
617

Software Reuse with Extended Classes
It is indeed a desirable thing to be well descended, but
the glory belongs to our ancestors.

PLUTARCH

Morals

13.1 EXTENDED CLASSES

13.2 SIMULATION OF AN ECOSYSTEM

13.3 USING EXTENDED CLASSES FOR ADTS

CHAPTER SUMMARY

SOLUTIONS TO SELF-TEST EXERCISES

PROGRAMMING PROJECTS

Often you will find yourself with a class that is nearly what
you require, but not quite. Perhaps the class that you require needs alterations to
one or two of the methods of an existing class, or maybe an existing class just
needs a few extra methods. Object-oriented languages provide support for this
situation by allowing programmers to easily create new classes that acquire
most of their properties from an existing class. The original class is called the
superclass (or parent class, or ancestor class, or base class—the lingo isn’t
entirely stabilized), and the new, slightly different class is the extended class (or
derived class, or child class, or descendant class, or subclass).

The first section of this chapter provides an introduction to extended classes.
The next two sections show two detailed programming examples, including an
illustration of how many of our previous ADTs might have benefited from using
an extended class.

&&+$+$3377((55

13

617

java13.frm Page 617 Tuesday, October 31, 2000 9:33 PM

618 Chapter 13 / Software Reuse with Extended Classes

13.1 EXTENDED CLASSES

One of the exercises in Chapter 2 was a Clock class to keep track of one
instance of a time value such as 9:48 P.M. (see Self-Test Exercise 5 on page 48).
One possible specification for this class is shown in Figure 13.1—we’re not
concerned about the Clock implementation right now. Suppose you’re writing a
program with various kinds of clocks: 12-hour clocks, 24-hour clocks, alarm
clocks, grandfather clocks, cuckoo clocks, maybe even a computer clock. Each
of these things is a Clock, but each of these also has additional properties that
don’t apply to clocks in general. For example, a CuckooClock might have an
extra method, isCuckooing, that returns true if its cuckoo bird is currently
making noise. How would you implement a CuckooClock, which is a Clock
with one extra isCuckooing method?

One possible solution uses no new ideas: Make a copy of the original
Clock.java file, change the name of the class to CuckooClock, and add an extra
method, isCuckooing. Can you think of some potential problems with this solu-
tion? We’ll end up writing a separate class declaration for each different type of
clock. Even though all of these clocks have similar or identical constructors and
methods, we’ll still end up repeating the method implementations for each dif-
ferent kind of clock.

Class Clock

❖ public class Clock from the package edu.colorado.simulations

A Clock object holds one instance of a time value such as 9:48 P.M.

Specification

 ◆ Constructor for the Clock
public Clock()

Construct a Clock that is initially set to midnight.
Postcondition:

This Clock has been initialized with an initial time of midnight.
(continued)

 FIGURE 13.1 Specification for the Clock Class

java13.frm Page 618 Tuesday, October 31, 2000 9:33 PM

Extended Classes619

 (FIGURE 13.1 continued)

 ◆ advance
public void advance(int minutes)

Move this Clock’s time by a given number of minutes.
Parameters:

minutes - the amount to move this Clock’s time
Postcondition:

This Clock’s time has been moved forward by the indicated number of minutes. Note: A
negative argument moves this Clock backward.

 ◆ getHour
public int getHour()

Get the current hour of this Clock.
Returns:

the current hour (always in the range 1...12)

 ◆ getMinute
public int getMinute()

Get the current minute of this Clock.
Returns:

the current minute (always in the range 0...59)

 ◆ isMorning
public boolean isMorning()

Check whether this Clock’s time is before noon.
Returns:

If this Clock’s time lies from 12:00 midnight to 11:59 A.M. (inclusive), then the return value
is true; otherwise the return value is false.

 ◆ setTime
public void setTime(int hour, int minute, boolean morning)

Set the current time of this Clock.
Parameters:

hour - the hour at which to set this Clock
minute - the minute at which to set this Clock
morning - indication of whether the new time is before noon

Precondition:
1 <= hour <= 12, and 0 <= minute <= 59.

Postcondition:
This Clock’s time has been set to the given hour and minute (using the usual 12-hour time
notation). If the third parameter, morning, is true, then this time is from 12:00 midnight to
11:59 A.M. Otherwise this time is from 12:00 noon to 11:59 P.M.

Throws: IllegalArgumentException
Indicates that the hour or minute is illegal.

java13.frm Page 619 Tuesday, October 31, 2000 9:33 PM

620 Chapter 13 / Software Reuse with Extended Classes

The solution to the clock problem is a new concept, called extended classes,
described here:

How to Declare an Extended Class

In the declaration of an extended class, the name of the extended class is fol-
lowed by the keyword extends, and then the name of the superclass. For exam-
ple, suppose that we want to declare an extended class CuckooClock using the
existing Clock class as the superclass. The beginning of the CuckooClock class
declaration would then look like this:

public class CuckooClock
{

…

This declaration indicates that every CuckooClock is also an ordinary Clock.
The primary consequence is that all of the public methods and instance variables
of an ordinary Clock are immediately available as public members of a
CuckooClock. These members are said to be inherited from the Clock. Notice
that it is the public members of the Clock that are accessible to the Cuckoo-
Clock. In some sense, the private members of the Clock are also present in a
CuckooClock—they must be present because some of the public methods
access other private members. But, these private members cannot be accessed
directly in a CuckooClock, not even by the programmer who implements a
CuckooClock.

For future reference, you should know that there is another kind of access that
can be provided to a method or instance variable. The access is called protected.
In most respects, a protected member is just like a private member, but the pro-
grammer of an extended class has direct access to protected members. None of
our examples will use protected members.

Now, let’s finish our CuckooClock declaration and see how it can be used in
a program. Our complete CuckooClock is shown in Figure 13.2. As you can see,
a CuckooClock has one extra public method: a boolean method called isCuck-
ooing, which returns true when the clock’s cuckoo is making noise. In the
implementation of isCuckooing, our cuckoos make noise whenever the current

Extended Classes

Extended classes use a concept called inheritance . In
particular, once we have a class, we can then declare new
classes that contain all of the methods and instance variables
of the original class—plus any extras that you want to throw
in. This new class is called an extended class of the original
class. The original class is called the superclass . And the
methods that the extended class receives from its superclass
are called inherited methods.

extends Clock

java13.frm Page 620 Tuesday, October 31, 2000 9:33 PM

Extended Classes621

minute of the time is zero. In this implementation, we use the ordinary clock
method, getMinute, to determine whether the current minute is zero.

Once the CuckooClock declaration is available, a program may declare
CuckooClock objects using all the public Clock methods and also using the new
isCuckooing method. In this usage, there are some special considerations for the
constructors. We’ll discuss these considerations next.

Class CuckooClock

❖ public class CuckooClock from the package edu.colorado.simulations
➤ extends Clock

A CuckooClock is a Clock that cuckoos when the minute is zero. The primary purpose of this
class is to demonstrate how an extended class is implemented.

Specification
In addition to the Clock methods, a CuckooClock has:

 ◆ isCuckooing
public boolean isCuckooing()

Check whether this CuckooClock is currently cuckooing.
Returns:

If this CuckooClock’s current minute is zero, then the return value is true; otherwise the
return value is false.

Implementation

// File: CuckooClock.java from the package edu.colorado.simulations
// Documentation is available at the top of this diagram or from the CuckooClock link in
// http://www.cs.colorado.edu/~main/docs/

package edu.colorado.simulations;

public class CuckooClock extends Clock
{

{
return (getMinute() == 0);

}

}

 FIGURE 13.2 The CuckooClock Is an Extension of the Ordinary Clock

public boolean isCuckooing()

java13.frm Page 621 Tuesday, October 31, 2000 9:33 PM

622 Chapter 13 / Software Reuse with Extended Classes

The Constructors of an Extended Class

An extended class may declare its own constructors, or it may use a no-argu-
ments constructor that is inherited from the superclass. Other superclass con-
structors, with arguments, are not inherited by the extended class. For the
cuckoo clock, the inherited no-arguments constructor, from the ordinary clock,
is sufficient. For example, a program can allocate a new CuckooClock object
with the statement:

CuckooClock noisy = new CuckooClock();

This activates the inherited no-arguments constructor from the Clock to create a
new CuckooClock.

Several important aspects of constructors for an extended class are:

1. If an extended class has new instance variables that are not part of the
superclass, then an inherited no-arguments constructor will set these new
values to their default values (such as zero for an int), and then do the
work of the superclass’s constructor.

2. Other superclass constructors, with arguments, are not inherited by the
extended class.

3. If an extended class declares any constructors of its own, then none of the
superclass constructors are inherited, not even the no-arguments construc-
tor. Later we will examine the special format that should be used to write
an extended class with its own declared constructors.

