that initializes each instance variable to its
initialization value (if there is one) or to its default value (if there is no specified
initialization value). There is one situation where Java does not provide an auto-
matic no-arguments constructor, and you'll see this situation when you write
subclasses in Chapter 13.

Methods

The third kind of class member is a method. A method does computations that
access the class’s instance variables. Classes tend to have two kinds of methods:

1. Accessor methods.An accessor methodjives information about an object
without altering the object. In the case of the throttle, an accessor method can
return information about the status of a throttle, but it must not change the posi-
tion of the lever.

2. Modification methods. A modification method may change the status of
an object. For a throttle, a modification method may shift the lever up or down.

Each class method is designed for a specific manipulation of an object—in
our case, the manipulation of a throttle. To carry out the manipulations, each of
the throttle methods has access to the throttle’s instance variabjesnd
position. The methods can examinep andposition to determine the cur-
rent status of the throttle, @sp andposition can be changed in order to alter
the status of the throttle. Let’s look at the details of the implementations of the
throttle methods, beginning with the accessor methods.

Accessor Methods

Accessor methods provide information about an object without changing the
object. Accessor methods are often short, just returning the value of an instance

.

4~ 4

—& @

4‘9 java02.frm Page 41 Saturday, August 26, 2000 5:50 PM

Classes and Their Memberstl

variable or performing a computation with a couple of instance variables. The
first of the throttle accessor methods computes the current flow as a proportion
of the maximum flow. The specification and implementation are shown here:

o getFlow
public double getFlow()

Get the current flow of thishrottle.

Returns:
the current flow rate (always in the range [0.0 ... 1.0]) as a proportion
of the maximum flow

public double getFlow()
{
return (double) position / (double) top;

}

Accessor methods often have no parameters, no precondition, and only a simgdesor
return condition in the specification. How does an accessor method manage/thods often
no parameters? It needs no parameters because all of the necessary infor

is available in the instance variables. parameters

Pitfall: Integer Division Throws Away the Fractional Part

The getFlow implementation computes and returns a fractional value. For exam-
ple, if position is 4 and top is 6, then getF1ow returns approximately 0.667. In order
to get a fractional result in the answer, the integer numbers position and top
cannot simply be divided with the expression position/top, since this would
result in an integer division (g results in the quotient 0, discarding any remainder).
Instead, we must force Java to compute a fractional division by changing the integer
values to double values. For example, expression (double) position is a “cast”
that changes the integer value of position to a double value to use in the division.

The throttle’'s second accessor method returns a true-or-false value indicating
whether the fuel flow is on. Here is this method with its specification:

o isOn
public boolean isOn()
Check whether thishrottle is on.
Returns:
If this Throttle's flow is above zero, then the return valuerise;
otherwise the return value false.

public boolean isOn()
{

}

return (position > 0);

\

@ [o—

—& @

4‘9 java02.frm Page 42 Saturday, August 26, 2000 5:50 PM

42 Chapter 2 / Abstract Data Types and Java Classes

/A TP

modification
methods are
usually void

Programming Tip: Use the Boolean Type for True-or-False Values

Java’s basic boolean type may be relatively unfamiliar. You should use the boolean
type for any true-or-false value such as the return value of the isOn method. The
return statement for a boolean method can be any boolean expression, for example
a comparison such as (position > 0). In this example, if position is greater
than zero, then the comparison is true, and isOn returns true. On the other
hand, if position is equal to zero, then the comparison is false, and isOn returns
false.

By the way, the name “boolean” is derived from the name of George Boole, a
19th-century mathematician who developed the foundations of a formal calculus of
logical values. Boole was a self-educated scholar with limited formal training. He
began his teaching career at the age of 16 as an elementary school teacher and
eventually took a position as professor at Queen’s College in Cork. As a dedicated
teacher, he died at the age of only 49—the result of pneumonia brought on by a
two-mile trek through the rain to lecture to his students.

Modification Methods

There are two more throttle methods. These twonasdification methods
which means that they are capable of changing the values of the instance vari-
ables. Here is the first modification method:

o ShutOff
public void shutOff()
Turn off thisThrottle.

Postcondition:
ThisThrottle’s flow has been shut off.

public void shutOff()
{

}

position = 0;

Madification methods are usualyid, meaning that there is no return value. In
the specification of a modification method, the method’s work is fully described
in the postcondition.

The throttle’sshut0ff method has no parameters—it doesn’t need parame-
ters because it just moves the throttle’'s position down to zero, shutting off the
flow. However, most modification methods do have parameters, such as a throt-
tle method to shift the throttle’s lever by a specified amount. sHiist method
has one integer parameter cabdadunt. If amount is positive, then the throttle’s
lever is moved up by thaimount (but never beyond the topmost position). A
negativeamount causes the lever to move down (but never below zero). The
specification and implementation appear at the top of the next page.

4~ 4

\

%9 java02.frm Page 43 Saturday, August 26, 2000 5:50 PM

*

Classes and Their Member#l3

o shift
public void shift(int amount)
Move thisThrottle’s position up or down.

Parameters:
amount —the amount to move the position up or down (a positive amount
moves the position up, a negative amount moves it down)

Postcondition:
ThisThrottle’s position has been moved by the specified amount. If the
result is more than the topmost position, then the position stays at the
topmost position. If the result is less than the zero position, then the
position stays at the zero position.

public void shift(int amount)
{

if (amount > top - position)
// Adding amount would put the position above the top.
position = top;

else if (position + amount < 0)
// Adding amount would put the position below zero.
position = 0;

else
// Adding amount puts position in the range [0...top].
position += amount;

}

This might be the first time you've seen theoperator. Its effect is to take the
value on the right side (such asount) and add it to what's already in the vari-
able on the left (such a®sition). This sum is then stored back in the variable
on the left side of=.

Theshift method requires care to ensure that the position does not go above
the topmost position nor below zero. For example, the first test in the method
checks whetheXamount > top - position). If so, then addingimount to
position would push theposition over top. In this case, we simply set
position to top.

It is tempting to write the tegtamount > top - position) in a slightly dif-
ferent way, like this:

if (position + amount > top)
// Adding amount would put the position above the top.
position = top;

This seems okay at first glance, but there is a potential problem: What happens
if both position andamount are large integers such as 2,000,000,000? The
subexpressioposition + amount should be 4,000,000,000, but Java tries to
temporarily store the subexpression as a Java integer, which is limited to the
range-2,147,483,648 to 2,147,483,647. The result imdhmetic overflow,

which is defined as trying to compute or store a number that is beyond the legal

@ [o—

4~ 4]

4‘9 java02.frm Page 44 Saturday, August 26, 2000 5:50 PM

—& @

44 Chapter 2 / Abstract Data Types and Java Classes

range of the data type. When an arithmetic overflow occurs, the program might
stop with an error message or it might continue computing with wrong data.

We avoided the arithmetic overflow by rearranging the first test to avoid the
troublesome subexpression. The test we use is:

if (amount > top - position)
// Adding amount would put the position above the top.
position = top;

This test uses the subexpresstop - position. Sincetop is never negative,
andposition is in the rangdo. . .top], the subexpressiotop - position is
always a valid integer in the range. . . top].

What about the second test in the method? In the second test, we use the sub-
expressiorposition + amount, but at this pointposition + amount can no
longer cause an arithmetic overflow. Do you see why@df tion + amount is
bigger thantop, then the first test would have beetue and the second test is
never reached. Therefore, by the time we reach the second test, the subexpression
position +amount is guaranteed to be in the rarfg@ount. . . top], and arith-
metic overflow cannot occur.

. Pitfall: Potential Arithmetic Overflows
Check all arithmetic expressions for potential arithmetic overflow. The limitations for

Java variables and subexpressions are given in Appendix A. Often you can rewrite
an expression to avoid overflow, or you can use Tong variables (with a range from
—9,223,372,036,854,775,808 to 9,223,372,036,854,775,807). If overflow cannot be
avoided altogether, then include a note in the documentation to describe the situa-
tion that causes overflow.

the name ofthe We have completed thenrottle class implementation and can now put the
Java file must complete definition in a file callethrottle.java, as shown in Figure 2.1. The

match the name name of the file must bEhrottle. java since the class Ehrott1e.
of the class

FIGURE 2.1 Specification and Implementation for the Thrott1e Class

Class Throttle

O public class Throttle
A Throttle Object simulates a throttle that is controlling fuel flow.

(continued)

.
4~ ~s

%9 java02.frm Page 45 Saturday, August 26, 2000 5:50 PM

i

Classes and Their Member#l5

(FIGURE 2.1 continued)

Specification

» Constructor for the Throttle
public Throttle(int size)
Construct ahrottle with a specified number of on positions.
Parameters:
size — the number of on positions for this newottle
Precondition:
size > 0.
Postcondition:
ThisThrottle has been initialized with the specified number of on positions above the
shutoff position, and it is currently shut off.
Throws: I11egalArgumentException
Indicates thatize is not positive.

- getFlow
public double getFlow()
Get the current flow of thishrottle.

Returns:
the current flow rate (always in the range [0.0 ... 1.0]) as a proportion of the maximum flow

o isOn
public boolean isOn()
Check whether thishrottle is on.
Returns:
If this Throttle's flow is above zero, then the return valuerise; otherwise the return value
IS false.

o shift

public void shift(int amount)

Move thisThrottle’s position up or down.

Parameters:
amount — the amount to move the position up or down (a positive amount moves the position
up, a negative amount moves it down)

Postcondition:
ThisThrottle’s position has been moved by the specified amount. If the result is more than
the topmost position, then the position stays at the topmost position. If the result is less than
the zero position, then the position stays at the zero position.

o shutOff
public void shutOff()
Turn off thisThrottTe.

Postcondition:
This Throttle has been shut off. (continued)

.
4~ ~s

i

%9 java02.frm Page 46 Saturday, August 26, 2000 5:50 PM

46 Chapter 2 / Abstract Data Types and Java Classes

(FIGURE 2.1 continued)

Implementation

// File: Throttle.java

public class Throttle

{

private int top; // The topmost position of the throttle
private int position; // The current position of the throttle

public Throttle(int size)

{
if (size <= 0)
throw new ITlegalArgumentException("Size <= 0: " + size);
top = size;
// No assignment needed for position -- it gets the default value of zero.
}
public double getFlow()
{
return (double) position / (double) top;
}
public boolean isOn()
{
return (getFlow() > 0);
}
public void shift(int amount)
{
if (amount > top - position)
// Adding amount would put the position above the top.
position = top;
else if (position + amount < 0)
// Adding amount would put the position below zero.
position = 0;
else
// Adding amount puts position in the range [0O...top].
position += amount;
}
public void shutOff()
{
position = 0;
}

\

4‘9 java02.frm Page 47 Saturday, August 26, 2000 5:50 PM

*

Classes and Their Memberst7

Methods May Activate Other Methods

The throttle’sisOn method in Figure 2.1 has one change from the original
implementation. The change is highlighted here:

public boolean isOn()
{

}

return (getFlow() > 0);

In this implementation, we have checked whether the flow is on by calling the
getFlow method rather than looking directly at #wesition instance variable.

Both implementations work: Using position directly probably executes quicker,
but you could argue that usiagtF1ow makes the method’s intent clearer. Any-
way, the real purpose of this change is just to illustrate that one method can call
another to carry out a subtask. In this examplej the method callgetFlow.

An OOP programmer usually would use slightly different terminology, saying
that theisOn methodactivated the f1ow method Activating a method is noth-

ing more than OOP jargon for “calling a method.”

Programming Tip: Private Versus Public

Our Throttle class follows a common pattern: The data about a throttle is stored
in private instance variables, indicated by the keyword private before each decla-
ration of an instance variable. A throttle is manipulated through public methods,
indicated by the keyword pub1ic before each implementation of a method.

