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The Phases of Software Development
Chapter the first which explains how, why, when, and
where there was ever any problem in the first place

NOEL LANGLEY

The Land of Green Ginger

1.1 SPECIFICATION, DESIGN, IMPLEMENTATION

1.2 RUNNING TIME ANALYSIS

1.3 TESTING AND DEBUGGING

CHAPTER SUMMARY

SOLUTIONS TO SELF-TEST EXERCISES

This chapter illustrates the phases of software development.
These phases occur in all software, including the small programs that you’ll see
in this first chapter. In subsequent chapters, you’ll go beyond these small pro-
grams, applying the phases of software development to organized collections of
data. These organized collections of data are called data structures, and the
main topics of this book revolve around proven techniques for representing and
manipulating such data structures. 

Years from now you may be a software engineer writing large systems in a
specialized area, perhaps computer graphics or artificial intelligence. Such
futuristic applications will be exciting and stimulating, and within your work
you will still see the phases of software development and fundamental data
structures that you learn and practice now.
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2  Chapter 1 / The Phases of Software Development

Here is a list of the phases of software development:

the phases blur 
into each other

Do not memorize this list; throughout the book, your practice of these phases
will achieve far better familiarity than mere memorization. Also, memorizing an
“official list” is misleading because it suggests that there is a single sequence of
discrete steps that always occur one after another. In practice, the phases blur into
each other; for instance, the analysis of a solution’s efficiency may occur hand
in hand with the design, before any coding. Or low-level design decisions may
be postponed until the implementation phase. Also, the phases might not occur
one after another. Typically there is back and forth travel between the phases.

Most of the work in software development does not depend on any particular
programming language. Specification, design, and analysis can all be carried out
with little or no ties to a particular programming language. Nevertheless, when
we get down to implementation details, we do need to decide on one particular
programming language. The language we use in this book is Java. 

What You Should Know about Java before Starting This Text

the origin of Java 

this book gives 
an introduction 
to OOP 
principles for 
information 
hiding and 
component 
reuse

The Java language was conceived by a group of programmers at Sun Micro-
systems in 1991. The group, led by James Gosling, had an initial design called
Oak that was motivated by a desire for a single language where programs could
be developed and easily moved from one machine to another. Over the next four
years, many other Sun programmers contributed to the project and Gosling’s
Oak evolved to the Java language that is particularly suited to applications that
can be moved from one machine to another over the Internet.

Throughout the evolution of Java, the designers incorporated ideas from other
modern programming languages. Most notably, Java supports object-oriented
programming (OOP) in a manner that was partly taken from the C++ program-
ming language. OOP is a programming approach that encourages strategies of
information hiding and component reuse. In this book, you will be introduced to
these important OOP principles to use in your designs and implementations.

There are many different Java development environments that you may suc-
cessfully use with this text. You should be comfortable writing, compiling, and

The Phases of Software Development

•  Specification of the task
•  Design of a solution
•  Implementation (coding) of the solution
•  Analysis of the solution
•  Testing and debugging
•  Maintenance and evolution of the system
•  Obsolescence
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Specification, Design, Implementation3

running short Java application programs in your environment. You should know
how to use the Java primitive types (the number types, char, and boolean), and
you should be able to use arrays. 

If you know how to use Java in these ways, then the rest of this chapter will
prepare you to tackle the topic of data structures in Java. Section 1.1 focuses on
a technique for specifying program behavior, and you’ll also see some hints
about design and implementation. Section 1.2 illustrates a particular kind of anal-
ysis: the running time analysis of a program. Section 1.3 provides some tech-
niques for testing and debugging Java programs.

1.1 SPECIFICATION, DESIGN, IMPLEMENTATION

One begins with a list of difficult design decisions which
are likely to change. Each module is then designed to hide
such a decision from the others.

D. L. PARNAS

On the Criteria to Be Used in Decomposing Systems into Modules

As an example of software development in action, let’s examine the specifica-
tion, design, and implementation for a particular problem. The specification is a
precise description of the problem; the design phase consists of formulating the
steps to solve the problem; the implementation is the actual Java code to carry
out the design. 

The problem we have in mind is to display a table for
converting Celsius temperatures to Fahrenheit, similar to
the table shown in the margin. For a small problem, a
sample of the desired output is a sufficient specification.
Such a sample is a good specification because it is precise,
leaving no doubt about what the program must accomplish.
The next step is to design a solution. 

An algorithm  is a set of instructions for solving a
problem. An algorithm for the temperature problem will
print the conversion table. During the design of the
algorithm, the details of a particular programming language
can be distracting and obscure the simplicity of a solution.
Therefore, during the design we generally write in English.
We use a rather corrupted kind of English that mixes in Java
when it’s convenient. This mixture of English and a
programming language is called pseudocode. When the
Java code for a step is obvious, then the pseudocode may
use Java. When a step is clearer in English, then we will use
English. Keep in mind that the reason for pseudocode is to
improve clarity. 

TEMPERATURE CONVERSION
----------------------
Celsius Fahrenheit
-50.00C
-40.00C
-30.00C
-20.00C
-10.00C

0.00C
10.00C
20.00C
30.00C
40.00C
50.00C

----------------------

The equivalent 
Fahrenheit 
temperatures 
will be 
computed and 
displayed on this 
side of the table.

you should 
already know 
how to write, 
compile, and run 
short Java 
programs
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4  Chapter 1 / The Phases of Software Development

We’ll use pseudocode to design a solution for the temperature problem, and
we’ll also use the important design technique of decomposing the problem,
which we discuss now.