Using an Extended Class

We now know enough to write a bit of code that uses an extended class. For
example, here is a bit of code that declares a cuckoo clock, advances the cuckoo
clock some number of minutes, and then prints a message about whether the
cuckoo clock is currently cuckooing:

CuckooClock noisy = new CuckooClock();

noisy.advance(42);

System.out.print("The noisy clock’s time is now ");
System.out.println

(noisy.getHour() + ":" + noisy.getMinute());

if (noisy.isCuckooing())
System.out.println("Cuckoo cuckoo cuckoo.");

else
System.out.println("All’s quiet on the cuckoo front.");

java13.frm Page 622 Tuesday, October 31, 2000 9:33 PM

Extended Classes623

The key feature is that a cuckoo clock may use ordinary clock methods (such
as advance), and it may also use the new isCuckooing method. The inherit-
ance is accomplished with little work on our part. We only need to write the
body of isCuckooing; none of the ordinary clock methods needs to be rewritten
for the cuckoo clock.

There’s another advantage to extended classes: An object of the extended
class may be used at any location where the superclass is expected. For example,
suppose you write a method to compare the times on two clocks, as shown in
Figure 13.3. This method could be part of the Clock class or it could be

Implementation

// Postcondition: Returns true if the time on c1 is earlier than the time on c2
// over a usual day (starting at midnight and continuing to 11:59 P.M.); otherwise returns false.
{

// Check whether one is morning and the other is not.
if (c1.isMorning() && !c2.isMorning())

return true;
else if (c2.isMorning() && !c1.isMorning())

return false;

// Check whether one is 12 o’clock and the other is not.
else if ((c1.getHour() == 12) && (c2.getHour() != 12))

return true;
else if ((c2.getHour() == 12) && (c1.getHour() != 12))

return false;

// Check whether the hours are different from each other.
else if (c1.getHour() < c2.getHour())

return true;
else if (c2.getHour() < c1.getHour())

return false;

// The hours are the same, so check the minutes.
else if (c1.getMinute() < c2.getMinute())

return true;
else

return false;
}

 FIGURE 13.3 A Method to Compare the Time of Two Clocks

public static boolean earlier (Clock c1, Clock c2)

java13.frm Page 623 Tuesday, October 31, 2000 9:33 PM

624 Chapter 13 / Software Reuse with Extended Classes

implemented elsewhere. We can use this method to compare two ordinary
clocks, but we can also compare objects of the clock’s extended classes. For
example, consider the code shown here:

CuckooClock sunrise = new CuckooClock();
CuckooClock yourTime = new CuckooClock();

...code that sets the clocks to some time...

if
System.out.println("That’s before sunrise!");

else
System.out.println("That’s not before sunrise.");

In fact, we can even use the earlier method to compare an ordinary Clock
with a CuckooClock, or to compare two objects from different extended classes.

Any methods that you write to manipulate a clock will also be able to
manipulate all of the clock’s extended classes. Without extended classes, we
would need to write a separate method for each kind of clock that we want
to manipulate.

Overriding Inherited Methods

Frequently, an extended class needs to perform some method differently from
the way the superclass does. For example, the original clock provides the cur-
rent hour via getHour, using a 12-hour clock. Suppose we want to implement an
extended class that provides its hour on a 24-hour basis, ranging from 0 to 23.
The new clock can be defined as an extended class called Clock24. The
Clock24 class inherits everything from the ordinary clock, but it provides a new
getHour method. This is called overriding an inherited method.

To override an inherited method, the extended class redefines the method
within its own class declaration. For example, the Clock24 class in Figure 13.4
overrides the original getHour method of the original Clock. Within this imple-
mentation, we can use the name super.getHour to refer to the original getHour
method of the superclass.

Programming Tip: Make the Overriding
Method Activate the Original

In the example of the Clock24 getHour method, the first action of the overriding
method is to activate the original method. Generally, the overriding method will acti-
vate the original method to do some of its work. The reason is that the original
method does work to correctly maintain the superclass. Frequently the activation of
the original method will be the first action of an overriding method.

(earlier(sunrise, yourTime))

TIP

java13.frm Page 624 Tuesday, October 31, 2000 9:33 PM

Extended Classes625

Class Clock24
❖ public class Clock24 from the package edu.colorado.simulations
➤ extends Clock

A Clock24 object is a Clock with its hour in 24-hour format (0 to 23) instead of 12-hour
format. The purpose is to show how an extended class may override a method of the superclass.

Specification
In addition to the Clock methods, a Clock24 object has:
 ◆ getHour (overriden from the superclass Clock)

public int getHour()

Get the current hour of this Clock24, in 24-hour format.
Returns:

the current hour (always in the range 0...23)

Implementation
// File: Clock24.java from the package edu.colorado.simulations
// Documentation is available at the top of this diagram or from the Clock24 link in
// http://www.cs.colorado.edu/~main/docs/

package edu.colorado.simulations;

public class Clock24 extends Clock
{

{
int ordinaryHour = super.getHour();

if (isMorning())
{

if (ordinaryHour == 12)
return 0;

else
return ordinaryHour;

}
else
{

if (ordinaryHour == 12)
return 12;

else
return ordinaryHour + 12;

}
}

}

 FIGURE 13.4 The Clock24 Class Overrides the Clock’s getHour Method

public int getHour()

java13.frm Page 625 Tuesday, October 31, 2000 9:33 PM

626 Chapter 13 / Software Reuse with Extended Classes

Widening Conversions for Extended Classes

In Java, assignments are allowed from an extended class to the superclass, for
example:

Clock ordinary;
Clock24 scientific = new Clock24();

scientific.advance(780);

The assignment is an example of a widening
conversion, which we first saw in Chapter 5 on page 243. It is a widening
conversion because the variable ordinary is capable of referring to many
different kinds of clocks (an ordinary Clock, or a CuckooClock, or a Clock24),
thus the ordinary variable has a wider variety of possibilities than the
scientific variable (which may refer to a Clock24 object only). Assigning
an object of the extended class to a variable of the superclass is always
permitted, and the assignment acts like any other Java assignment. After the
above statements, both ordinary and scientific refer to the same clock,
and this clock is the Clock24 object that was allocated and advanced 780
minutes.

During the execution of a Java program, the Java runtime system keeps track
of the class of each object. In the above code, the Java runtime system knows that
the one clock object is really a Clock24 object, so we might diagram the above
situation like this (after the assignment statement):

What happens if we activate scientific.getHour()? The Clock24
getHour method is activated (from Figure 13.4 on page 625), and the answer 13
is returned (which is the hour corresponding to 1 P.M.). That’s not surprising since
scientific was declared as a Clock24 variable.

Advance the scientific clock to 1 P.M.

and assign the ordinary clock to
equal the scientific clock.ordinary = scientific;

ordinary = scientific

Clock ordinary

Clock24 scientific

A Clock24
object

The data in this
clock is 1 P.M.

java13.frm Page 626 Tuesday, October 31, 2000 9:33 PM

Extended Classes627

But what happens when we activate ordinary.getHour()? In this situation,
the answer is still 13, even though ordinary is declared as a Clock variable
rather than a Clock24 variable. Here’s the reason:

This technique of method activation is called dynamic method activation
because the actual method to activate is not determined until the program is
running. A method that behaves like this is called a virtual method. Some
programming languages, such as C++, allow both virtual methods (where the
method to activate is determined by the actual object when the program is
running) and nonvirtual methods (where the method to activate is determined by
the type of the variable during the compilation). But Java has virtual methods
only.

Narrowing Conversions for Extended Classes

Assignments are also permitted from a superclass to one of its extended types,
but the compiler needs a bit of extra reassurance to permit the assignment. For
example, suppose that c is a Clock variable and fancy is a CuckooClock vari-
able. To make an assignment from c to fancy we must write

fancy = (CuckooClock) c;

The typecast tells the compiler that the reference variable c
is really referring to a CuckooClock object, even though it was declared as a
Clock. With the typecast in place, the assignment always compiles correctly,
though during the execution there is an extra check. When the assignment is
executed, the Java Runtime System checks that c really does refer to a Cuckoo-
Clock, and if it doesn’t then a ClassCastException is thrown.

The assignment is an example of a narrowing
conversion, which we first saw in Chapter 5 on page 244. In Java, a narrowing
conversion always requires a typecast to reassure the compiler that you really did
mean to make that assignment. Even with the typecast, a programming error can
cause a ClassCastException at runtime if the object is the wrong type.

Several features of extended classes remain to be seen, such as extended
classes that require new private instance variables. These considerations will
arise in the examples from the rest of this chapter.

How Java Methods Are Activated

When a program is running and a method is activated, the
Java Runtime System checks the data type of the actual
object, and uses the method from that type (rather than the
method from the type of the reference variable).

(CuckooClock) c

fancy = (CuckooClock) c

java13.frm Page 627 Tuesday, October 31, 2000 9:33 PM

628 Chapter 13 / Software Reuse with Extended Classes

Self-Test Exercises

1. Design and implement an extended class called DaylightClock. A day-
light clock is like a clock except that it has one extra boolean method to
determine whether it is currently daylight. Assume that daylight
stretches from 7A.M. through 6:59P.M.

2. Using your DayLightClock from the previous exercise, write an exam-
ple of a widening conversion and a narrowing conversion.