The pattern of “private data, public methods” is a good idea. It forbids other pro-
grammers from using our instance variables in unintended ways. Later you will see
examples that include private methods (i.e., methods that can be activated within
other methods of the class, but may not be used by other programmers). For now,
though, the common pattern will serve you well.

Self-Test Exercises

1. Name and describe the three kinds of class members we have used. In
this section, which kinds of members were public and which were
private?

2. Write a new throttle constructor with no arguments. The constructor sets
the top position to 1 and sets the current position off.

3. Write another throttle constructor with two arguments: the total number
of positions for the throttle, and its initial position.

4. Add a new throttle method that will retutnue if the current flow is
more than half. The body of your implementation should actiyate
Flow.

@ [o—

4~ 4]

—& @

%9 java02.frm Page 48 Saturday, August 26, 2000 5:50 PM

48 Chapter 2 / Abstract Data Types and Java Classes

programs can
create new
objects of a
class

5. Design and implement a class caltddck. A Clock object holds one
instance of a time value such as 9#8 Have at least these public
methods:

« A no-arguments constructor that initializes the time to midnight—see
page 40 for the discussion of a no-arguments constructor

* A method to explicitly assign a given time—you will have to give
some thought to appropriate arguments for this method

* Methods to retrieve information: the current hour, the current minute,
and a boolean method to determine whether the time is at or before
noon

« A method to advance the time forward by a given number of minutes
(which could be negative to move the clock backward or positive to
move the clock forward)

2.2 USING A CLASS

How do you use a new class suchrasott1e? Within any program, you may
create new throttles, and refer to these throttles by names that you define. We
can illustrate the general syntax for creating and using these objects by an
example.

Creating and Using Objects

Suppose a program needs a new throttle with 100 positions above the shutoff.
Within the program, we want to refer to the throttle by the nesnerol. The
Java syntax has these parts:

Throttle control = new Throttle(100);

The first part of this statementrhrottle control—declares a new variable
calledcontrol. Thecontrol variable is capable of refering to a throttle. The
second part of the statememtew Throttle(100)—creates a new throttle and
initializes contro1 to refer to this new throttle. A new throttle that is created in
this way is called @hrottle object.

There are a few points to notice about the syntax for creating ahmewt1e
object:new is a keyword to create a hew objelttrottie is the data type of the
new object; and100) is the list of parameters for the constructor of the new
object. So, we are creating a new throttle and 100 is the argument for the con-
structor, so the new throttle will have 100 positions above the shutoff.

.
4~ ~s

%9 java02.frm Page 49 Saturday, August 26, 2000 5:50 PM

—& @

Using a Class 49

Once the throttle is created, we can refer to the throttle by the name that we
selectedcontrol. For example, suppose we want to shift the lever up to its third
notch. We do this by calling thehi ft method, as shown here:

control.shift(3);

Calling a method always involves these four pieces:

1. Start with a reference to the object that you are manipulating. In this
example, we want to manipulatentrol, so we begin with ¢ontrol”.
Remember that you cannot just call a method—you must always indicate
which object is being manipulated.

2. Next, place a single period. how to use a

3. Next, write the name of the method. In our example, we calither 7€thod
method, so we write control.shift"—which you can pronounce
“control dot shift.”

4. Finally, list the parameters for the method call. In our exansphft
requires one parameter, which is the amount (3) that we are shifting the
throttle. Thus, the entire statementistrol.shift(3);

Our example called thehift method. As you've seen before, OOP program-
mers like their own terminology and they would say that agévated the
shift method. In the rest of the text, we'll try to use “activate” rather than
“call.” (This will keep us on the good side of OOP programmers.)

As another example, here is a sequence of several statements to set a throttle
to a certain point, and then print the throttle’s flow:

final int SIZE = 8
final int SPOT = 3

// The size of the Throttle
// Where to move the Throttle’s lever

Throttle small = new Throttle(SIZE);

small.shift(SPOT);

System.out.print("My small throttle is now at position ");
System.out.println(SPOT + " out of " + SIZE + “.”);
System.out.println("The flow is now: " + small.getFlow());

Notice how the return value @imall.getFlow is used directly in the output
statement. As with any other method, the return value of an accessor method can
be used as part of an output statement or other expression. The output from this
code is:

My small throttle is now at position 3 out of 8.
The flow 1is now: 0.375

.
4~ ~s

%9 java02.frm Page 50 Saturday, August 26, 2000 5:50 PM

*

50 Chapter 2/ Abstract Data Types and Java Classes

A Program with Several Throttle Objects

A single program may have many throttle objects. For example, this code will
declare two throttle objects, shifting each throttle to a different point:

Throttle tiny = new Throttle(4);
Throttle huge new Throttle(10000);

tiny.shift(2);
huge.shift(2500);

Here’s an important concept to keep in mind:

When a program has several objects of the same type, each
object has its own copies of the instance variables.

In the example above;ny has its own instance variablasg will be 4 and
position will be 2);huge also has its own instance variablesp(will be 10000
andposition will be 2500). When we activate a method suchiay . shi ft,
the method uses the instance variables freimy; when we activate
huge.shift, the method uses the instance variables tioge.

The variables in our examplesentrol, small, tiny, huge—are called
reference variablesbecause they are used riefer to objects (in our case,
throttles). There are several differences between a reference variable (used by
Java for all classes) and an ordinary variable (used by Java for the primitive data
types ofint, char, and so on). Let’s look at these differences, beginning with a
special value calledu11 that is used only with reference variables.

Null References

The creation of a new object can be separated from the declaration of a variable.
For example, the following two statements can occur far apart in a program:

Throttle control;

ééﬁtro1 = new Throttle(100);

Once both statements finistyntrol refers to a newly created throttle with 100
positions. But what is the status @dntrol between the statements? At this
point, control does not yet refer to any throttle, because we haven't yet created a
throttle. In this situation, we can assign a special value to control, indicating that
control does not yet refer to anything. The value is calledutheeference, writ-

ten with the keywordu11 in Java. So we could change the above example to this:

Throttle control = null; In this area, control
e <—— doesnotreferto
control = new Throttle(100); anything.

.
4~ ~s

4‘9 java02.frm Page 51 Saturday, August 26, 2000 5:50 PM

*

Using a Class 51

Null Reference

Sometimes a reference variable does not refer to anything.
This is a null reference , and the value of the variable is
called null .

Sometimes a program finishes using an object. In this case, the program may
explicitly set a reference variablerto11, as shown here:

Throttle control = new Throttle(100);

// Various statements that use the Throttle appear next...

// Now we are done with the control Throttle, so we can set
// the reference to null.
control = null;

Once a reference variable is no longer needed, it's a good idea to seilit to
allowing Java to economize on certain resources (such as the memory used by a
throttle).

Pitfall: Null Pointer Exception

When a variable such as control becomes null, it no longer refers to any
throttle. If control is null, then it is a programming error to activate a method
such as control.shift. The result is an exception called NullPointer-
Exception.

Assignment Statements with Reference Variables

The usual assignment statement may be used with reference variables. For
example, we might have tWwithrottle variablestl andt2, and an assignment

such ast2 = t1 is permitted. But what is the effect of the assignment? For
starters, iftl is nu11, then the assignmet2 = t1 also makesw11. Here

is @ more complicated case wheteis notnul1:

Throttle t1;
Throttle t2;

tl = new Throttle(100);
tl.shift(25);
t2 = tl;

The effect ofthe assignment2 = t1 is somewhadifferentthanassignments
for integers or other primitive data types. The effe(t2 = t1 is to “make

@ [o—

4~ 4]

%9 java02.frm Page 52 Saturday, August 26, 2000 5:50 PM

i

52 Chapter 2 / Abstract Data Types and Java Classes

refer to the same object that is already refering to.” In other words, we have
two reference variables1 andt2), but we created only one throttle (with one
new statement). This one throttle has 100 positions, and is currently in‘the 25
position. After the assignment statement, latlndt2 refer to this one throttle.

As an example, let’s start with the two declarations:

Throttle t1;
Throttle t2;

We now have two variablesl and t2. If these variables are declared in a
method, then they don’t yet have an initial value (not exdn). We can draw
this situation with a question mark for each value, as shown here:

Throttle t1| , Throttle t2| ,

The next two statements are:

tl = new Throttle(100);
tl.shift(25);

These statements create a new throttlecfoto refer to, and shift the throttle’s
position to 25. We will draw a separate box for the throttle and indicate its
instance variablestép at 100 anchosition at 25). To show that1 refers to

this throttle, we draw an arrow from tlg box to the throttle, like this:

Throttle tl1 Throttle t2| ,

N
top 100

A Throttle | position 25
object

At this point, we can execute the assignment:

t2 = tl;

After the assignment2 will refer to the same object that refers to, as shown
here:

Throttle tl1 Throttle t2
\ top 100 /

A Throttle | position 25
object

/

@ [o—

4~ 4]

%9 java02.frm Page 53 Saturday, August 26, 2000 5:50 PM

i

Using a Class 53

There are now two references to the same throttle, which can cause some
surprising results. For example, suppose we shittown five notches and then
print the flow oft1, like this:

t2.shift(-5);
System.out.printin(“Flow of tl is: “ + tl.getFlow());

What flow rate is printed? Thel throttle was set to position 25 out of 100, and
we never directly altered its position. Bt&.shift(-5) moves the throttle’'s
position down to 20. Sincel refers to this same throttlel.getFlow now
returns 20/100, and the output statement prints “Flow of t1 is: 0.2". Here’s the
entire code that we executed and the final situation drawn as a picture:

Throttle t1;
Throttle t2;

tl = new Throttle(100);
tl.shift(25);

t2 = tl;

t2.shift(-5);

Throttle t2

Throttle t1 \top 100 /

A Throttle | position 20
object

Assignment Statements with Reference Variables

If t1 and t2 are reference variables, then the assignment
t2 = tl is allowed.

If t1is nulT, then the assignment also makes t2 null.

If t1is not nulT, then the assignment changes t2 so that it
refers to the same object that t1 already refers to. At this
point, changes can be made to that one object through either
tlor t2.

The situation of an assignment statement contrasts with a program that
actually creates two separate throttlestfomandt2. For example, two separate
throttles can be created with each throttle in th*é;ﬁfsition out of 100, as shown
in the code at the top of the next page.

@ [o—

4~ 4]

%9 java02.frm Page 54 Saturday, August 26, 2000 5:50 PM

—&| @

54 Chapter 2 / Abstract Data Types and Java Classes

Throttle t1;
Throttle t2;

tl = new Throttle(100);
tl.shift(25);
t2 = new Throttle(100);
t2.shift(25);

With this code, we have two separate throttles:

Throttle tl Throttle t2
top 100 top 100
A Throttle| position 25 A Throttle position 25
object object

Changes that are now made to one throttle will not effect the other, because
there are two completely separate throttles.

Clones

A programmer sometimes needs to make an exact copy of an existing object.
The copy must be just like the existing object, but separate. Subsequent changes
to the copy should not alter the original, nor should subsequent changes to the
original alter the copy. A separate copy such as this is catienha

An assignment operatict2 = t1 does not create a clone, and in fact the
Throttle class does not permit the easy creation of clones. But many other
classes have a special method callghe for just this purpose. Writing a useful
clone method has some requirements that may not be evident just now, so we
will postpone a complete discussion until Section 2.4.

Testing for Equality

A test for equality €1 == t2) can be carried out with reference variables. The
equality test(tl == t2) is true if both t1 andt2 are null, or if they both refer

to the exact same object (not two different objects that happen to have the same
values for their instance variables). An inequality {> != t2) can also be
carried out. The result of an inequality test is always the opposite of an equality
test. Let’s look at two examples.

.
4~ ~s

%9 java02.frm Page 55 Saturday, August 26, 2000 5:50 PM

i

Using a Class 55

The first example creates just one throttleandt2 both refer to this throttle
as shown in the following picture:

Throttle t1;
Throttle t2;

tl = new Throttle(100);
tl.shift(25);
t2 = tl;

Throttle t2

Throttle t1 \\\ “(////////

top 100

A Throttle | position 25
object

At this point in the computatior(;t1 == t2) is true. Both reference variables
refer to the same obiject.
On the other hand, consider this code, which creates two separate throttles:

Throttle t1;
Throttle t2;

tl = new Throttle(100);
tl.shift(25);

t2 = new Thrott1e(100);
t2.shift(25);

Throttle t2

Throttle t1 '\ ‘(//
top 100 top 100

A Throttle | position 25 A Throttle position 25
object object

After this computation{tl == t2) is false. The two throttles have the same
value (withtop at 100 ancposition at 25), but the equality test returns false
because they are two separate throttles.

Test for Equality with Reference Variables

For reference variables t1 and t2, the test (t1 == t2) is
true if both references are null, or if t1 and t2 refer to the
exact same object (not two different objects that happen to
have the same values for their instance variables).

.
4~ ~s

%9 java02.frm Page 56 Saturday, August 26, 2000 5:50 PM

*

56 Chapter 2 / Abstract Data Types and Java Classes

Terminology Controversy: “The Throttle That t Refers To”

A declaration such éThrottle t = new Throttle(42) declares a reference
variablet, and makes it refer to a newly created throttle. We can then talk about
“the throttle thatt refers to.” This is the correct terminology, but sometimes a
programmer’s thinking is clarified by shortening the terminology and saying
things like “the throttle t is on” rather than “the throttle that t refers to is on.”
Which is right? In general, use the longer terminology when there may be
several different variables referring to the same throttle. Otherwise use the shorter
phrase “the throttle t is on,” but somewhere, deep in your mind, remember that
you are shortening things for convenience and that the longer phrase is right.

Self-Test Exercises

6. Write some Java code that creates a new throttle with six positions, shifts
the throttle halfway up (to the third position), and prints the current flow.
7. A method declares ehrottle variable callectontrol, but there is not
yet a throttle. What value should be assignecbtarol?
8. Suppose thatontrol is a null reference. What happens if a program
tries to activateontrol.shift?
9. What is the output of this code:
Throttle t1;
Throttle t2;
tl = new Throttle(100);
t2 = tl;
tl.shift(40);
t2.shift(2);
System.out.println(tl.getFlow());

10. Consider the code from the previous question. At the end of the compu-
tation, is(tl == t2) true or false?

11. Write some code that will make andt2 refer to two different throttles
with 100 positions each. Both throttles are shifted up to position 42. At
the end of your code, i&1 == t2) true or false?

2.3 PACKAGES

You now know enough to write a Java application program that uses a throttle.
TheThrottle class would be in one fildfrottle.java from Figure 2.1 on

page 46) and the program that usesTthwttle class would be in a separate
file. However, there’'s one more level of organization that will make it easier for
other programmers to use your classes. The organization, calledpadiezge

is a group of related classes put together in a way that makes it easy for
programs to use the classes.

.

4~ 4

*

4‘9 java02.frm Page 57 Saturday, August 26, 2000 5:50 PM

Packages 57

Declaring a Package

The first step in declaring a package of related classes is to decide on a name for
the package. For example, perhaps we are declaring a bunch of Java classes to
simulate various real-world devices such as a throttle. A good short name for the
package is theimulations package. But there’s a problem with good short
names: Other programmers might decide to use the same good short name for
their packages, resulting in the same name for two different packages.

The solution is to include your Internet domain name as part of the packsgeour Internet
name. For example, at the University of Colorado the Internet domain nanw®igain name

colorado.edu (my e-mail address imin@colorado.edu). Therefore, instead
of using the package namémulations, | will use the longer package name
edu.colorado.simulations (package names may include a “dot” as part of the
name). Many programmers follow this convention, using the Internet domain
name in reverse. The only likely conflicts are with other programmers at your
own Internet domain, and those conflicts can be prevented by internal
cooperation.

Once you have decided on a package nampeckage declaratiomust be
made at the top of each source file of the packagepadtieage declarationcon-
sists of the keywor@ackage followed by the full package name and a semico-
lon. The declaration appears at the start of each source file, before any class
declarations. For example, the startfottle. java is changed to include the
package declaration shown here:

package edu.colorado.simulations;

The revisedThrottle.java, with a package declaration, is shown in Figure
2.2. Some Java development environments require you to create a directory
structure for your classes to match the structure of package names. For example,
suppose that you are doing your code development in your own directory called
classes, and you want to use tleu.colorado.simulations package. Then

you would follow these steps:

» Make sure that your Java development environment can find and run any
classes in youtlasses directory. The exact method of setting this up
varies from one environment to another, but a typical approach is to define
a systenmCLASSPATH variable to include your owtilasses directory.

» Underneath thelasses directory, create a subdirectory calkedtl.

» Underneathtedu, create a subdirectory calledlorado.

» Underneathcolorado, create a subdirectory calledimulations.

» All the .java and.classes files for the package must be placed in the
simulations subdirectory.

If the edu.colorado.simulations package has other classes, then their files
are also placed in theimulations subdirectory, and the package declaration is
placed at the start of eachava file.

ﬁ%

\

@ [o—

%9 java02.frm Page 58 Saturday, August 26, 2000 5:50 PM

*

58 Chapter 2 / Abstract Data Types and Java Classes

S[e1V]x{=8ll Defining Throttle.java as Part of the edu.colorado.simulations Package

Implementation

// File: Throttle.java from the package edu.colorado.simulations
// Documentation is in Figure 2.1 on page 44 or from the Throttle link in
// http://www.cs.colorado.edu/~main/docs/

package edu.colorado.simulations;
S the package
public class Throttle declaration

{
private int top; // The topmost position of the throttle
private int position; // The current position of the throttle

public Throttle(int size)

{
if (size <= 0)
throw new ITlegalArgumentException("Size <= 0: " + size);
top = size;
// No assignment needed for position -- it gets the default value of zero.
}
public double getFlow()
{
return (double) position / (double) top;
}
public boolean isOn()
{
return (getFlow() > 0);
}
public void shift(int amount)
{
if (amount > top - position)
// Adding amount would put the position above the top.
position = top;
else if (position + amount < 0)
// Adding amount would put the position below zero.
position = 0;
else
// Adding amount puts position in the range [0O...top].
position += amount;
}

(continued)

.
4~ ~s

%9 java02.frm Page 59 Saturday, August 26, 2000 5:50 PM

*

Packages 59

(FIGURE 2.2 continued)
}
public void shutOff()

position = 0;

}

The Import Statement to Use a Package

Once a package is set up and in the correct directory, the packsmeisfiles a program can
can be compiled to create the variou3ass files. Then any other code that yowse an entire
write may use part or all of the package. To use another packageyaafile package or just
places an import statement after its own package statement but before any?Rifof a
else. Animport statement for an entire packagehas the keywordmport Package
followed by the package name plus “.*" and a semicolon. For example, we

can import the entiredu.colorado.simulations package with the import

statement:

import edu.colorado.simulations.*;

If only a few classes from a package are needed, then each class can be imported
separately. For example, this statement imports onlyrlihettle class from
theedu.colorado.simulations package:

import edu.colorado.simulations.Throttle;

After this import statement, thighrottle class can be used . For example, a
program can declare a variable:

Throttle control;

A sample program using our throttle appears in Figure 2.3. The program
creates a new throttle, shifts the throttle fully on, and then steps the throttle back
down to the shut off position.

The JCL Packages

The Java language comes with many useful packages callethwheClass
Libraries (JCL). Any programmer can use various parts of the JCL by includ-
ing an appropriate import statement. In fact, one of the packgges,1ang, is

so useful that it is automatically imported into every Java program. Some parts
of the JCL are described in Appendix D.

@ [o—

4~ 4]

%9 java02.frm Page 60 Saturday, August 26, 2000 5:50 PM

*

60 Chapter 2/ Abstract Data Types and Java Classes

FIGURE 2.3 Implementation of the Thrott1e Demonstration Program with an Import Statement

Java Application Program

// FILE: ThrottleDemonstration.java
// This small demonstration program shows how to use the Throttle class
// from the edu.colorado.simulations package.

import edu.co]orado.simu1ations.Thrott1e;,$\\\\\\\

the import
class ThrottleDemonstration statement
{
public static void main(String[] args)
{
final int SIZE = 8; // The size of the demonstration Throttle
Throttle small = new Throttle(SIZE);
System.out.printin("I am now shifting a Throttle fully on, and then I");
System.out.println("will shift it back to the shut off position.");
small.shift(SIZE);
while (small.isOn())
{
System.out.printin("The flow is now " + small.getFlow());
small.shift(-1);
}
System.out.println("The flow is now off");
}
}

Output from the Application

I am now shifting a Throttle fully on, and then I
will shift it back to the shut off position.
The flow is now 1.0

The flow is now 0.875
The flow 1is now 0.75
The flow is now 0.625
The flow 1is now 0.5

The flow 1is now 0.375
The flow 1is now 0.25
The flow is now 0.125

The flow is now off

4‘9 java02.frm Page 61 Saturday, August 26, 2000 5:50 PM

*

Parameters, Equals Methods, and Clonesl

More about Public, Private, and Package Access

As you have seen, thehrottle class uses private instance variables (to keep
track of the current status of a throttle) and public methods (to access and
manipulate a throttle). The keyworplsb1ic andprivate are called thaccess
modifiers because they control access to the class members.

What happens if you declare a member with no access modifier—neither
public norprivate? In this case, the member can be accessed only by other
classes in the same package. This kind of access is defbadt accesgbecause
there is no explicit access modifier); some programmers qalthkage access
which is a nice descriptive name. We won't use package access much because
we prefer the pattern of private instance variables with public methods.

One other kind of access—protected access—will be discussed later when we
cover derived classes and inheritance.

Self-Test Exercises

12. Suppose you are writing a package of classes for a company that has the
Internet domairknafn.com. The classes in the package perform various
statistical functions. Select a good name for the package.

13. Describe the directory structure that must be set up for the files of the
package in the previous question.

14. Write theimport statement that must be present to use the package from
the previous two questions.

15. What import statement is needed to usejtha. 1ang package?

16. Describe public access, private access, and package access. What key-
words are needed to obtain each kind of access for a method?

2.4 PARAMETERS, EQUALS METHODS, AND CLONES

Every programmer requires an unshakable understanding of methods and their
parameters. This section illustrates these issues and other issues that arise in
Java, such as how to test whether two objects are equal to each other and how to
make a copy of an object. The examples use a new classlealted on, which
will be placed in a package calledu.colorado.geometry.

The purpose of aocation object is to store the coordinates of a single point
on a plane, as in the picture shown here. The locatiohe picture lies at coor-
dinates x = —-1.@ndy = 0.8. For future referenceyou shouldknow that ,
Java has a similar class calledint in the java.awt package. But oy
Java'sPoint class is limited to integer coordinates and used primarily t@ &
describe points on a computer’s screen. | thought about using the saﬁ1§e P Ly
namePoint for the example class of this section, but | decided againstit: ..
because a program might want to use both classes. It's not legal-£Q 4 f—
import two different classes with the same names (though you can use a P

full type name such amva.awt.Point without an import statement). '2_2 1 0 1 2

@ [o—

4~ 4]

*

4‘9 java02.frm Page 62 Saturday, August 26, 2000 5:50 PM

62 Chapter 2 / Abstract Data Types and Java Classes

FIGURE 2.4 Three Locations in a Plane

(a) The white dot 2 | y
labeled p is a ‘ : : ‘
location with L S I
coordinates P _—
x=-1.0and 0 ' ' ' !
y=038. § ‘ ‘ ‘

_1 37 77777777777777777777777777777

-2 S N SN SO

(b) The black dot 2 7T y T
labeled g was 3 | | |
obtained by shifting A s S B
p by 1.3 units along P 1 I
the x axis and by 0 ‘ : : !
-1.4 units along the 3 3 ‘q |

y axis. The 1 ‘ !
coordinates of qare
x=0.3 and
y=-06.