3. Suppose an extended class does not declare any constructors of its own.
What constructors is it given automatically?

4. Design and implement an extended class called NoonAlarm. A noon
alarm object is just like a clock, except that whenever the advance
method is called to advance the clock forward through 12 o’clock noon,
an alarm message is printed (by the advance method).

13.2 SIMULATION OF AN ECOSYSTEM

A is-a B means
that A is a
particular kind of
B

There are many potential uses for extended classes, but one of the most frequent
uses comes from the is-a relationship. “A is-a B” means that each A object is a
particular kind of B object. For example, a cuckoo clock is a particular kind of
clock. Some other examples of is-a relationships for living organisms are shown
in Figure 13.5. The relationships are drawn in a tree called an object hierarchy
tree. In this tree, each superclass is placed as the parent of its extended classes.

FIGURE 13.5 An Object Hierarchy
Organism

PlantAnimal

Herbivore

Elephant Bird of Prey Tiger

Carnivore

An animal
is-an organism.

A plant
is-an organism.

An herbivore
is-an animal.

A carnivore
is-an animal.

An elephant
is-an herbivore.

A tiger
is-a carnivore.

A bird of prey
is-a carnivore.

java13.frm Page 628 Tuesday, October 31, 2000 9:33 PM

Simulation of an Ecosystem629

Programming Tip: When to Use an Extended Class

Look at each line in the object hierarchy tree (Figure 13.5). For each child and its
parent, does it make sense to say “A is a B’’? Whenever it makes sense to say “A is
a B,’’ consider implementing the class for A as an extended class of B. This lets the
new A class benefit from inheriting all of B’s public members.

Implementing Part of the Organism Object Hierarchy

We will implement four classes from the object hierarchy tree of living organ-
isms, and use these four classes in a program that simulates a small ecosystem.
The four classes that we will implement are:

Keep in mind that the extended classes might have new instance variables as
well as new methods.

The Organism Class

At the top of our object hierarchy tree is a class called Organism. Within a pro-
gram, every organism is given an initial size, measured in ounces. Each organ-
ism is also given a growth rate, measured in ounces per week. A program that
wants to simulate the growth of an organism will start by specifying an initial
size and growth rate as arguments to the organism’s constructor. Throughout the
computation, the program may activate a method called simulateWeek, which
causes the organism to simulate the passage of one week in its life—in other
words, activating simulateWeek makes the organism grow by its current growth
rate. The Organism class has a few other methods specified in Figure 13.6 on
page 630, and a usage of the Organism class is shown in Figure 13.7 on
page 632.

TIP

• A general class, called Organism,
that can be used by a program to
simulate the simplest properties of
organisms, such as being born,
growing, and eventually dying.

• Two classes that are extended from
an Organism. The classes, called
Animal and Plant, can do every-
thing that an ordinary organism
can do—but they also have extra
abilities associated with animals
and plants.

• The final class, called Herbivore,
is extended from the animal class.
It is a special kind of animal that
eats plants.

Organism

Plant

Animal

Herbivore

java13.frm Page 629 Tuesday, October 31, 2000 9:33 PM

630 Chapter 13 / Software Reuse with Extended Classes

Class Organism

❖ public class Organism from the package edu.colorado.simulations
An Organism object simulates a growing organism such as a plant or animal.

Specification

 ◆ Constructor for the Organism
public Organism(double initSize, double initRate)

Construct an Organism with a specified size and growth rate.

Parameters:
initSize - the initial size of this Organism, in ounces
initRate - the initial growth rate of this Organism, in ounces per week

Precondition:
initSize >= 0. Also, if initSize is zero, then initRate must also be zero.

Postcondition:
This Organism has been initialized. The value returned from getSize() is now initSize,
and the value returned from getRate() is now initRate.

Throws: IllegalArgumentException
Indicates that initSize or initRate violates the precondition.

 ◆ alterSize
public void alterSize(double amount)

Change the current size of this Organism by a given amount.

Parameters:
amount - the amount to increase or decrease the size of this Organism (in ounces)

Postcondition:
The given amount (in ounces) has been added to the size of this Organism. If this new size
is less than or equal to zero, then expire is also activated.

 ◆ expire
public void expire()

Set this Organism’s size and growth rate to zero.

Postcondition:
The size and growth rate of this Organism have been set to zero.

(continued)

 FIGURE 13.6 Specification for the Organism Class

java13.frm Page 630 Tuesday, October 31, 2000 9:33 PM

Simulation of an Ecosystem631

 (FIGURE 13.6 continued)

 ◆ getRate
public double getRate()

Get the growth rate of this Organism.

Returns:
the growth rate of this Organism (in ounces per week)

 ◆ getSize
public double getSize()

Get the current size of this Organism.

Returns:
the current size of this Organism (in ounces)

 ◆ isAlive
public boolean isAlive()

Determine whether this Organism is currently alive.
Returns:

If this Organism’s current current size is greater than zero, then the return value is true;
otherwise the return value is false.

 ◆ setRate
public void setRate(double newRate)

Set the current growth rate of this Organism.

Parameters:
newRate - the new growth rate for this Organism (in ounces per week)

Precondition:
If the size is currently zero, then newRate must also be zero.

Postcondition:
The growth rate for this Organism has been set to newRate.

Throws: IllegalArgumentException
Indicates that the size is currently zero, but the newRate is nonzero.

 ◆ simulateWeek
public void simulateWeek()

Simulate the passage of one week in the life of this Organism.

Postcondition:
The size of this Organism has been changed by its current growth rate. If the new size is less
than or equal to zero, then expire is activated to set both size and growth rate to zero.

java13.frm Page 631 Tuesday, October 31, 2000 9:33 PM

632 Chapter 13 / Software Reuse with Extended Classes

Java Application Program

// FILE: Blob.java
// This small demonstration shows how the Organism class is used.
import edu.colorado.simulations.Organism

public class Blob
{

{
Organism blob = new Organism(20.0, 100000.0);
int week;

// Untroubled by conscience or intellect, the Blob grows for three weeks.
for (week = 1; week <= 3; week++)
{

blob.simulateWeek();
 System.out.print("Week " + week + ":" + " the Blob is ");
 System.out.println(blob.getSize() + " ounces.");

}

// Steve McQueen reverses the growth rate to -80000 ounces per week.
blob.setRate(-80000.0);
while (blob.isAlive())
{

blob.simulateWeek();
System.out.print("Week " + week + ":" + " The Blob is ");
System.out.println(blob.getSize() + " ounces.");
week++;

}
 System.out.println("The Blob (or its son) shall return.");

}

}

Sample Dialogue

Week 1: The Blob is 100020.0 ounces.
Week 2: The Blob is 200020.0 ounces.
Week 3: The Blob is 300020.0 ounces.
Week 4: The Blob is 220020.0 ounces.
Week 5: The Blob is 140020.0 ounces.
Week 6: The Blob is 60020.0 ounces.
Week 7: The Blob is 0.0 ounces.
The Blob (or its son) shall return.

 FIGURE 13.7 Sample Program from the Movie, The Blob

public static void main(String[] args)

Steve McQueen comes to
the rescue at the end of
week 3!

Can anyone stop
the Blob?!

java13.frm Page 632 Tuesday, October 31, 2000 9:33 PM

Simulation of an Ecosystem633

The Organism class has methods to set a new growth rate, a method to alter
the organism’s current size, and methods to return information about the organ-
ism’s current size and growth rate.

The organism class is not hard to implement, and we’ll leave its implementa-
tion up to you. But we will give one example of using the organism class. Movie
buffs may recall the 1958 film, The Blob. The Blob came to Earth from outer
space at a mere 20 ounces, but “untroubled by conscience or intellect,” it absorbs
anything and anyone in its path. Without giving away the whole plot, let’s sup-
pose that the Blob grows at the astonishing rate of 100,000 ounces per week for
three weeks. Then our hero (Steve McQueen) manages to reverse its growth to a
rate of negative 80,000 ounces per week. A program to simulate the movie plot
is shown in Figure 13.7.

The Animal Class: An Extended Class with New Private Instance Variables

Now we want to implement a class that can be used to simulate an animal. Since
an animal is-an organism, it makes sense to declare the Animal class as an
extended class of the Organism. In our design, an animal is an organism that
must consume a given amount of food each week to survive. If a week has
passed and the animal has consumed less than its required amount of food, then
death occurs. With this in mind, the Animal class will have two new private
instance variables, which are not part of the Organism class, as shown at the
front of this partial declaration:

public class Animal extends Organism
{

the extended
class has two
new private
instance
variables...

The first new instance variable, needEachWeek, keeps track of how many
ounces of food the animal must eat each week in order to survive. The second
new instance variable, eatenThisWeek, keeps track of how many ounces of
food the animal has eaten so far this week.

When an extended class has some new instance variables, it will usually need
a new constructor to initialize those instance variables. This is the first example
that we have seen where an extended class has a new constructor rather than
using the inherited constructors that were described on page 622.