(c) The black dot 2
labeled r was 3 : 1 :
obtained by rotating 1 | &

p by 90°in a |
clockwise direction 0 3
around the origin.

The coordinates of r ~
are x=0.8 and
y=10. -2

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

The Location Class

Figure 2.4 shows several sample locations.
We'll use these sample locations to describe
theLocation constructor and methods.

« There is a constructor to initialize a loca-
tion. The constructor's parameters provide
the initial coordinates. For example, the
location p in Figure 2.4(a) can be con-
structed with the statement:

Location p = new Location(-1, 0.8);

e There is a modification method to shift a
location by given amounts along tkend
y axes, as shown in Figure 2.4(b).

» There is a modification method to rotate a
location by 90° in a clockwise direction
around the origin, as shown in Figure
2.4(c).

* There are two assessor methods that allow
us to retrieve the current andy coordi-
nates of a location.

e There are a couple of methods to perform
computations such as the distance between
two locations. These amgatic methods—
we’'ll discuss the importance of the static
property in a moment.

» There are three methods calledone,
equals, and toString. These methods
have special importance for Java classes.
Theclone method allows a programmer to
make an exact copy of an object. The
equals method tests whether two different
objects are identical. Th@String method
generates a string that represents an object.
Special considerations for implementing
these three methods are discussed next.

ThelLocation class is small, yet it forms the basis for an actual data type that
is used in drawing programs and other graphics applications. All the methods
and the constructor are listed in the specification of Figure 2.5. The figure also
shows one way to implement the class. After you've looked through the figure,
we’ll discuss that implementation.

4~ 4

\

%9 java02.frm Page 63 Saturday, August 26, 2000 5:50 PM

*

Parameters, Equals Methods, and Clone&3

FIGURE 2.5 Specification and Implementation for the Location Class

Class Location

O public class Location from the package edu.colorado.geometry
A Location object keeps track of a location on a two-dimensional plane.

Specification

o Constructor for the Location
public Location(double xInitial, double yInitial)

Construct aocation with specified coordinates.

Parameters:
xInitial — the initial x coordinate of thisscation
yInitial — the initial y coordinate of thisocation

Postcondition:
This Location has been initialized at the given coordinates.

o clone
public Object clone()
Generate a copy of thiscation.

Returns:
The return value is a copy of thiscation. Subsequent changes to the copy will not affect
the original, nor vice versa. Note that the return value must be typecastta #on before
it can be used.

o distance
public static double distance(Location pl, Location p2)
Compute the distance between tvw@ations.
Parameters:

pl — the firstLocation
p2 — the secondocation

Returns:
the distance between andp?2

Note:
The answer iBouble.POSITIVE_INFINITY if the distance calculation overflows. The answer
iS Double.NaN if eitherLocation is null.

(continued)

.
4~ ~s

%9 java02.frm Page 64 Saturday, August 26, 2000 5:50 PM

i

64 Chapter 2 / Abstract Data Types and Java Classes

(FIGURE 2.5 continued)

o equals
public boolean equals(Object obj)

Compare thisocation to another object for equality.

Parameters:
obj — an object with which thisocation is compared

Returns:
A return value otrue indicates thadbj refers to aocation object with the same value as
this Location. Otherwise the return valuefiaise.

Note:
If obj is null or it is not aocation object, then the answerfisise.

- getX andGetY

pubTlic double getX() —and- public double getY()
Get the x or y coordinate of thiscation.
Returns:

the x or y coordinate of thisocation

- midpoint
public static Location midpoint(Location pl, Location p2)
Generates and returns@ation halfway between two others.

Parameters:
pl — the firstLocation
p2 — the secondocation

Returns:
alocation that is halfway betweesi andp2

Note:
The answer is null if either1 or p2 is null.

o rotate90
public void rotate90()
Rotate tha.ocation 9C° in a clockwise direction.

Postcondition:
This Location has been rotated clockwise®%round the origin.

o shift
public void shift(double xAmount, double yAmount)
Move thisLocation by given amounts along the x and y axes.

Postcondition:
This Location has been moved by the given amounts along the two axes.

Note:
The shift may cause a coordinate to go almevele.MAX_VALUE or below
-Double.MAX_VALUE. In these cases, subsequent callge®X or getY will return
Double.POSITIVE_INFINITY Of Double.NEGATIVE_INFINITY.
(continued)

4~ 4]

%9 java02.frm Page 65 Saturday, August 26, 2000 5:50 PM

i

Parameters, Equals Methods, and Clone&b

(FIGURE 2.5 continued)

o toString
public String toString()
Generate a string representation of thisation.

Returns:
a string representation of thiscation

Implementation

// File: Location.java from the package edu.colorado.geometry
// Documentation is available on pages 63-64 or from the Location link in
// http://www.cs.colorado.edu/~main/docs/

the meaning of

/ “implements Cloneable”

public class Location implements Cloneable a’?" the clone method are
{ discussed on page 76

package edu.colorado.geometry;

private double x; // The x coordinate of the Location
private double y; // The y coordinate of the Location

public Location(double xInitial, double yInitial)
{
x = xInitial;
y = yInitial;
}

public Object clone()

{ // Clone a Location object.
Location answer;

try
{
answer = (Location) super.clone();
}
catch (CloneNotSupportedException e)
{ // This exception should not occur. But if it does, it would indicate a programming
// error that made super.clone unavailable. The most common cause would be
// forgetting the “implements Cloneable” clause at the start of the class.
throw new RuntimeException
("This class does not implement Cloneable.");

}

return answer;

(continued)

4~ 4

.

%9 java02.frm Page 66 Saturday, August 26, 2000 5:50 PM

—&| @

66 Chapter 2/ Abstract Data Types and Java Classes

(FIGURE 2.5 continued)

public static double distance(Location pl, Location p2)

{ ‘s\\\\\\\\thenmanmgofasmﬁc
double a, b, c_squared; method is discussed

on page 68
// Check whether one of the Locations is null.
if ((pl == nu11) || (p2 == null))

return Double.NaN; <$-_‘____‘_‘_“‘_
the Java constant,

// Calculate differences in x and y coordinates. ~ double.NaN, is
a = pl.x - p2.x; discussed on page 70

b pl.y - p2.y;

// Use Pythagorean Theorem to calculate the square of the distance
// between the Locations.
c_squared = a*a + b*b;

return Math.sqrt(c_squared);

public boolean equals(Object obj)

{ \ the equals method is
if (obj instanceof Location) discussed on page 73

{
Location candidate = (Location) obj;
return (candidate.x == x) && (candidate.y == y);
}
else
return false;
}
public double getX()
{
return x;
}
public double getY()
{
return y
}

(continued)

%9 java02.frm Page 67 Saturday, August 26, 2000 5:50 PM

i

Parameters, Equals Methods, and Clone&7

(FIGURE 2.5 continued)

public static Location midpoint(Location pl, Location p2)

{
double xMid, yMid;
// Check whether one of the Locations is null.
if ((pl == null) || (p2 == null))
return null;
// Compute the x and y midpoints.
xMid = (pl.x/2) + (p2.x/2);
yMid = (pl.y/2) + (p2.y/2);
// Create a new Location and return it.
Location answer = new Location(xMid, yMid);
return answer;
}
public void rotate90()
{
double xNew;
double yNew;
// For a 90 degree clockwise rotation, the new x is the original y
// and the new y is -1 times the original x.
xNew = vy;
yNew = -X;
X = XNew;
y = yNew;
}
public void shift(double xAmount, double yAmount)
{
X += XAmount;
y += yAmount;
}
public String toString()
{
return "(x=" + x + " y="+y + "";
}

@ [o—

*

%9 java02.frm Page 68 Saturday, August 26, 2000 5:50 PM

68 Chapter 2 / Abstract Data Types and Java Classes

Static Methods

The implementation of thieocation class has several features that may be new
toyou. Some of the features are in a method callesktance, with this
specification:

o distance
public static double distance(Location pl, Location p2)
Compute the distance between twe@ations.
Parameters:
pl — the firstLocation
p2 — the secondocation

Returns:
the distance betweeain andp?2

For example, consider the locatignands in
FIGURE 2.6 The Distance between Locations Figure 2.6. Along a straight line, the distance
between these two locations is about 3.36.
Using the distance method, we can create
these two locations and print the distance
between them as follows:

The distance
between p and s
can be computed

with the
Pythagorean Location p = new Location(-1, 0.8);
Theorem. Location s = new Location(1.7, -1.2);
double d = Location.distance(p, s);
System.out.println(d);
Horizontal distance: a = 2.7 This code prints the distance between the two

locations—a little bit more than 3.36.

The distance method is modified by an
Distance between the locations = extra keyword:static. Thestatic keyword
means that the method is not activated by any
Ja’+b? = J2.7+ 2.0 = about 3.36 | one object. In other words, we do not write
p.distance or s.distance. Instead we write
Location.distance.

Because thdistance method is not activated by any one object, the method
does not have direct access to the instance variables of a location that activates
the method. Within theistance implementation, we cannot write simplyor y
(the instance variables). Instead, the implementation must carry out its compu-
tation based on the arguments that it's given. For example, if we activate
Location.distance(p, s), then thedistance method works with its two
arguments ands. These two arguments are botltation objects. Let’'s exam-
ine exactly what happens when an argument is an object rather than a primitive
value such as an integer.

Vertical distance: b = 2.0

4~ 4

\

%9 java02.frm Page 69 Saturday, August 26, 2000 5:50 PM

*

Parameters, Equals Methods, and Clone&9

Parameters That Are Objects

What happens whehocation.distance(p, s) is activated? For example,
suppose we have the two declarations shown previouspydods. After these
declarations, we have these two separate locations:

Location s

N i

x -1.0 x 1.7

A Location|y 0.8 A Location |y -1.2
object object

Location p

Now we can activate the metha@dcation.distance(p, s), which has an
implementation that starts like this:

public static distance(Location pl, Location p2)

{

The names used within the methed &ndp2) are usually callegarametersto ‘parameters”
distinguish them from the values that are passsegd ands). On the other Versus }
hand, the values that are passediar(ds) are called tharguments Anyway, arguments
the first step of any method activation is to useafgeimentgo provide initial

values for theparameters Here’s the important fact you need to know about

objects:

When a parameter is an object, such as a Location, then
the parameter is initialized so that it refers to the same object
that the actual argument refers to.

In our example,lLocation.distance(p, s), the parameterpl and p2 are
initialized to refer to the two locations that we created, like this:

Location s

N e

Location p

Location pl Location p2

/ x -1.0 x 1.7
] -1.2 <
A Location y 0.8 A Location Y

object object

@ [o—

4~ 4]

*

%9 java02.frm Page 70 Saturday, August 26, 2000 5:50 PM

70 Chapter 2 / Abstract Data Types and Java Classes

be careful about
changing the
value of a
parameter

the “not-a-
number”
constant

the “infinity”
constant

Within the body of thelistance method we can acceps andp2. For exam-

ple, we can accessd.x to obtain thex coordinate of the first parameter. This
kind of access is okay in a static method. The only forbidden expression is a
directx ory (without a qualifier such gsl).

Some care is needed in accessing a parameter that is an object. For instance,
any change t@l.x will affect the actual argumemt.x. We don’t want the
distance method to make changes to its arguments; it should just compute the
distance between the two locations and return the answer. This computation
occurs in the implementation dfstance on page 66.

The implementation also handles a couple of special cases. One special case
is when an argument is null. In this case, the corresponding parameter will be
initialized as null, and the distance method executes this code:

// Check whether one of the Locations is null.
if ((pl == null) || (p2 == null))
return Double.NaN;

If either parameter is null, then the method returns a Java constant named
Double.NaN. This is a constant that a program uses to indicate that a double
value is “not a number.”

Another special case for théstance method is the possibility of a numerical
overflow. The numbers obtained during a computation may go above the largest
double number or below the smallektuble number. These numbers are pretty
large, but the possibility of overflow still exists. When an arithmetic expression
with double numbers goes beyond the legal range, Java assigns a special constant
to the answer. The constant is narbedble.POSITIVE_INFINITY if it is too
large (above about £%), and it is namedouble.NEGATIVE_INFINITY if it is
too small (below aboutl.7%%). Of course, these constants are not really “infin-
ity.” They are merely indications to the programmer that a computation has over-
flowed. In the distance method, we indicate the possibility of overflow with the
following comment:

Note:
The answer i®ouble.POSITIVE_INFINITY if the distance calculation
overflows. The answer ®uble.NaN if eitherLocation is null.

The Return Value of a Method May Be an Object

The return value of a method may also be an object, suchoaation object.

For example, theocation class has this static method that creates and returns a
new location that is halfway between two other locations. The method’s specifi-
cation and implementation are shown at the top of the next page.

.
4~ ~s

%9 java02.frm Page 71 Saturday, August 26, 2000 5:50 PM

i

Parameters, Equals Methods, and Cloné&l

- midpoint
public static Location midpoint(Location pl, Location p2)
Generates and returng éation halfway between two others.
Parameters:
pl — the firstLocation
p2 — the secondocation
Returns:
alocation that is halfway betweesi andp2

Note:
The answer is null if eithe@focation is null.

public static Location midpoint(Location pl, Location p2)

{
double xMid, yMid;

// Check whether one of the Locations is null.
if ((pl == null) || (p2 == null))
return null;

// Compute the x and y midpoints.
xMid = (pl.x/2) + (p2.x/2);
yMid = (pl.y/2) + (p2.y/2);

// Create a new Location and return it.
Location answer = new Location(xMid, yMid);
return answer;

}

The method creates a new location using the local variahlger, and then
returns this location. Often the return value is stored in a local variable such as
answer, but not always. For example, we could have eliminatetver by
combining the last two statements in our implementation to a single statement;

return new Location(xMid, yMid);

Either way—with or without the local variable—is fine.
Here’'s an example to show how the statidpoint method is used. The
method creates two locations and then computes their midpoint:

Location Tow = new Location(0, 0);
Location high = new Location(1000, 5280);
Location medium = Location.midpoint(low, high);

In this example, the answer from thedpoint method is stored in a variable
calledmedium. After the three statements, we have three locations, drawn at the
top of the next page.

.
4~ ~s

%9 java02.frm Page 72 Saturday, August 26, 2000 5:50 PM

—& @

72 Chapter 2 / Abstract Data Types and Java Classes

o —»x0
Location low A Location|y 0
object

L »{x 1000

Location high A Location|y 5280
object

| ———>»x 500

Location medium A Location|y 2640
object
: T1p Programming Tip: How to Choose the Names of Methods

Accessor methods: The name of a boolean accessor method will usually begin
with “is” followed by an adjective (such as “isOn”). Methods that convert to another
kind of data start with “to” (such as “toString”). Other accessor methods start with
“get” or some other verb followed by a noun that describes the return value (such
as “getFlow”).

Modification methods: A modification method can be named by a descriptive verb
(such as “shift”) or or a short verb phrase (such as “shutOff”).

Static methods that return a value: Try to use a noun that describes the return
object (such as “distance” or “midpoint”).

Rules like these make it easier to determine the purpose of a method.

Java’'s Object Type

One of theLocation methods is an accessor method cadledals with this
heading:

public boolean equals(Object obj)

An accessor method with this name has a special meaning in Java. Before we
discuss that meaning, you need to know a bit about the parameter type
“Object.” In Java,Object is a kind of “super data type” that encompasses all
data except the eight primitive types. So a primitive varialylee short, int,

Tong, char, float, double, Or boolean) is not anObject, but everything else

is. A String iS anObject, a Location iS anObject, even an array is an
Object.

.
4~ ~s

—&| @

%9 java02.frm Page 73 Saturday, August 26, 2000 5:50 PM

Parameters, Equals Methods, and Cloné&3

Using and Implementing an Equals Method

As your programming progresses, you'll learn a lot about Jakg'sct type,

but to start you need just a few common patterns thaibjset. For example,
many classes implement aguals method with the heading that we have seen.
An equals method has one argument:. ahmject called obj. The method
should returntrue if obj has the same value as the object that activated the
method. Otherwise, the method retufadse. Here is an example to show how
theequals method works for theocation class:

Location p = new Location(10, 2); // Declare p at coordinates (10,2)
Location s = new Location(10, 0); // Declare s at coordinates (10,0)

After these two declarations, we have two separate locations:

Location s

Location p /

A Location

x 10
y 2

A Location

x 10
y 0

object object

In this examplep ands refer to two separate objects with different values (their
y coordinates are different), so bathequals(s) ands.equals(p) arefalse.

Here’s a slightly different example:

Location p = new Location(10, 2); // Declare p at coordinates (10,2)
Location s = new Location(10, 0); // Declare s at coordinates (10,0)
s.shift(0, 2); // Move s to (10,2)

We have the same two declarations, but afterward we shift the y coordirate of
so that the two separate locations have identical values, like this:

Location s

Location p /

x 10 x 10

A Location|y 2 A Location|y 2
object object

Now p and s refer to identical locations, so both.equals(s) and
s.equals(p) aretrue. However, the testp == s) is still false. Remember
that (p == s) returnstrue only if p ands refer to the exact same location (as
opposed to two separate locations that happen to contain identical values).

ﬁ%

\

@ [o—

*

%9 java02.frm Page 74 Saturday, August 26, 2000 5:50 PM

74 Chapter 2 / Abstract Data Types and Java Classes

alocation can be
compared to any
object

implementing an
equals method

the instanceof
operator

The argument to thequals method can be any object, not just a location. For
example, we can try to compare a location with a string, like this:

Location p = new Location(10, 2);
System.out.println(p.equals("10, 2"); // Prints false.

This example print$alse; aLocation object is not equal to the strifigo, 2"
even if they are similar. You can also test to see whether a location is equal to null,
like this:

Location p = new Location(10, 2);
System.out.println(p.equals(null)); // Prints false.

The location is not null, so the resultmfequals(null) is false. Be careful
with the last example: The argumentpteequals may be null and the answer
will be false. However, whem itself is null, it is a programming error to acti-
vate any method of. Trying to activate.equals whenp is null results in a
NullPointerException (see page 51).

Now you know how to use aguals method. How do you write axyuals
method so that it returngue when its argument has the same value as the object
that activates the method? A typical implementation follows an outline that is
used for theequals method of the.ocation class, as shown here:

public boolean equals(Object obj)

if (obj is actually a.ocation)

{
Figure out whether the location thetj refers to has the same
value as the location that activated this method. Refruwa if
they are the same, otherwise retéiafise.

else

return false;

}

The method starts by determining whetheg actually refers to &ocation
object. In pseudocode we wrote this abj‘is actually aLocation”. In Java,
this is accomplished with the te (obj instanceof Location) . This test
uses the keywordinstanceof, which is a boolean operator. On the left of the
operator is a variable, such@sj. On the right of the operator is a class name,
such agocation. The test returnsrue if it is valid to convert the objecbkj)
to the given data type.¢cation). In our example, suppose thatj does not
refer to a validocation. It might be some other type of object, or perhaps it is
simply null. In either case, we go to the else-statement and ffeflsa.

On the other hand, suppose 1 (obj instanceof Location) trise, SOthe
code enters the first part of the if-statement. Tdtgindoes refer to &ocation

.
4~ ~s

4‘9 java02.frm Page 75 Saturday, August 26, 2000 5:50 PM

*

Parameters, Equals Methods, and Cloné&

object. We need to determine whether the x and y coordinaies afe the same

as the location that activated the method. Unfortunately, we can’t just look at
obj.x andobj.y because the compiler thinksaifj as a bare object with no x
and y instance variables. The solution is an expre:(Location) obj . This
expression is calledtgpecastas if we were pouringbj into a casting mold that
creates docation object. The expression can be used to initializecation
reference variable, like this:

Location candidate = (Location) obj;

Thetypecast on the right side of the declaration, consists of the new data type
(Location) in parentheses, followed by the reference variable that is being
cast. After this declaratiomandidate is a reference variable that refers to
the same object thaibj refers to. However, the compileloes know that
candidate refers to a.ocation object, so we can look atndidate.x and
candidate.y to see if they are the same as the x and y coordinates of the object
that activated thequals method. The complete implementation looks like this:

public boolean equals(Object obj)

¢ if (obj instanceof Location)
¢ Location candidate = (Location) obj;
return (candidate.x == x) & & (candidate.y == y);
}
else
return false;
}

The implementation has the return statement:

return (candidate.x == x) & & (candidate.y == y);

The boolean expression in this return statementig if candidate.x and
candidate.y are the same as the instance variakleendy. As with any
method, these instance variables come from the object that activated the method.
For future reference, the details of using a typecast are given in Figure 2.7.

Pitfall: Class Cast Exception
P PITFALL l ’
Suppose that you have a variable such as obj, which is an Object. You can try a

typecast to use the object as if it were another type. For example, we used the type-
cast Location candidate = (Location) obj.

What happens if obj doesn’t actually refer to a Location object? The result is
a runtime exception called ClassCastException. To avoid this, you must ensure
that a typecast is valid before trying to execute the cast. For example, the
instanceof operator can validate the actual type of an object before a typecast.

@ [o—

4~ 4]

%9 java02.frm Page 76 Saturday, August 26, 2000 5:50 PM

—&| @

76 Chapter 2 / Abstract Data Types and Java Classes

FIGURE 2.7 Typecasts

A Simple Pattern for Typecasting an Object

A common situation in Java programming is a variable or other expression that is an Object, but
the program needs to treat the Object as a specific data type such as Location. The problem is
that when a variable is declared as an Object, that variable cannot immediately be used as if it
were a Location (or some other type). For example, consider the parameter obj in the equals
method of the Location class:

public boolean equals(Object obj)

Within the implementation of the equals method, we need to treat obj as a Location rather
than a mere Object. The solution has two parts: (1) Check that obj does indeed refer to a valid
Location, and (2) Declare a new variable of type Location, and initialize this new variable to
refer to the same object that obj refers to, like this:

The parameter, obj, is an Object
public boolean equals(Object obj) <« P / /
{ Use the instanceof operator to check that
if (obj instanceof Location) <« obj is a valid Location
{

Location candidate = (Location) obj;

~— After this declaration, candidate refers to
the Location object that obj also refers to.

The expression (Location) obj, used in the declaration of candidate, is a typecast to tell
the compiler that obj may be used as a Location.

Every Class Has an Equals Method

You may write a class without asquals method, but Java automatically
provides arequals method anyway. Thequals method that Java provides is
actually taken from thebject class, and it works exactly like tke operator.

In other words, it returnsrue only when the two objects are the exact same
object—but it returnsFalse for two separate objects that happen to have the
same values for their instance variables.

Using and Implementing a Clone Method

Another feature of ourocation class is a method with this heading:

public Object clone()

The purpose of alone method is to create a copy of an object. The copy is
separate from the original, so that subsequent changes to the copy won't change

.

4~ 4

4‘9 java02.frm Page 77 Saturday, August 26, 2000 5:50 PM

*

Parameters, Equals Methods, and Cloné&/

the original, nor will subsequent changes to the original change the copy.