How to Provide a New Constructor for an Extended Class

When an extended class has a new constructor, the implementation of the new
constructor appears in the class declaration, just like any other constructor. The
inherited no-arguments constructor can no longer be used to create an object of
the extended class.

private double needEachWeek;
private double eatenThisWeek;

 We discuss the animal’s public methods in a moment.

java13.frm Page 633 Tuesday, October 31, 2000 9:33 PM

634 Chapter 13 / Software Reuse with Extended Classes

In the case of the animal, the new constructor will have three arguments. The
first two arguments are the same as the arguments for any organism, providing
the initial size and the initial growth rate. The third argument will indicate how
much food the animal needs, in ounces per week. Thus, the start of the animal’s
declaration is given here:

public class Animal extends Organism
{

public double needEachWeek;
public double eatenThisWeek;

...

The constructor has no argument for eatenThisWeek, since we plan to have that
instance variable initialized to zero, indicating that a newly constructed animal
has not yet eaten.

The work of the animal’s constructor is easy enough to describe: The first two
arguments must somehow initialize the size and growth rate of the animal; the
last argument initializes needEachWeek; the value of eatenThisWeek is
initialized to zero. But how do we manage to use initSize and initRate
to initialize the size and growth rate of the animal? Most likely the size and
growth rate are stored as private instance variables of the Organism class, but the
animal has no direct access to the organism’s private instance variables.

Java provides a solution to this problem, called a super constructor. A super
constructor is any constructor of the superclass. Usually, a constructor for an
extended class will activate the super constructor in its first line of code. This is
done with the keyword super, followed by the argument list for the super
constructor.

Here is the implementation of our animal constructor, with the activation of
the super constructor highlighted:

public Animal
(double initSize, double initRate, double initNeed)
{

if (initNeed < 0)
throw new IllegalArgumentException("negative need");

needEachWeek = initNeed;
// eatenThisWeek will be given its default value of zero.

}

If a constructor for an extended class does not activate the super constructor,
then Java arranges for the superclass’s no-arguments constructor to be automati-
cally activated at the start of the extended class’s constructor.

public Animal
(double initSize, double initRate, double initNeed)

super(initSize, initRate);

java13.frm Page 634 Tuesday, October 31, 2000 9:33 PM

Simulation of an Ecosystem635

The Other Animal Methods

The animal has four new methods that deal with eating, and the simulateWeek
method must also be overridden. The four new methods are called assign-
Need, eat, stillNeed, and getNeed. We’ll discuss each of these methods
now.

The assignNeed method. This method has this heading:

void assignNeed(double newNeed)

The method is activated when a simulation needs to specify how much food an
animal must eat to survive a week. For example, if spot is an animal that needs
30 ounces of food to survive a week, then spot.assignNeed(30) is activated.
During a simulation, the food requirements may change, so that assignNeed
can be activated several times with different arguments.

The eat method. Whenever the animal, spot, eats m ounces of food, the
method spot.eat(m) records this event. Here’s the heading of the method:

void eat(double amount)

The amount of food that has been eaten during the current week is stored in a
private instance variable, eatenThisWeek. So, activating eat(m) will simply
add m to eatenThisWeek.

Two accessor methods. There are two animal methods that are accessor meth-
ods called getNeed and stillNeed. The getNeed method returns the total
amount of food that the animal needs in a week, and the stillNeed method
returns the amount of food that the animal still needs in the current week (which
is the total need minus the amount already eaten).

Overriding the simulateWeek method. The animal must do some extra work
in its simulateWeek method. Therefore, it will override the organism’s
simulateWeek method. The animal’s simulateWeek will first activate
super.simulateWeek to carry out whatever work an ordinary organism does to
simulate one week. Next, the animal’s simulateWeek determines whether the
animal has had enough food to eat this week. If eatenThisWeek is less than
needEachWeek, then expire is activated. Also, eatenThisWeek is reset to zero
to restart the recording of food eaten for the animal’s next week.

At the top of the next page, we show some example code to illustrate the coor-
dination of the new methods. It begins by declaring a 160-ounce animal, spot
(perhaps a cat). Spot is not currently growing (since initRate is zero in the con-
structor), but she does require 30 ounces of food per week.

java13.frm Page 635 Tuesday, October 31, 2000 9:33 PM

636 Chapter 13 / Software Reuse with Extended Classes

Animal spot = new Animal(160, 0, 30);

spot.eat(10);
spot.eat(25);
spot.simulateWeek();
if (spot.isAlive())

System.out.println("Spot lives!");
else

System.out.println(“Spot has died.”);

spot.eat(10);
spot.eat(15);
spot.simulateWeek();
if (spot.isAlive())

System.out.println("Spot lives!");
else

System.out.println(“Spot has died.”);

The specification and implementation for the animal appears in Figure 13.8.
Since the animal is in the same package as the organism (edu.colorado.sim-
ulations), there is no need to import the Organism class.

The next class that we’ll build is a class to simulate a plant. The Plant class
is extended from an organism, and it has one extra method—but the work is left
up to you in the next few exercises.

Self-Test Exercises

5. Draw an object hierarchy diagram for various kinds of people.

6. Declare a new class called Plant, extended from Organism with one
extra method:

void NibbledOn(double amount)
// Precondition: 0 <= amount <= getSize().
// Postcondition: The size of this Plant has been decreased by
// amount. If this reduces the size to zero, then expire is activated.

Suppose fern is a plant. Activating fern.NibbledOn(m) corresponds to
some beast eating m ounces of fern. Notice that NibbledOn differs from
the existing alterSize method, since in the NibbledOn method, the
amount is removed from the size (rather than adding to the size), and
there is also a strict precondition on the amount eaten. The nibbledOn
implementation should activate alterSize to do some of its work.

Your Plant class should have one constructor with the same parame-
ters as the Organism constructor. The plant’s constructor merely acti-
vates the super constructor with these same parameters.

Spot catches a 10-ounce fish
and steals 25 ounces of
chicken from the kitchen.

Spot still lives at the
end of her first week.

Spot catches another 10-ounce
fish, but gets only 15 ounces
of chicken this week.

Sadly, Spot dies at the
end of her second week.

java13.frm Page 636 Tuesday, October 31, 2000 9:33 PM

Simulation of an Ecosystem637

7. Write a static method with one argument, which is a Java Vector, as
shown in this header:

public static double totalMass(Vector organisms)

The method’s precondition requires that every object in the Vector is a
non-null Organism. The return value is the total mass of all these organ-
isms. You may need to read more about the Vector class in Appendix D.

Class Animal

❖ public class Animal from the package edu.colorado.simulations
➤ extends Organism

An Animal is an Organism with extra methods that deal with eating.

Specification

In addition to the Organism methods, an Animal has a new constructor and these new methods:

 ◆ Constructor for the Animal
public Animal(double initSize, double initRate, double initNeed)

Construct an Animal with a specified size, growth rate, and weekly eating need.
Parameters:

initSize - the initial size for this Animal, in ounces
initRate - the initial growth rate for this Organism, in ounces per week
initNeed - the initial weekly eating requirement for this Animal, in ounces per week

Precondition:
initSize >= 0 and initNeed >= 0. Also, if initSize is zero, then initRate must also be
zero.

Postcondition:
This Animal has been initialized. The value returned from getSize() is now initSize, the
value returned from getRate() is now initRate, and this Animal must eat at least initNeed
ounces of food each week to survive.

Throws: IllegalArgumentException
Indicates that initSize, initRate, or initNeed violates the precondition.

(continued)

 FIGURE 13.8 The Animal Class

java13.frm Page 637 Tuesday, October 31, 2000 9:33 PM

638 Chapter 13 / Software Reuse with Extended Classes

 (FIGURE 13.8 continued)

 ◆ eat
public void eat(double amount)

Have this Animal eat a given amount of food.
Parameters:

amount - the amount of food for this Animal to eat (in ounces)
Precondition:
amount >= 0.

Postcondition:
The amount (in ounces) has been added to the food that this Animal has eaten this week.

Throws: IllegalArgumentException
Indicates that amount is negative.

 ◆ getNeed
public double getNeed()

Determine the amount of food that this Animal needs each week.
Returns:

the total amount of food that this Animal needs to survive one week (measured in ounces)

 ◆ setNeed
public void setNeed(double newNeed)

Set the current growth weekly food requirement of this Animal.
Parameters:

newNeed - the new weekly food requirement for this Animal (in ounces)
Precondition:

newNeed >= 0.
Postcondition:

The weekly food requirement for this Animal has been set to newNeed.
Throws: IllegalArgumentException

Indicates that newNeed is negative.

 ◆ simulateWeek (overriden from the superclass Organism)
public void simulateWeek()

Simulate the passage of one week in the life of this Animal.
Postcondition:

The size of this Animal has been changed by its current growth rate. If the new size is less
than or equal to zero, then expire is activated to set both size and growth rate to zero. Also,
if this Animal has eaten less than its need over the past week, then expire has been activated.