Here’s an example showing how thone method is used for theocation
class:

Location p
Location s

new Location(10, 2); // Declare p at (10,2)
(Location) p.clone(); // Initialize as a copy of p

The expressiop.clone() activates thelone method forp. The method cre-
ates and returns an exact copypfvhich we use to initialize the new location

s. After these two declarations, we have two separate locations, as shown in this
picture:

Location s

N e

x 10 ~|x 10
A Location | A Location y 2
object Y object

Location p

As you can see, andp have the same values for their instance variables, but the
two objects are separate. Changes toill not affects, nor will changes ta
affectp.

Pitfall: A Typecast Is Needed to Use the Clone Return Value
P PITFALL l ’
The data type of the return value of the clone method is actually an Object and
not a Location. This is a requirement of Java. Because of this requirement, we

usually cannot use the cTlone return value directly. For example, we cannot write a
declaration:

Location s = p.clone(); <——— this has a compile-time error

Instead, we must apply a typecast to the clone return value, converting it to a
Location before we use it to initialize the new variable s, like this:

Location s = (Location) p.clone();

Cloning is considerably different than using an assignment statement. For
example, consider this code that does not make a clone:

Location p = new Location(10, 2); // Declare p at coordinates (10,2)
Location s = p; // Declare s and make it refer
// to the same object that p
// refers to

@ [o—

4~ 4]

*

%9 java02.frm Page 78 Saturday, August 26, 2000 5:50 PM

78 Chapter 2 / Abstract Data Types and Java Classes

implementing a
clone method

After these two declarations, we have just one location, and both variables refer
to this location:

Location s

Locat-i on p /

x 10
y 2

A Location
object

This is the situation with an ordinary assignment. Subsequent changes to the
object thatp refers to will affect the object that s refers to, because there is only
one object.

You now know how to use @one method. How do you implement such a
method? You should follow a three-step pattern outlined here:

1. Modify the class head. You must add the wordsfiplements Cloneable”
in the class head, as shown here forliheation class:

public class Location implements Cloneable

The modification informs the Java compiler that you plan to implement certain
features that are specified elsewhere in a format calledteriace The full
meaning of interfaces will be discussed in Chapter 5. At the moment, it is
enough to know thaitnplements Cloneable is necessary when you implement
aclone method.

By the way, “Cloneable” is a misspelling of “Clonable.” Some future version
of Java may correct the spelling, but for now it's nice to know that spell checkers
haven’t completely taken over the world.

2. Usesuper.clone to make a copy. The implementation of alone method
should begin by making a copy of the object that activated the method. The best
way to make the copy is to follow this pattern fromitheation class:

public Object clone()
{ // Clone a Location object.
Location answer;

try
{

}
catch (CloneNotSupportedException e)

{

answer = (Location) super.clone();

throw new RuntimeException
("This class does not implement Cloneable.");

}

4~ 4

\

@ [o—

%9 java02.frm Page 79 Saturday, August 26, 2000 5:50 PM

*

Parameters, Equals Methods, and Clone&

In an actual implementation, you would use the name of your own class (rather
thanLocation), but otherwise you should follow this pattern exactly.

It's useful to know what's happening in this pattern. The pattern starts by
declaring a localocation variable callecinswer. We then have this block:

try
{

}

This is an example of @y block If you plan extensive use of Java exceptions,
then you should read all about try blocks in Appendix C. But for your first try
block, all you need to know is that the code in the try block is executed, and the
try block will be able to handle some of the possible exceptions that may arise in
the code. In this example, the try block has just one assignment statement:
answer = (Location) super.clone(). The right side of the assignment
activates a method callediper.clone(). This is actually thelone method
from Java'sObject type. It checks that theocation class specifies that it
“implements Cloneable,” and then correctly makes a copy of the location,
assigning the result to the local variabtawer.

After the try block is a sequence of one or nuateh blocksEach catch block
can catch and handle an exception that may arise in the try block. Our example
has one catch block:

answer = (Location) super.clone();

catch (CloneNotSupportedException e)
{

throw new RuntimeException
("This class does not implement Cloneable.");

}

This catch block will handle @loneNotSupportedException. This exception
is thrown by theclone method from Java'dbject type when a programmer
tries to callsuper.clone(), without including theimplements Cloneable
clause as part of the class definition. The best solution is to throw aunew
timeException, which is the general exception used to indicate a programmer
error.

Anyway, after the try and catch blocks, the local variabkver refers to an
exact copy of the location that activated ¢hene method, and we can move to
the third part of the1one implementation.

3. Make necessary modifications and return. The answer is present, and it
refers to an exact copy of the object that activatedtbee method. Sometimes,
further modifications must be made to the copy before returning. You'll see the
reasons for such modifications in Chapter 3. Howevet,db&tion clone needs

no modifications, so the end of tlh@one method consists of just the return
statementreturn answer

.
4~ ~s

4‘9 java02.frm Page 80 Saturday, August 26, 2000 5:50 PM

—& @

80 Chapter 2/ Abstract Data Types and Java Classes

The completecione implementation for theocation class looks like this,
including an indication of the likely cause of tti®neNotSupportedException:

public Object clone()
{ // Clone a Location object.
Location answer;

try
answer = (Location) super.clone();

catch (CloneNotSupportedException e)
{ // This exception should not occur. But if it does, it would indicate a
// programming error that made super.clone unavailable. The
// most common cause would be forgetting the
// “implements Cloneable” clause at the start of the class.
throw new RuntimeException
("This class does not implement Cloneable.");

}

return answer;

}

The method returns the local variabéeswer, which is alLocation object.

This is allowed, even though the return type ofdhene method i®bject. A
Javadbject may be anything except the eight primitive types. It might be better
if the actual return type of théone method wasocation rather thardbject.

Using Location for the return type would be more accurate and would make
the cTone method easier to use (without having to put a typecast with every
usage). Unfortunately, the improvement is not allowed: The return type of the
clone method must bebject.

: TP Programming Tip: Always Use super.clone for Your Clone Methods

Perhaps you thought of a simpler way to create a clone. Instead of using
super.clone and the try/catch blocks, could you write this code:

Location answer = new Location(x, y);
return answer;

You could combine these into one statement. return new Location(x, y).
This creates and returns a new location, using the instance variables x and y to
initialize the new location. These instance variables come from the location that
activated the cTone method, so answer will indeed be a copy of that location. This
is a nice direct approach, but the direct approach will encounter problems when we
start building new classes that are based on existing classes (See page 655).
Therefore, it is better to stick with the pattern that uses super.clone and a try/
catch block.

@ [o—

4~ 4]

4‘9 java02.frm Page 81 Saturday, August 26, 2000 5:50 PM

*

Parameters, Equals Methods, and Clone&l

e A

Programming Tip: When to Throw a Runtime Exception

A RuntimeException is thrown to indicate a programming error. For example, the
cTone method from Java’s Object type is not supposed to be called by an object
unless that object’s class has implemented the Cloneable interface. If we detect
that the exception has been thrown by the Object clone method, then the pro-
grammer probably forgot to include the “impTlements Cloneable” clause.

When you throw a RuntimeException, include a message with your best
guess about the programming error.

A Demonstration Program for the Location Class

As one last example, let's look at a program that creates two locations called
sti11 andmobile. Both are initially placed at= -2 andy = -1.5, as shown in
Figure 2.8(a). To be more precise, the 11 location is placed at this spot, and
thenmobile is initialized as a clone of thexi11 location. Because thebile
location is a clone, later changes to one location will not affect the other.

FIGURE 28 The program pnts somenfor-

T mation about both locations, and

then thenobi 1e location undergoes

(a) The still and
mobile locations

two 90° rotations as shown in Fig-

are initially > v

T placed at x = -2 ure 2.8(b). The information about

T andy =-1.5. the locations is then printed a sec-
o | ond time.
| The complete program is shown
i in Figure 2.9 on page 82. Pay par-
ticular attention to thepecified-
T (b) The still Rotation method, which illus-

(black) location
remains at the

., same spot, but

the mobile
(white) location
undergoes two
90° rotations.

The still location 1is at:
The mobile Tocation is at:

Distance between them: 0.0
These two Tocations have equal coordinates.

trates some important principles
about what happens when a param-
eter is changed within a method.
We'll look at those principles in a
moment, but first let’s take a look at
the complete output from the pro-
gram, as shown here:

(x=-2.0 y=-1.5)
(x=-2.0 y=-1.5)

I will rotate one location by two 90 degree turns.

The still location 1is at:
The mobile Tocation is at:

Distance between them: 5.0
These two Tocations have different coordinates.

(x=-2.0 y=-1.5)
(x=2.0 y=1.5)

ﬁ%

\

@ [o—

—& @

%9 java02.frm Page 82 Saturday, August 26, 2000 5:50 PM

82 Chapter 2 / Abstract Data Types and Java Classes

FIGURE 2.9 A Demonstration Program for the Location Class

Java Application Program

// FILE: LocationDemonstration.java
// This small demonstration program shows how to use the Location class
// from the edu.colorado.geometry package.

import edu.colorado.geometry.Location;

class LocationDemonstration

public static void main(String[] args)

{
final double STILL_X -2.0;

final double STILL_Y = -1.5;
final int ROTATIONS = 2;

Location still = new Location(STILL_X, STILL_Y);
Location mobile = (Location) still.clone();
printData(still, mobile);

System.out.println("I will rotate one location by two 90 degree turns.");
specifiedRotation(mobile, ROTATIONS);

; printData(still, mobile);

// Rotate a Location p by a specified number of 90 degree clockwise rotations.
public static void specifiedRotation(Location p, int n)

while (n > 0)

p.rotate90();
n--;
}
}

// Print some information about two locations: s (a “still” location) and m (a “mobile” location).
public static void printData(Location s, Location m)

¢ System.out.printin("The still location is at: " + s.toString());
System.out.println("The mobile location is at: " + m.toString());
System.out.println("Distance between them: " + Location.distance(s, m));
if (s.equals(m))
System.out.println("These two locations have equal coordinates.");
else
System.out.println("These two locations have different coordinates.");
) System.out.println();

ﬁ%

\

%9 java02.frm Page 83 Saturday, August 26, 2000 5:50 PM

*

Parameters, Equals Methods, and Clone&3

What Happens When a Parameter Is Changed within a Method?

Let's examine the programigpecifiedRotation method to see exactly what
happens when a parameter is changed within a method. Here is the method’s
implementation:

// Rotate a Location p by a number of 90 degree clockwise rotations.
public static void specifiedRotation(Location p, int n)

{
while (n > 0)
t p.rotate90();
n--;
3
3

The method rotates the locatipiy n 90° clockwise rotations.

In Java, a parameter that is a reference variable (such lascthe on p) has
different behavior than a parameter that is one of the eight primitive types (such
asint n). Here is the difference:

* When a parameter is one of the eight primitive types, the actual argument
provides an initial value for that parameter. To be more precise, the
parameter is implemented as a local variable of the method and the argu-
ment is used to initialize this variable. Changes that are made to the
parameter do not affect the actual argument.

 When a parameter is a reference variable, the parameter is initialized so
that it refers to the same object as the actual argument. Subsequent
changes to this object do affect the actual argument’s object.

For example, suppose that we have initialized a location cadliedle at the
coordinatex = -2 andy = -1.5. Suppose that we also have an integer variable
calledrotations, with a value of 2, as shown here:

Location mobile int rotations| 2

N
X -2
y -1.

A Location
object

5

Now, suppose the program activadgscifiedRotation(mobile, rotations).

The method’s first parametar, is initialized to refer to the same location that
mobile refers to. And the method’s second parametes initialized with the
value 2 (from therotations argument). So, when the method begins its work,
the situation looks like the picture at the top of the next page.

.
4~ ~s

%9 java02.frm Page 84 Saturday, August 26, 2000 5:50 PM

—&| @

84 Chapter 2 / Abstract Data Types and Java Classes

Location mobile int rotations| 2

X
A Location|Y 5

N

-2

-1.
object /

Location p / int n| ?