 ◆ stillNeed
public double stillNeed()

Determine the amount of food that this Animal still needs to survive this week.
Returns:

the ounces of food that this Animal still needs to survive this week
(which is the total need minus the amount eaten so far) (continued)

java13.frm Page 638 Tuesday, October 31, 2000 9:33 PM

Simulation of an Ecosystem639

 (FIGURE 13.8 continued)

Implementation

// File: Animal.java from the package edu.colorado.simulations
// Documentation is available on pages 637-638 or from the Animal link in
// http://www.cs.colorado.edu/~main/docs/

package edu.colorado.simulations;

public class Animal extends Organism
{

private double needEachWeek; // Amount of food needed (in ounces per week)
private double eatenThisWeek; // Ounces of food eaten so far this week

{
super(initSize, initRate);
if (initNeed < 0)

throw new IllegalArgumentException("negative need");
needEachWeek = initNeed;
// eatenThisWeek will be given its default value of zero.

}

{
 if (amount < 0)

throw new IllegalArgumentException("amount is negative");
eatenThisWeek += amount;

}

{
return needEachWeek;

}

{
if (newNeed < 0)

 throw new IllegalArgumentException("newNeed is negative");
needEachWeek = newNeed;

}

(continued)

public Animal(double initSize, double initRate, double initNeed)

public void eat(double amount)

public double getNeed()

public void setNeed(double newNeed)

java13.frm Page 639 Tuesday, October 31, 2000 9:33 PM

640 Chapter 13 / Software Reuse with Extended Classes

The Herbivore Class

We’re almost ready to start designing a simulation program for a small ecosys-
tem. The ecosystem will be a small pond containing weeds and weed-eating
fish. The weeds will be modeled by the Plant class from Self-Test Exercise 6
on page 636, and the fish will be a new class that is extended from the animal
class that we have just completed.

The new class for the fish, called Herbivore, is an animal that eats plants.
This suggests that an herbivore should have one new method, which we call
nibble. The method will interact with a plant that the herbivore is nibbling, and
this plant is a parameter to the new method. Here is the specification:

 ◆ nibble (from the Herbivore class)
public void nibble(Plant meal)

Have this Herbivore eat part of a Plant.

Parameters:
meal - the Plant that will be partly eaten

Postcondition:
Part of the Plant has been eaten by this Herbivore, by activating both
eat(amount) and meal.nibbledOn(amount). The amount is usually half
of the Plant, but it will not be more than 10% of this Herbivore’s
weekly need nor more than the amount that this Herbivore still needs to
eat to survive this week.

 (FIGURE 13.8 continued)

{
super.simulateWeek();
if (eatenThisWeek < needEachWeek)

expire();
eatenThisWeek = 0;

}

{
if (eatenThisWeek >= needEachWeek)

return 0;
else

 return needEachWeek - eatenThisWeek;
}

}

public void simulateWeek()

public double stillNeed()

java13.frm Page 640 Tuesday, October 31, 2000 9:33 PM

Simulation of an Ecosystem641

For example, suppose that carp is an Herbivore, and bushroot is a Plant. If
we activate carp.nibble(bushroot), then carp will eat some of bushroot,
by activating two other methods: (1) its own eat method, and (2) the
bushroot.nibbledOn() method.

The nibble method follows a few rules about how much of the plant is eaten.
The rules state that carp.nibble(bushroot) will usually cause carp to eat half
of bushroot, but a single nibble will not eat more than 10% of the herbivore’s
weekly need nor more than the amount that the herbivore still needs to eat in
order to survive the rest of the week. In an actual model, these rules would be
determined from behavior studies of real herbivores.

The complete herbivore documentation is shown in Figure 13.9, along with
the implementation of the herbivore’s methods.

Class Herbivore

❖ public class Herbivore from the package edu.colorado.simulations
➤ extends Animal

An Herbivore is an Animal with an extra method for eating a Plant.

Specification

In addition to the Animal methods, an Organism has a new constructor and the following new
methods:

 ◆ Constructor for the Herbivore
public Herbivore(double initSize, double initRate, double initNeed)

This is the same as the Animal constructor.

 ◆ nibble (from the Herbivore class)
public void nibble(Plant meal)

Have this Herbivore eat part of a Plant.
Parameters:

meal - the Plant that will be partly eaten
Postcondition:

Part of the Plant has been eaten by this Herbivore, by activating both eat(amount) and
meal.nibbledOn(amount). The amount is usually half of the Plant, but it will not be more
than 10% of this Herbivore’s weekly need nor more than the amount that this Herbivore still
needs to eat to survive this week.

(continued)

 FIGURE 13.9 The Herbivore Class

java13.frm Page 641 Tuesday, October 31, 2000 9:33 PM

642 Chapter 13 / Software Reuse with Extended Classes

 (FIGURE 13.9 continued)

Implementation

// File: Herbivore.java from the package edu.colorado.simulations
// Documentation is available on the preceding page or from the Herbivore link in
// http://www.cs.colorado.edu/~main/docs/

package edu.colorado.simulations;

public class Herbivore extends Animal
{

 {
 super(initSize, initRate, initNeed);
 }

 {
 final double PORTION = 0.5; // Eat no more than this portion of

// the plant
 final double MAX_FRACTION = 0.1; // Eat no more than this fraction of

// the weekly need

 double amount; // How many ounces of the plant will
// be eaten

 // Set amount to some portion of the Plant, but no more than a given maximim fraction
 // of the total weekly need, and no more than what this Herbivore still needs to eat this

// week.
 amount = PORTION * meal.getSize();
 if (amount > MAX_FRACTION * getNeed())
 amount = MAX_FRACTION * getNeed();
 if (amount > stillNeed())
 amount = stillNeed();

 // Eat the Plant.
 eat(amount);
 meal.nibbledOn(amount);

 }

}

public Herbivore(double initSize, double initRate, double initNeed)

public void nibble(Plant meal)

java13.frm Page 642 Tuesday, October 31, 2000 9:33 PM

Simulation of an Ecosystem643

The Pond Life Simulation Program

A simulation program can use objects such as our herbivores to predict the
effects of changes to an ecosystem. We’ll write a program along these lines to
model the weeds and fish in a small pond. The program stores the pond weeds in
a collection of plants. To be more precise, we have Java Vector that will contain
all the Plant objects of the simulation program. Check Appendix D if you need
information on the Vector collection class.

For example, suppose the pond has 2000 weeds with an initial size of 15
ounces each and a growth rate of 2.5 ounces per week. Then we will create a Vec-
tor of 2000 plants, as shown here:

public static final int MANY_WEEDS = 2000;
public static final double WEED_SIZE = 15;
public static final double WEED_RATE = 2.5;
...
Vector weeds = new Vector(MANY_WEEDS);

int i; // Loop control variable

for (i = 0; i < MANY_WEEDS; i++)
weeds.addElement();

Let’s start our explanation of this code with the highlighted expression
. This expression uses the new operator

to allocate a new Plant object. After the type name, Plant, we have an argu-
ment list (WEED_SIZE, WEED_RATE). This is the form of new that allocates a
new plant using a constructor with two arguments WEED_SIZE and WEED_RATE.
The statement weeds.addElement() is
executed 2000 times in the code. Each of the 2000 allocations results in a new
plant, and references to these 2000 plants are placed in the weeds Vector.

Our simulation has a second Vector, called fish, which is a Vector of
Herbivore objects. Initially, we’ll stock the fish Vector with 300 full-grown
fish.

With the weeds and fish in place, our simulation may proceed. Throughout the
simulation, various fish nibble on various weeds. Each week, every weed
increases by its growth rate (stated as 2.5 ounces/week in the code). Some weeds
will also be nibbled by fish, but during our simulation no weed will ever be com-
pletely eaten, so the weeds never die, nor do we ever create new weeds beyond
the initial 2000. On the other hand, the number of fish in the pond may vary
throughout the simulation. When a fish dies (because of insufficient nibbling),
the reference to that fish is removed from the fish Vector. New fish are also born
each week at a rate that we’ll explain in a moment. For now, though, you should
be getting a good idea of the overall simulation. Let’s lay out these ideas pre-
cisely with some pseudocode.

new Plant(WEED_SIZE, WEED_RATE)

new Plant(WEED_SIZE, WEED_RATE)

new Plant(WEED_SIZE, WEED_RATE)

java13.frm Page 643 Tuesday, October 31, 2000 9:33 PM

644 Chapter 13 / Software Reuse with Extended Classes

// Pseudocode for the pond life simulation

1. Create a bunch of new plants, and put the references to these new plants in
a Vector called weeds. The exact number of weeds, their initial size, and
their growth rate are determined by static constants called MANY_WEEDS,
WEED_SIZE, and WEED_RATE.

2. Create a bunch of new herbivores, and put the references to these new her-
bivores in a Vector called fish. The number of fish and their initial size
are determined by static constants INIT_FISH and FISH_SIZE. In this
simple simulation, the fish will not grow (their growth rate is zero), and
their weekly need will be their initial size times a static constant called
FRACTION.

3. For each week of the simulation, we will first cause some randomly
selected fish to nibble on randomly selected weeds. On average, each fish
will nibble on AVERAGE_NIBBLES weeds (where AVERAGE_NIBBLES is yet
another constant in our program). After all these nibbles, we will activate
simulateWeek for each fish and each weed. Dead fish will be removed
from the fish Vector. At the end of the week, we will give birth to some
new fish. The total number of newly spawned fish is the current number
of fish times a constant called BIRTH_RATE. To simplify the simulation,
we will have the new fish born fully grown with a growth rate of zero.

At the end of each week (simulated in Step 3), our program prints a few
statistics. These statistics show the number of fish that are currently alive and the
total mass of the weeds.

Our program implementing the pseudocode is given in Figure 13.10. The top
of the program lists the various constants that we have mentioned, from
MANY_WEEDS to BIRTH_RATE. Within the program, we use two static methods to
carry out some subtasks. One of the methods, called pondWeek, carries out the
simulation of one week in the pond, as described in Step 3 of the pseudocode.
The other method, totalMass, computes the total mass of all the plants in the
pond.

We discuss some implementation details starting on page 648.

java13.frm Page 644 Tuesday, October 31, 2000 9:33 PM

Simulation of an Ecosystem645

Java Application Program

// FILE: PondLife.java
// A simple simulation program to model the fish and weeds in a pond

import edu.colorado.simulations.*; // Provides Organism, Plant, Herbivore classes
import java.util.Vector;

public class PondLife
{
 // Number of weeds in the pond
 public static final int MANY_WEEDS = 2000;

 // Initial size of each weed, in ounces
 public static final double WEED_SIZE = 15;

 // Growth rate of weeds, in ounces/week
 public static final double WEED_RATE = 2.5;

 // Initial number of fish in the pond
 public static final int INIT_FISH = 300;

 // Fish size, in ounces
 public static final double FISH_SIZE = 50;

 // A fish must eat FRACTION times its size during one week, or it will die.
 public static final double FRACTION = 0.5;

 // Average number of weeds nibbled by a fish over a week
 public static final int AVERAGE_NIBBLES = 30;

 // At the end of each week, some fish have babies. The total number of new fish born is the
 // current number of fish times the BIRTH_RATE (rounded down to an integer).
 public static final double BIRTH_RATE = 0.05;

 // Number of weeks to simulate
 public static final int MANY_WEEKS = 38;

(continued)

 FIGURE 13.10 The Pond Life Simulation

java13.frm Page 645 Tuesday, October 31, 2000 9:33 PM

646 Chapter 13 / Software Reuse with Extended Classes

 (FIGURE 13.10 continued)

{

Vector fish = new Vector(INIT_FISH); // A Vector of our fish
Vector weeds = new Vector(MANY_WEEDS); // A Vector of our weeds
int i; // Loop control variable

// Initialize the Vectors of fish and weeds
for (i = 0; i < INIT_FISH; i++)

fish.addElement(new Herbivore(FISH_SIZE, 0, FISH_SIZE * FRACTION));
for (i = 0; i < MANY_WEEDS; i++)

weeds.addElement(new Plant(WEED_SIZE, WEED_RATE));

// Print headings for the output, using tabs (\t) to separate columns of data
System.out.println("Week \tNumber \tPlant Mass");
System.out.println(" \tof \t(in ounces)");

 System.out.println(" \tFish");

// Simulate the weeks
for (i = 1; i <= MANY_WEEKS; i++)
{

pondWeek(fish, weeds);
System.out.print(i + "\t");
System.out.print(fish.size() + "\t");
System.out.print((int) totalMass(weeds) + "\n");

}
}

 {

 int i;
 double answer = 0;
 Organism next;

 for (i = 0; i < organisms.size(); i++)
 {
 next = (Organism) organisms.elementAt(i);
 if (next != null)
 answer += next.getSize();
 }
 return answer;
 }

(continued)

public static void main(String[] args)

public static double totalMass(Vector organisms)

java13.frm Page 646 Tuesday, October 31, 2000 9:33 PM

Simulation of an Ecosystem647

 (FIGURE 13.10 continued)

{
 int i;
 int manyIterations;
 int index;
 Herbivore nextFish;
 Plant nextWeed;

 // Have randomly selected fish nibble on randomly selected plants
 manyIterations = AVERAGE_NIBBLES * fish.size();
 for (i = 0; i < manyIterations; i++)
 {
 index = (int) (Math.random() * fish.size());
 nextFish = (Herbivore) fish.elementAt(index);
 index = (int) (Math.random() * weeds.size());
 nextWeed = (Plant) weeds.elementAt(index);
 nextFish.nibble(nextWeed);
 }

 // Simulate the weeks for the fish
 i = 0;
 while (i < fish.size())
 {
 nextFish = (Herbivore) fish.elementAt(i);
 nextFish.simulateWeek();
 if (nextFish.isAlive())
 i++;
 else
 fish.removeElementAt(i);
 }

 // Simulate the weeks for the weeds
 for (i = 0; i < weeds.size(); i++)
 {
 nextWeed = (Plant) weeds.elementAt(i);
 nextWeed.simulateWeek();
 }

 // Create some new fish, according to the BIRTH_RATE constant
 manyIterations = (int) (BIRTH_RATE * fish.size());
 for (i = 0; i < manyIterations; i++)
 fish.addElement(new Herbivore(FISH_SIZE, 0, FISH_SIZE * FRACTION));
 }

}

public static void pondWeek(Vector fish, Vector weeds)

java13.frm Page 647 Tuesday, October 31, 2000 9:33 PM

648 Chapter 13 / Software Reuse with Extended Classes

Pondlife—Implementation Details

The implementations of totalMass and pondWeek are part of Figure 13.10. The
pondWeek implementation requires the ability to grab a random element out of a
Vector, and this is accomplished by generating a random integer via the
Math.random method.

Both totalMass and pondWeek require the ability to step through the items of
a Vector one at a time. This could be accomplished by using an Iterator (as
discussed in Section 5.4), but we just stepped through the elements one at a time
in a for-loop, using the elementAt method. For example, within the pondWeek
method, we activate simulateWeek for each plant by using the for-loop, as
shown here:

// Simulate the weeks for the weeds.
for (i = 0; i < weeds.size(); i++)
{

nextWeed = (Plant) weeds.elementAt(i);
nextWeed.simulateWeek();

}

Notice that the return value from elementAt is a Java Object, so we need the
typecast to assure the compiler that this is an acceptable narrowing conversion
to a Plant. A similar loop steps through the fish, simulating one week for each
fish and removing dead fish.

Using the Pond Model

No doubt you have noticed that our pond model is not entirely rooted in reality.
For example, each fish is born full grown and does not continue to grow. Some
extensions to make the model more realistic are given in the Programming
Projects of this chapter. Nevertheless, even our simple program illustrates the
principles of simulation programs. Let’s look at one way that a simulation pro-
gram such as ours could be used.

Suppose that your friend Judy owns a pond with 2000 weeds, about 15
ounces each. And perhaps the pond is too choked with weeds for Judy’s taste.
One way to control the weeds is to introduce a weed-eating species of fish, and
the pond life program can help us predict what will happen when a certain num-
ber of fish are put in the pond. For example, suppose we have a species of fish
where the program’s constants (Figure 13.10 on page 645) are accurate. When
we run the program with these constants, we get the output in Figure 13.11 on
page 649.

java13.frm Page 648 Tuesday, October 31, 2000 9:33 PM

Simulation of an Ecosystem649

Sample Output

Week Number Plant Mass
of (in ounces)

 Fish
1 315 27500
2 330 24625
3 346 21375
4 363 17725
5 379 13654
6 359 9286
7 144 6462
8 109 7960
9 112 10245
10 117 12445
11 122 14520
12 128 16470
13 134 18270
14 140 19920
15 147 21420
16 154 22745
17 161 23895
18 169 24870
19 177 25645
20 185 26220
21 194 26595
22 203 26745
23 213 26670
24 223 26345
25 234 25770
26 245 24920
27 257 23795
28 268 22374
29 281 20674
30 292 18656
31 306 16356
32 313 13720
33 301 10984
34 244 8689
35 189 7812
36 163 8225
37 161 9176
38 164 10159

 FIGURE 13.11 Pond Life ResultsActually, if you run the program, you may get
slightly different output because of the use of the
random factor in the selection of which fish nib-
ble which weeds. What does the program predict
will happen in the pond if we introduce 300 of
this kind of fish? Each output line gives the fish
population and the plant mass at the end of one
more week. The model predicts that the mass of
the weeds will decrease fairly rapidly. This is fol-
lowed by a period of some oscillation in both the
fish and plant populations, including a rather cat-
astrophic week for the fish when their population
drops from 359 to 144. Sudden declines such as
this are observed in real ecosystems when a spe-
cies is allowed to expand, limited only by its food
supply.

This kind of model can provide predictions
and test theories of interactions in an ecosystem.
It’s also important to remember that any predic-
tions are only as accurate as the underlying
model.

Self-Test Exercises

8. Write code to declare a Vector. Put ten new
organisms in the Vector, with an initial size
of 16 ounces and a growth rate of 1 ounce
per week. Grab five random organisms, and
alter their growth rates to 2 ounces per
week. Finally, calculate the total of all the
organisms’ growth rates, and print the result.

9. In the previous exercise, you started with ten
organisms growing at 1 ounce per week.
Five random organisms had their growth
rates changed to 2 ounces per week, so you
might think that the total of all the organ-
isms’ rates would be 5*1 + 5*2, which is 15.
But when I ran the program, the total was
only 14. Why?