The method now executes its loop:

while (n > 0)

{
p.rotate90();

n--;

}

The first iteration of the loop rotates the location by 90° and decredses.
The second iteration does another rotation of the location and deardas@s
Now the loop ends, with these values for the variables:

Location mobile int rotations| 2
X 2

A Location|y 1.5

object /

Location p / int n| ¢

Notice the difference between the two kinds of parameters. The integer parame-
tern has changed to zero without affecting the actual argumeentions. On

the other hand, rotating the locatipfas changed the object thabile refers

to. When the method returns, the paramepeesxd n disappear, leaving the
situation shown at the top of the next page.

@ [o—

4~ 4]

%9 java02.frm Page 85 Saturday, August 26, 2000 5:50 PM

*

Parameters, Equals Methods, and Cloné35

Location mobile int rotations| 2

X 2

A Location|y 1.5
object

Java Parameters

The eight primitive types (byte, short, int, Tong, char,
float, double, or boolean): The parameter is initialized
with the value of the argument. Subsequent changes to the
parameter do not affect the argument.

Reference variables: When a parameter is a reference
variable, the parameter is initialized so that it refers to the
same object as the actual argument. Subsequent changes to
this object do affect the actual argument’s object.

Self-Test Exercises

17. Write some code that declares two locations: one at the origin and the
other at the coordinates= 1 andy = 1. Print the distance between the
two locations, then create a third location that is at the midpoint between
the first two locations.

18. The location'sdistance method is a static method. What effect does
this have on how the method is used? What effect does this have on how
the method is implemented?

19. What is the purpose of the Java condtanble.NaN?

20. What is the result when you add tamuble numbers and the answer is
larger than the largest possildeuble number?

21. Inthemidpoint method we used the expressipm.(x/2) + (p2.x/2).
Can you think of a reason why this expression is better than
(pl.x + p2.x)/2?

22. Implement arquals method for th@hrottle class from Section 2.1.

23. If you don'timplement aaquals method for a class, then Java automat-
ically provides one. What does the automatjcals method do?

24. Implement @Tone method for th&hrottle class from Section 2.1.
25. When should a program throvR@ntimeException?

@ [o—

4~ 4]

%9 java02.frm Page 86 Saturday, August 26, 2000 5:50 PM

*

86 Chapter 2 / Abstract Data Types and Java Classes

26. Suppose that a method hasiam parameter called, and the body of
the method changesto zero. When the method is activated, what hap-
pens to the argument that corresponds?o

27. Suppose that a method hasaation parameter called, and the body
of the method activates. rotate90(). When the method is activated,
what happens to the argument that correspong® to

CHAPTER SUMMARY

* In Java, object-oriented programming (OOP) is supported by implement-
ing classes Each class defines a collection of data, callednisance
variables In addition, a class has the ability to include two other items:
constructorsand methods Constructors are designed to provide initial
values to the class’s data; methods are designed to manipulate the data.
Taken together, the instance variables, constructors, and methods of a
class are called the clasembers

* We generally userivate instance variablesnd public methods This
approach supports information hiding by forbidding data components of a
class to be directly accessed outside of the class.

* A new class can be implemented in a Java package that is provided to
other programmers to use. The package includes documentation to tell
programmers what the new class does without revealing the details of how
the new class is implemented.

e A program uses a class by creating new objects of that class, and activat-
ing these objects’ methods througtference variables

« When a method is activated, each of its parameters is initialized. If a
parameter is one of the eight primitive types, then the parameter is initial-
ized by the value of the argument, and subsequent changes to the parame-
ter do not affect the actual argument. On the other hand, when a parameter
is a reference variable, the parameter is initialized so that it refers to the
same object as the actual argument. Subsequent changes to this object do
affect the actual argument’s object.

e Java programmers must understand how these items work for classes:
— the assignment operator£ y)
— the equality testx(==y)
— aclone method to create a copy of an object
— anequals method to test whether two separate objects are equal to
each other

@ [o—

4~ 4]

i

%9 java02.frm Page 87 Saturday, August 26, 2000 5:50 PM

. We have usedprivate instance variables,
public constructors, andublic methods.

. In this solution, the assignmentgosition is

not really needed sinceosition will be
given its default value of zero before the con-
structor executes. However, including the
assignment makes it clear that we intended for
position to start at zero:

public Throttle()
{
top = 1;
position = 0;
3

. Notice that our solution has the precondition
thatsize is positive, andinitial lies in the
range from zero teize.
pubTlic Throttle(int size, int initial)
{
if (size <= 0)
throw new
I11egalArgumentException
("Size <= 0:" + size);
if (initial < 0)
throw new
I11egalArgumentException
("Initial < 0:" + 1initial);
if (initial > size)
throw new
I11legalArgumentException
("Initial too big:" + initial);
top = size;
position = initial;

}

. The method implementation is:

public boolean 1isAboveHalf()

{
return (getFlow() > 0.5);

}

Solutions to Self-Test Exercise87

Solutions to Self-Test Exercises

. You'll find part of a solution in Figure 13.1 on

page 618.

The program should include the following
statements:

Throttle exercise = new Throttle(6);
exercise.shift(3);
System.out.printin(exercise.flow());

The control should be assigned the value of
null. By the way, if it is an instance variable of
a class, then it is initialized to null.

8. A NullPointerException is thrown.

9. Both t1 and t2 refer to the same throttle,

11.

12.
13.

14.
15.

which has been shifted up 42 positions. So the
output is 0.42.

. At the end of the code{ == t2) is true since

there is only one throttle that both variables
refer to.

Here is the code (and at the etitk=t2 is
false since there are two separate throttles):

Throttle t1;

Throttle t2;

tl = new Thrott1e(100);
t2 = new Throttle(100);
tl.shift(42);
t2.shift(42);

com.knafn.statistics

Underneath yourlasses directory, create a
subdirectory com. Underneathcom create a
subdirectoryknafn. Underneattknafn create
a subdirectorystatistics. Your package is
placed in thestatistics subdirectory.

import com.knafn.statistics.*;

Java automatically importgava.lang; no
explicit import statement is needed.

\

@ [o—

%9 java02.frm Page 88 Saturday, August 26, 2000 5:50 PM

—& @

88 Chapter 2 / Abstract Data Types and Java Classes

16. Public access is obtained with the keyword 21. The alternativpl.x + p2.x)/2 has a subex-
public, and it allows access by any program. pressiorpl.x + p2.x which could result in an
Private access is obtained with the keyword overflow.
private, and it allows access only by the
methods of the class. Package access is
obtained with no keyword, and it allows

22. Here is the implementation for the throttle:
public boolean equals(Object obj)

o {
access within the package but not elsewhere. if (obj instanceof Throttle)
) {
17. Here is the code: Throttle candidate = (Throttle) obj;
Location pl = new Location(0, 0); return
Location p2 = new Location(l, 1); (candidate.top==top)
System.out.printin & . . o
(Location.distance(pl, p2));) (candidate.position==position);
LOC&t'IOI’.l p3 = else
Location.midpoint(pl, p2); return false;
}

18. A static method is not activated by any one i
object. Instead, the class name is placed in 23. The automaticequals method returngrue

front of the method to activate it. For example, only when the two objects are the exact same

the distance between two locatigsisandp2 object (as opposed to two separate objects that

is computed by: have the same value).

Location.distance(pl, p2); 24. The solution is the same as thecation
Within the implementation of a static clone on page 65, but change thecation

method, we cannot directly refer to the type toThrottle.

instance variables. 25. A runtimeException indicates a program-

, ming error. When you throw &untime-
19. The constanbouble.NaN is used when there Exception, you should provide an indication

is no valid number to store in a double vari- of the most likely cause of the error.

able (“not a number”). _
26. The argument remains unchanged.

20. The result is the constant 27. The object that the argument refers to has
Double.POSITIVE_INFINITY. been rotated S0

ﬂ PROGRAMMING PROJECTS

1 Specify, design, and implement a class that stopping the next time thatappears at the top. At
can be used in a program that simulates a this point, you may open the lock.

combination lock. The lock has a circular Your Lock class should have a constructor that
knob, with the numbers 0 through 39 marked on the initializes the three-number combination. Also pro-
edge, and it has a three-number combination, whichvide methods:
we’ll call x, y, z.To open the lock, you must turn the (@) To alter the lock’s combination to a new

knob clockwise at least one entire revolution, stop- three-number combination

ping with x at the top; then turn the knob counter- (b) To turn the knob in a given direction until a
clockwise, stopping theecondime thaty appears at specified number appears at the top

the top; finally turn the knob clockwise again, (c) To close the lock

.
4~ ~s

%9 java02.frm Page 89 Saturday, August 26, 2000 5:50 PM

i

Programming Projects 89

(d) To attempt to open the lock istician that behaves as if it had all of the numbers of
(e) To inquire the status of the lock (open or sl followed by all of the numbers .

shut)
() To tell what number is currently at the top

4 Specify, design, and implement a class that
can be used to keep track of the position of

a locationin three-dimensionaspace.For

example, consider the location drawn here:

y-axis

2 Specify, design, and implement a class
calledStatistician. After a statistician is
initialized, it can be given a sequence of
double numbers. Each number in the sequence is
given to the statistician by activating a method
callednextNumber. For example, we can declare a
statistician called, and then give it the sequence of

numbers 1.1, —2.4, 0.8 as shown here: X-axis
Statistician s = new Statistician; %/Coordinates of
S- neXtmumEer(léli’ _ this location:
s.nextNumber(-2.4); Z-axis x=25
s.nextNumber(0.8); =0
y
z=20

After a sequence has been given to a statistician
there are various methods to obtain information
about the sequence. Include methods that will pro-
vide the length of the sequence, the last number of
the sequence, the sum of all the numbers in the
sequence, the arithmetic mean of the numbers (i.e.
the sum of the numbers divided by the length of the
sequence), the smallest number in the sequence, an
the largest number in the sequence. Notice that the
length and sum methods can be called at any time,
even if there are no numbers in the sequence. In this
case of an “empty” sequence, both length and sum
will be zero. The other methods should return
Double.NaN if they are called for an empty
sequence.

Notes: Do not try to store the entire sequence After a 0 rotation around the x-axis:
(because you don't know how long this sequence X = X

"The location shown in the picture has three coordi-
natesx =2.5,y=0, andz = 2.0. Include methods to
set a location to a specified point, to shift a location
a given amount along one of the axes, and to retrieve
the coordinates of a location. Also provide methods
that will rotate the location by a specified angle
around a specified axis.