10. What advantages did we get by storing the
fish and weeds in vectors rather than in a
partially filled array?

java13.frm Page 649 Tuesday, October 31, 2000 9:33 PM

650 Chapter 13 / Software Reuse with Extended Classes

11. Design and implement a new class extended from the Animal class. The
new class, called Carnivore, has one new method with the heading
shown here:

public void chase(Animal prey, double chance)

When chase(prey, chance) is activated for some carnivore, the carni-
vore chases the prey. The probability of actually catching the prey is
given by the parameter chance (which should lie between 0 and 1—for
example 0.75 for a 75% chance). If the prey is actually caught, then this
will also activate the carnivore’s eat method and (sadly) activate the
prey’s expire method.

Note: You can use the Math.random method to determine whether the
animal is caught, as shown here:

if (Math.random() < chance)
{

}

13.3 USING EXTENDED CLASSES FOR ADTS

Many ADTs from previous chapters can be implemented as extended classes,
resulting in less programming and less debugging—an all around good way to
reuse previous work. For example, consider the stack ADT from Section 6.1.
Many of the stack operations are similar to the sequence ADT that you first
implemented in Section 3.3, and later revised in Section 4.5.

Now suppose that you have implemented a sequence class with documenta-
tion shown in Figure 13.12. This version of the sequence class is implemented
with a linked list, and it stores a collection of Java objects. We don’t really care
about the details of the implementation—in fact, perhaps some other program-
mer implemented this sequence, and we don’t have access to the implementation
details.

Our question is this: Is there some way that the sequence class can be used to
quickly implement a new stack class? Yes. A new stack class can be implemented
as an extended class, using the LinkedSequence class as the superclass. The plan
is for the stack to push and pop items from only one end of the list, ignoring many
of the other features of a sequence.

 Code for catching and eating the prey

java13.frm Page 650 Tuesday, October 31, 2000 9:33 PM

Using Extended Classes for ADTs651

Class LinkedSeq

❖ public class LinkedSeq from the package edu.colorado.collections
A LinkedSeq is a sequence of references to Objects. The sequence can have a special “current
element,” which is specified and accessed through four methods that are not available in the
bag classes (start, getCurrent, advance and isCurrent).

Limitations:
Beyond Int.MAX_VALUE elements, the size method does not work.

Specification

 ◆ Constructor for the LinkedSeq
public LinkedSeq()

Initialize an empty sequence.

Postcondition:
This sequence is empty.

 ◆ addAfter and addBefore
public void addAfter(Object element)
public void addBefore(Object element)

Adds a new element to this sequence, either before or after the current element.

Parameters:
element – a reference to the new element that is being added

Postcondition:
A reference to the element has been added to this sequence. If there was a current element,
then addAfter places the new element after the current element and addBefore places the
new element before the current element. If there was no current element, then addAfter
places the new element at the end of the sequence and addBefore places the new element at
the front of the sequence. In all cases, the new element becomes the new current element of
the sequence. Note that the newly added element may be a null reference.

Throws: OutOfMemoryError
Indicates insufficient memory to increase the size of this sequence.

(continued)

 FIGURE 13.12 Documentation for a Sequence Class

java13.frm Page 651 Tuesday, October 31, 2000 9:33 PM

652 Chapter 13 / Software Reuse with Extended Classes

 (FIGURE 13.12 continued)

 ◆ addAll
public void addAll(LinkedSeq addend)

Place the contents of another sequence at the end of this sequence.

Parameters:
addend – a sequence whose contents will be placed at the end of this sequence

Precondition:
The parameter, addend, is not null.

Postcondition:
The elements from addend have been placed at the end of this sequence. The current element of
this sequence remains where it was, and the addend is also unchanged.

Throws: NullPointerException
Indicates that addend is null.

Throws: OutOfMemoryError
Indicates insufficient memory to increase the size of this sequence.

 ◆ advance
public void advance()

Move forward, so that the current element is now the next element in the sequence.

Precondition:
isCurrent() returns true.

Postcondition:
If the current element was already the end element of the sequence (with nothing after it), then
there is no longer any current element. Otherwise, the new element is the element immediately
after the original current element.

Throws: IllegalStateException
Indicates that there is no current element, so advance may not be activated.

 ◆ clone
public Object clone()

Generate a copy of this sequence.

Returns:
The return value is a copy of this sequence. Subsequent changes to the copy will not affect
the original, nor vice versa. The return value must be type cast to a LinkedSeq before it is
used.

Throws: OutOfMemoryError
Indicates insufficient memory for creating the clone.

(continued)

java13.frm Page 652 Tuesday, October 31, 2000 9:33 PM

Using Extended Classes for ADTs653

 (FIGURE 13.12 continued)

 ◆ concatenation
public static LinkedSeq concatenation(LinkedSeq s1, LinkedSeq s2)
Create a new sequence that contains all the elements from one sequence followed by another.
Parameters:

s1 and s2 – two sequences
Precondition:

Neither s1 nor s2 is null.
Returns:

a new sequence that has the elements of s1 followed by s2 (with no current element)
Throws: NullPointerException

Indicates that one of the arguments is null.
Throws: OutOfMemoryError

Indicates insufficient memory for the new sequence.

 ◆ getCurrent
public Object getCurrent()

Accessor method to determine the current element of the sequence.
Precondition:

isCurrent() returns true.
Returns:

the current element of the sequence
Throws: IllegalStateException

Indicates that there is no current element.

 ◆ isCurrent
public boolean isCurrent()

Accessor method to determine whether this sequence has a specified current element that can
be retrieved with the getCurrent method.
Returns:

true (there is a current element) or false (there is no current element at the moment)

 ◆ removeCurrent
public boolean removeCurrent()

Remove the current element from this sequence.
Precondition:

isCurrent() returns true.
Postcondition:

The current element has been removed from the sequence, and the following element (if
there is one) is now the new current element. If there was no following element, then there
is now no current element.

Throws: IllegalStateException
Indicates that there is no current element, so removeCurrent may not be activated.

(continued)

java13.frm Page 653 Tuesday, October 31, 2000 9:33 PM

654 Chapter 13 / Software Reuse with Extended Classes

Pushing and Popping for the Extended Stack Class

Our new stack class will extend the LinkedSeq class from Figure 13.12. The
extension will add new methods so that a programmer can use the extended
class as if it were a stack. A programmer can also use our new stack as if it were
an object of the superclass, LinkedSeq.

Our plan is to have the extended class act like a stack by “pushing” and “pop-
ping” elements from the head of the sequence that is maintained by the super-
class. Also, each time a push or pop occurs, the “current element” of the sequence
will be set to the front of the sequence. With this plan, the push and pop of the
extended can be implemented as shown here:

public void push(Object element)
{

start();
addBefore(element);

}

public Object pop()
{

Object answer;

if (size() < 0)
throw new EmptyStackException();

start();
answer = getCurrent();
removeCurrent();
return answer;

}

 (FIGURE 13.12 continued)

 ◆ size
public long size()

Accessor method to determine the number of elements in this sequence.
Returns:

the number of elements in this sequence

 ◆ start
public void start()

Set the current element at the front of the sequence.
Postcondition:

The front element of this sequence is now the current element (but if the sequence has no
elements at all, then there is no current element).

java13.frm Page 654 Tuesday, October 31, 2000 9:33 PM

Using Extended Classes for ADTs655

Notice that within the implementations, the methods of the superclass can be
activated just like any other method.

The documentation and implementation for the new stack class are shown in
Figure 13.13. We have also included the stack’s isEmpty and peek methods, so
that the resulting stack has all the important stack methods from Figure 6.1 on
page 281. The approach we have taken is similar to Java’s own stack
(java.util.Stack), which is extended from java.util.Vector. There are
two other points that you should notice about the new stack, involving the con-
structor and the clone method.

The constructor. Notice that the new stack does not declare its own construc-
tor. Therefore, it can automatically use the no-arguments constructor of its super-
class. For example, a program can make the declaration

DerivedStack s = new DerivedStack();

Cloning a DerivedStack. We did not implement a clone method for the
DerivedStack. However, the superclass, LinkedSeq, implements the Clone-
able interface, and it has a clone method. Therefore, the extended class also
inherits the clone method, and we can clone a DerivedStack object. With this
example in mind, we can now explain the pattern that must be used for every
clone method that you implement. The pattern, introduced in Chapter 2 on
page 78, looks like this:

public Object clone()
{

Location answer;

try

{

answer = (Location) super.clone();

}

catch (CloneNotSupportedException e)
{

throw new InternalError(e.toString());

}

...other work that needs to modify the answer...

When we write all of our clone methods with this pattern, each clone activation
will eventually activate the clone method from Java’s Object class. And this
clone method always creates an object of the correct type (of the same type as
the object that activated clone in the first place). Therefore, if s is a Derived-
Stack, then s.clone() will return an object that is really a DerivedStack
(and not just a LinkedSeq object).

java13.frm Page 655 Tuesday, October 31, 2000 9:33 PM

656 Chapter 13 / Software Reuse with Extended Classes

Class DerivedStack

❖ public class DerivedStack from the package edu.colorado.collections
➤ extends LinkedSeq

A DerivedStack is a LinkedSeq that can easily be used as if it were a stack of Objects.