To compute these rotations, you will need a bit of
trigonometry. Suppose you have a location with co-
ordinatesx, y,andz. After rotating this location by
an angled , the location will have new coordinates,
whichwe’ll callX' ,y' , andZ . The equations for the
new coordinates use thgava.lang methods
Math.sin andMath.cos, as shown here:

will be). Instead, just store the necessary informa- .
tion about the sequence: What is the sequence
length, what is the sum of the numbers in the se-

y' = y cos(0) —z sin(6)

y sin(B) + z cog(0)

quence, what are the last, smallest, and largest numagter a 6 rotation around the y-axis:

bers? Each of these pieces of information can be

; . ; : ; X
stored in a private instance variable that is updated
whenevemhextNumber is activated. y

ZI

= X cog(0) + z sin(B)
=y
—x sin(0) + z cog(B)

After a 0 rotation around the z-axis:

3 Write a new static method to allow you to .
“add” two statisticians from the previous
project. Ifs1 ands2 are two statisticians, y

then the result of adding them should be a new stat- 2

ﬁ%

= X cog(8) —y sin(0)
X sin(0) +y cog(0)
z

\

@ [o—

%9 java02.frm Page 90 Saturday, August 26, 2000 5:50 PM

—& @

90 Chapter 2/ Abstract Data Types and Java Classes

5 In three-dimensional space, a line segment is A one-variablequadratic expressionis an
defined by its two endpoints. Specify, design, 8 arithmetic expression of the form
and implement a class for a line segment. ax?+bx+ c, wherea, b, andc are some
The class should have two private instance variablesfixed numbers (called theoefficienty andx is a
that are 3D locations from the previous project. variable that can take on different values. Specify,
design, and implement a class that can store infor-
mation about a quadratic expression. The construc-
Specify, design, and implement a class for a tor should set all three coefficients to zero, and
6 card in a deck of playing cards. The class another method should allow you to change these
should contain methodsfor setting and coefficients. There should be accessor methods to
retrieving the suit and rank of a card. retrieve the current values of the coefficients. There
should also be a method to allow you to “evaluate”
the quadratic expression at a particular value of
(i.e., the method has one parameteand returns the
value of the expressioax? + bx+ ¢).
Also write the following static methods to per-
form these indicated operations:

7 Specify, design, and implement a class that

can be used to hold information about a
musical note. A programmer should be able
to set and retrieve the length of the note and the

value of the note. The length of a note may be a six- public static Quadratic sum(
teenth note, eighth note, quarter note, half note, or Quadratic ql,
whole note. A value is specified by indicating how Quadratic g2
far the note lies above or below the A note that)
orchestras use in tuning. In counting “how far,” you // Postcondition: The return value is the
should include both the white and black notes on a // quadratic expression obtained by adding
piano. For example, the note numbers for the octave // ql and q2. For example, the c coefficient
beginning at middle C are shown here: // of the return value is the sum of q1’s ¢
// coefficient and q2’s c coefficient.
-8 -6 -3 -1 1 public static Quadratic scale(
c” D* F* G* A* double r,
Note , Quadratic q
numbers // Postcondition: The return value is the
for the // quadratic expression obtained by
octave of

’ // multiplying each of q’s
C|D|E|F|G|A|B middle C // coefficients by the number r.

-9 -7 5 -4 -20 2

Notice that the first argument of tkeale method
is a double number (rather than a quadratic expres-

The constructor should set a note to a middle C Sion). For example, this allows the method activa-
quarter note. Include methods to set a note to a spection Quadratic.scale(3.14, q) whereq is a
ified length and value. Write methods to retrieve in- duadratic expression.
formation about a note, including methods to tell
you the letter of the note (A, B, C, etc.), whether the
note is natural or sharp (i.&hite or black on the pi- This project is a continuation of the previous
ano), and the frequency of a note in hertz. To calcu- 9 project. For a quadratic expression such
late the frequency, use the formula0x 2V12 asax? +bx+ ¢, areal root is any double
wheren is the note number. Feel free to include oth- numberx such thatix? + bx+ ¢ = 0 . For example,
er useful methods. the quadratic expressi@x?+8x+6 has one of its

.
4~ ~s

*

%9 java02.frm Page 91 Saturday, August 26, 2000 5:50 PM

real roots atx = —3 , because substituting —3
in the formula2x? + 8x + 6 yields the value:

2x(=3)+8x(=3)+6 =10
There are six rules for finding the real roots of a qua-
dratic expression:

(1) If a, b,andc are all zero, then every value of
X is a real root.

(2) Ifaandb are zero, but is nonzero, then there
are no real roots.

(3) If ais zero, and is nonzero, then the only
real rootisx = —¢/ b .

(4) If ais nonzero and?<4ac , then there are
no real roots.

(5) If ais nonzero and? = 4ac , then there is
one real rootx = —b/2a

(6) If ais nonzero, and? >4ac , then there are
two real roots:

X = —b-b*-4ac
2a

¥ = —b+A/b2—4ac
2a

Write a new method that returns the number of real
roots of a quadratic expression. This answer could
be 0, or 1, or 2, or infinity. In the case of an infinite
number of real roots, have the method return 3. (Yes,
we know that 3 is not infinity, but for this purpose it

Programming Projects 91

(1) Current fuel flow rate as a fraction of the
maximum fuel flow (initially zero)

(2) Vertical speed of the lander (initially zero
meters/sec)

(3) Altitude of the lander (specified as a parame-
ter of the constructor)

(4) Amount of fuel (specified as a parameter of
the constructor)

(5) Mass of the lander when it has no fuel (spec-
ified as a parameter of the constructor)

(6) Maximum fuel consumption rate (specified
as a parameter of the constructor)

(7) Maximum thrust of the lander’s engine (spec-
ified as a parameter of the constructor)

Don't worry about other properties (such as horizon-
tal speed).

The lander has accessor methods that allow a
program to retrieve the current values of any of the
preceding seven items. There are only two modifica-
tion methods, described below.

The first modification method changes the cur-
rent fuel flow rate to a new value ranging from 0.0
to 1.0. This value is expressed as a fraction of the
maximum fuel flow.

The second modification method simulates the
passage of a small amount of time. This time, called
t, is expressed in seconds and will typically be a
small value such as 0.1 seconds. The method will
update the first four values in the preceding list, to
reflect the passage dseconds. To implement this
method, you will require a few physics formulas list-
ed below. These formulas are only approximate, be-

is close enough!) Write two other methods that cal- -5,se some of the landers values are changing

culate and return the real roots of a quadratic eXpres-quring the simulated time period. But if the time
sion. The precondition for both methods is that the span is kept short, these formulas will suffice.

expression has at least one real root. If there are twa
real roots, then one of the methods returns the small-
er of the two roots, and the other method returns the
larger of the two roots. If every value »fs a real
root, then both methods should return zero.

Fuel flow rate: Normally, the fuel flow rate does

not change during the passage of a small amount of
time. But there is one exception: If the fuel flow rate
is greater than zero, and the amount of fuel left is

zero, then you should reset the fuel flow rate to zero

10 Specify, design, and implement a class that

can be used to simulate a lunar lander, which
is a small spaceship that transports astro-
nauts from lunar orbit to the surface of the moon.
When a lunar lander is constructed, the following
items should be initialized as follows:

ﬁ%

(because there is no fuel to flow).

Velocity change:Duringt seconds, the velocity

of the lander changes by approximately this amount
(measured in meters/sec):

f
x %—1.6%

ﬁ%

\

@ [o—

%9 java02.frm Page 92 Saturday, August 26, 2000 5:50 PM

—&| @

92 Chapter 2 / Abstract Data Types and Java Classes

The valuamis the total mass of the lander, measured a sequence of pseudorandom numbers is quite sim-
in kilograms (i.e.the mass of a lander with no fuel, ple. The first number is:

plus the mass of any remaining fuel). The vdlise
the thrust of the lander’s engine, measured in new-
tons. You can calculatas the current fuel flow rate This formula uses the Jawsoperator, which com-
times the maximum thrust of the lander. The number putes the remainder from an integer division.

—1.62 is the downward acceleration from gravity on Each time a new random number is computed,

(multiplier * seed + increment) % modulus

the moon. the value of the seed is changed to that new number.
Altitude change: Duringt seconds, the altitude ~ For eéxample, we could implement a pseudorandom
of the lander changes v meters, wheisethe number generator withultiplier = 40, incre-
vertical velocity of the lander (measured in meters/ ment = 3641, andmodulus = 729. If we choose the
sec, with negative values downward). seed to ba, then the sequence of numbers will pro-

Change in remaining fuel: During t seconds, ceed as shown here:

the amount of remaining fuel is reducedtbyr x c
kilograms. The value of is the current fuel flow
rate, anct is the maximum fuel consumption (mea- _ (40 * 1 + 3641) % 729
sured in kilograms per second). =36

We suggest that you calculate the changes to the and36 becomes the new seed.
four items in the order just listed. After all the
changes have been made, there are two further ad- Next number
justments. First, if the altitude has dropped below — (multiplier * seed + increment) % modulus
zero, then reset both altitude and velocity to zero (in- = (409 * 36 + 3641) % 729
dicating that the ship has landed). Second, if the total = ;7
amount of remaining fuel drops below zero, thenre- 304707 becomes the new seed.
set this amount to zero (indicating that we have run
out of fuel).

First number
= (multiplier * seed + increment) % modulus

These particular values for multiplier, increment,

and modulus happen to be good choices. The pattern

generated will not repeat until 729 different numbers

11 In this project you will design and imple- have been produced. Other choices for the constants
ment a class that can generate a sequencemight not be so good.

of pseudorandom integers, which is a For this project, design and implement a class
sequence that appears random in many ways. Thethat can generate a pseudorandom sequence in the
approach uses tHmear congruence method ex- manner described. The initial seed, multiplier, incre-

plained below. The linear congruence method starts ment, and modulus should all be parameters of the
with a number called theeed In addition to the constructor. There should also be a method to permit
seed, three other numbers are used in the linear conthe seed to be changed, and a method to generate
gruence method, called theultiplier , the incre- and return the next number in the pseudorandom
ment, and thenodulus. The formula for generating sequence.

@ [o—

4~ 4]

*

%9 java02.frm Page 93 Saturday, August 26, 2000 5:50 PM

12 Add a new method to the random number
class of the previous project. The new
method generates the next pseudorandom
number but does not return the number directly. In-
stead, the method returns this number divided by the
modulus. (You will have to cast the modulus to a
double number before carrying out the division; oth-
erwise, the division will be an integer division,
throwing away the remainder.)

The return value from this new member function
is a pseudorandom double number in the range
[0..1). (The square bracketf’; indicates that the
range does include, but the rounded parenthesis,
)", indicates that the range goes up tovithout ac-
tually including1.)

13 Run some experiments to determine the dis-
tribution of numbers returned by the new
pseudorandommethodfrom the previous
project. Recall that this method returns a double
number in the ranggo. .1). Divide this range into
ten intervals, and call the method one million times,
producing a table such as shown here:

Range Number of Occurrences
[0.0..0.1) 99889
[0.1..0.2) 100309
[0.2..0.3) 100070
[0.3..0.4) 99940
[0.4..0.5) 99584
[0.5..0.6) 100028
[0.6..0.7) 99669
[0.7..0.8) 100100
[0.8..0.9) 100107
[0.9..1.0) 100304

Run your experiment for different values of the

multiplier, increment, and modulus. With good which can be used to produce a sequence of pseudo-

choices of the constants, you will end up with about

Programming Projects 93

10% of the numbers in each interval. A pseudoran-
dom number generator with this equal-interval be-
havior is calleduniformly distributed.

14 This project is a continuation of the previous
project. Many applications require pseudo-
random number sequences thatrgeuni-
formly distributed. For example, a program that
simulates the birth of babies can use random num-
bers for the birth weights of the newborns. But these
birth weights should have@aussian distribution.

In a Gaussian distribution, numbers form a bell-
shaped curve in which values are more likely to fall
in intervals near the center of the overall distribu-
tion. The exact probabilities of falling in a particular
interval can be computed by knowing two numbers:
(1) a number called theariance which indicates
how widely spread the distribution appears, and (2)
the center of the overall distribution, called the-
dian. For this kind of distribution, the median is
equal to the arithmetic average (thear) and equal

to the most frequent value (theodg.

Generating a pseudorandom number sequence
with an exact Gaussian distribution can be difficult,
but there is a good way to approximate a Gaussian
distribution using uniformly distributed random
numbers in the rangg0..1). The approach is to
generate three pseudorandom numigtsr, , and
ry, each of which is in the rang®..1). These
numbers are then combined to produce the next
number in the Gaussian sequence. The formula to
combine the numbers is:

Next number in the Gaussian sequence
= mediart (2¢ (r, +r, +r;) —3) x variance

Add a new method to the random number class,

random numbers with a Gaussian distribution.

\

@ [o—

java02.frm Page 94 Saturday, August 26, 2000 5:50 PM

—&| @
|

1SSes

\

//