Specification
In addition to the LinkedSeq methods, a DerivedStack object has:

 ◆ isEmpty
public boolean isEmpty()

Determine whether this stack is empty.
Returns:

true if this stack is empty; otherwise false.

 ◆ peek
public Object peek()

Get the top item of this stack, without removing the item.
Precondition:

This stack is not empty.
Returns:

the top element of the stack (and sets the current element to the head of the sequence)
Throws: EmptyStackException

Indicates that this stack is empty.

 ◆ pop
public Object pop()

Get the top element, removing it from this stack.
Precondition:

This stack is not empty.
Postcondition:

The return value is the top item of this stack, and the element has been removed. The new
current element of the sequence is the element that used to be second.

Throws: EmptyStackException
Indicates that this stack is empty.

 ◆ push
public void push(Object element)

Push a new item onto this stack.
Parameters:

item – the item to be pushed onto this stack
Postcondition:

The item has been pushed onto this stack (and it is now the current element of the sequence)
Throws: OutOfMemoryException

Indicates insufficient memory for pushing a new item onto this stack. (continued)

 FIGURE 13.13 The Stack Class Derived from LinkedSeq

java13.frm Page 656 Tuesday, October 31, 2000 9:33 PM

Using Extended Classes for ADTs657

 (FIGURE 13.13 continued)

Implementation

// FILE: DerivedStack.java from the package edu.colorado.geometry
// Documentation is available on the previous page or from the DerivedStack link in
// http://www.cs.colorado.edu/~main/docs/

package edu.colorado.collections;
import java.util.EmptyStackException;

public class DerivedStack extends LinkedSeq
{

 {
 return (size() == 0);
 }

 {
 if (size() < 0)
 throw new EmptyStackException();
 start();
 return getCurrent();
 }

 {
 Object answer;

 if (size() < 0)
 throw new EmptyStackException();
 start();
 answer = getCurrent();
 removeCurrent();
 return answer;
 }

 {
 start();
 addBefore(element);
 }

}

public boolean isEmpty()

public Object peek()

public Object pop()

public void push(Object element)

java13.frm Page 657 Tuesday, October 31, 2000 9:33 PM

658 Chapter 13 / Software Reuse with Extended Classes

Self-Test Exercises

12. Our original stack from Chapter 6 has a size method. Does a Derived-
Stack have a size method?

13. Suppose that you are implementing an extended class called Tribble.
The superclass, called Willis, implements the Cloneable interface and
Tribble does not override the clone method. If t is a Tribble, then
what is the actual data type of the Object returned by t.clone()? (To
read more about Willis, you’ll have to track down Red Planet by Robert
A. Heinlein.)

14. Implement a new method of the stack class. The method has one param-
eter, i, and the precondition requires the stack to contain at least i ele-
ments. The method returns the element that is i positions from the top of
the stack, and it sets the current element of the sequence to this element.
For example, an argument of 1 will return the top element, an argument
of 2 returns the element under the top, and so on.

15. Which would be easier: to implement a bag as an extended class of the
sequence, or to implement the sequence as an extended class of the bag?

CHAPTER SUMMARY

• Object-oriented programming supports the use of reusable components by
permitting new extended classes to be declared that automatically inherit
all members of an existing superclass.

• All members of a superclass are inherited by the extended class, but only
the nonprivate members of the superclass can be accessed by the pro-
grammer who implements the extended class. This is why most of our
examples of superclasses do not specify the precise form of the private
members of the superclass.

• The connection between an extended class and its superclass can often be
characterized by the is-a relationship. For example, an herbivore is-a par-
ticular kind of animal, so it makes sense to implement Herbivore as an
extended class of the Animal superclass.

• When you implement a new class, ask yourself whether the new class is
an example of an existing class with slightly different capabilities or extra
capabilities. In these cases, the new class can be implemented as an
extended class of the existing class.

FURTHER READING

This chapter has introduced the concept of extended classes and inheritance,
which is a central concept for OOP programming. In your future programming,
further inheritance is likely to be important. You can consult a comprehensive
Java language guide such as Just Java and Beyond by Peter van der Linden.

java13.frm Page 658 Tuesday, October 31, 2000 9:33 PM

Solutions to Self-Test Exercises659

SOLUTIONS TO SELF-TEST EXERCISES
?Solutions to Self-Test Exercises

1. The declaration for the extended class is
shown here, along with the implementation of
the new method:
public class DaylightClock
extends Clock
{

public boolean isDay()
{

if (isMorning())
return (getHour() >= 7);

else
return (getHour() < 7);

}
}

2. Suppose d is a DayLightClock and c is a
Clock. The assignment c = d is a widening
conversion. An example of a narrowing con-
version is d = (DayLightClock) c.

3. It inherits the no-arguments constructor of the
superclass.

4. The NoonAlarm overrides the advance
method of the ordinary clock. Here is one
solution:
public class NoonAlarm extends Clock
{

public void advance(int minutes)
{

int untilNoon;

// Calculate number of minutes until
// noon.
if (isMorning())

untilNoon =
60 * (12-getHour())
- getMinute();

else if (getHour() != 12)
untilNoon =

60 * (24 - getHour())
 - getMinute();

 else
untilNoon =

60 * 24
- getMinute();

 // Maybe print an alarm message.
 if (minutes >= untilNoon)

System.out.print("!!");

// Activate the superclass method.
super.advance(minutes);

}
}

5.

6. The Plant declaration is:
public class Plant extends Organism
{

public Plant
(double initSize, double initRate)
{

super(initSize, initRate);
}

public void
NibbledOn(double amount)
{

if (amount < 0)
throw new
IllegalArgumentException
(“amount is negative”);

 if (amount > getSize())
throw new
IllegalArgumentException
("amount is too big");

alterSize(-amount);
}

}

7. See the solution in Figure 13.10 on page 646.
Another approach would be to use the vector’s
iterator.

Person

Youth Adult

Baby

java13.frm Page 659 Tuesday, October 31, 2000 9:33 PM

660 Chapter 13 / Software Reuse with Extended Classes

8. Here is one solution:
Vector blob = new Vector(10);
int i;
double answer;
Organism thing;

for (i = 1; i <= 10; i++)
blobs.addElement
(new Organism(16, 1));

for (i = 1; i <= 5; i++)
{
thing = (Organism)
blobs.elementAt
((int) Math.random() * 10);

thing.setRate(2);
}

answer = 0;
for (i = 0; i <= 10; i++)
{
thing =
(Organism) blobs.elementAt(i);

answer += things.getRate();
}

System.out.println
(answer + " total of rates");

9. The random method must have selected one
organism twice (and three other organisms
were selected once each).

10. We didn’t have to worry about the number of
elements going beyond the size of the array.
We also get to use various methods such as
removeElementAt.

11. We’ll leave some of this to you, but here is
most of the new method:
public void chase
(Animal prey, double chance)
{

...check that chance is in 0...1
if (Math.random() < chance)
{

eat(prey.getRate());
prey.expire();

}
}

12. Yes. The size method is inherited.

13. Tribble

14. Here is one implementation:
public Object get(int i)
{

int count;
Item answer;

start();
 for (count=1; count<i; count++)

advance();

answer = current();

return answer;
}

15. The easy task is to implement a bag as an
extended class, with the sequence as the
superclass.

java13.frm Page 660 Tuesday, October 31, 2000 9:33 PM

Programming Projects 661

PROGRAMMING PROJECTS
PROGRAMMING PROJECTS

A set is like a bag, except that a set does not
allow multiple copies of any element. If you
try to insert a new copy of an item that is

already present in a set, then the set simply remains
unchanged. For this project, implement a set as a
new class that is extended from one of your bags.

Rewrite the pond life program from
Figure 13.10 on page 645 so that the values
declared at the start of the program are no

longer constant. The program’s user should be able
to enter values for all of these constants. Also, im-
prove the program so that the fish are more realistic.
In particular, the fish should be born at a small size
and grow to some maximum size. Each fish should
also have a weekly food requirement that is propor-
tional to its current size.

Rewrite the pond life program from
Figure 13.10 on page 645 so that the output
is presented as a graph in an applet window.

1

2

3

The applet can use most of the same graphing tech-
niques as the fractal applet from page 388 in Chapter
8. You should use different colors for graphing the
populations of the weeds and the fish.

Extend the Organism object hierarchy from
Section 13.2 so that there is a new class
Carnivore as described in Self-Test Exer-

cise 11 on page 650. Use the hierarchy in a model of
life on a small island that contains shrubs, geese that
eat the shrubs, and foxes that eat the geese. The pro-
gram should allow the user to vary the initial condi-
tions on the island (such as number of foxes, the
amount of food needed to sustain a fox, and so on).

Implement a bag class as an extended class
of a seqeunce. Use the sequence from
Figure 13.12 on page 651.

4

5

java13.frm Page 661 Tuesday, October 31, 2000 9:33 PM

662 Chapter 13 / Software Reuse with Extended Classes

java13.frm Page 662 Tuesday, October 31, 2000 9:33 PM