Design Technique: Decomposing the Problem

A good technique for designing an algorithm is to break down the problem at
hand into a few subtasks, then decompose each subtask into smaller subtasks, then
replace the smaller subtasks with even smaller subtasks, and so forth. Eventually
the subtasks become so small that they are trivial to implement in Java or what-
ever language you are using. When the algorithm is translated into Java code,
each subtask is implemented as a separate Java method. In other programming
languages, methods are called “functions” or “procedures,” but it all boils down
to the same thing: The large problem is decomposed into subtasks, and subtasks
are implemented as separate pieces of your program. 

For example, the temperature problem has at least two good subtasks:
(1) converting a temperature from Celsius degrees to Fahrenheit, and (2) printing
a number with a specified accuracy (such as rounding to the nearest hundredth).
Using these two subproblems, the first draft of our pseudocode might look like
this:

1. Display the labels at the top of the table.
2. For each line in the table (using variables celsius and fahrenheit):

2a. Set celsius equal to the next Celsius temperature of the table.
2b. fahrenheit = the celsius temperature converted to Fahrenheit.
2c. Print celsius, rounding to the nearest hundredth.
2d. Print the letter C and some spaces.
2e. Print fahrenheit, rounding to the nearest hundredth.
2f. Print the letter F, and end the output line.

3. Print the line of dashes at the bottom of the table.

what makes a 
good 
decomposition?

The underlined steps (2b, 2c, and 2e) are the major subtasks that we have identi-
fied. But aren’t there other ways to decompose the problem into subtasks? What
are the aspects of a good decomposition? One primary guideline is that the sub-
tasks should help you produce short pseudocode—no more than a page of suc-
cinct description to solve the entire problem, and ideally much less than a page.
In your first designs, you can also keep in mind two considerations for selecting
good subtasks: the potential for code reuse, and the possibility of future changes
to the program. Let’s see how our subtasks embody these considerations.

code reuse Steps 2c and 2e both print a number with a specified accuracy, so we plan to
write just a single Java method that “prints a number” and use this method for
both steps. This is an example of code reuse, in which we use a single method
for several related tasks. In fact, programmers often produce collections of

Break down a 
task into a 
few subtasks; 
then 
decompose 
each subtask 
into smaller 
subtasks.

Key Design 
Technique
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Specification, Design, Implementation5

related Java methods that are made available in packages to be reused over and
over with many different application programs. Later we will write such a pack-
age of methods for producing nice output, including the “print a number”
method. But for now, the nice package is unavailable, so we plan to write the
printing method from scratch. 

easily modified 
code

Decomposing problems also produces a good final program in the sense that
the program is easy to understand, and subsequent maintenance and modifica-
tions are relatively easy. For example, our temperature program might later be
modified to convert to Kelvin degrees instead of Fahrenheit. Since the conver-
sion task is performed by a separate Java method, most of the modification will
be confined to this one method. Easily modified code is vital since real-world
studies show that a large proportion of programmers’ time is spent maintaining
and modifying existing programs.

In order for a problem decomposition to produce easily modified code, the
Java methods that you write need to be genuinely separated from one another. An
analogy can help explain the notion of “genuinely separated.” Suppose you are
moving a bag of gold coins to a safe hiding place. If the bag is too heavy to carry,
you might divide the coins into three smaller bags and carry the bags one by one.
Unless you are a character in a comedy, you would not try to carry all three bags
at once. That would defeat the purpose of dividing the coins into three groups.
This strategy works only if you carry the bags one at a time. Something similar
happens in problem decomposition. If you divide your programming task into
three subtasks and solve these subtasks by writing three Java methods, then you
have traded one hard problem for three easier problems. Your total job has
become easier—provided that you design the methods separately. When you are
working on one method, you should not worry about how the other methods per-
form their jobs. But the methods do interact. So when you are designing one
method, you need to know something about what the other methods do. The trick
is to know only as much as you need, but no more. This is called information
hiding. One technique for incorporating information hiding involves specifying
your methods’ behavior using preconditions and postconditions, which we
discuss next.

How to Write a Specification for a Java Method

When you implement a method in Java, you give complete instructions for how
the method performs its computation. However, when you are using a method in
your pseudocode or writing other Java code, you only need to think about what
the method does. You need not think about how the method does its work. For
example, suppose you are writing the temperature conversion program and you
are told that the following method is available for you to use:

// Convert a Celsius temperature c to Fahrenheit degrees
public static double celsiusToFahrenheit(double c)
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6  Chapter 1 / The Phases of Software Development

In your program you might have a double variable called celsius that contains
a Celsius temperature. Knowing this description, you can confidently write the
following statement to convert the temperature to Fahrenheit degrees, storing
the result in a double variable called fahrenheit:

fahrenheit = celsiusToFahrenheit(celsius);

When you use the celsiusToFahrenheit method, you do not need to know the
details of how the method carries out its work. You need to know what the
method does, but you do not need to know how the task is accomplished.

procedural 
abstraction

When we pretend that we do not know how a method is implemented, we are
using a form of information hiding called procedural abstraction. This simpli-
fies your reasoning by abstracting away irrelevant details, that is, by hiding the
irrelevant details. When programming in Java, it might make more sense to call
it “method abstraction,” since you are abstracting away irrelevant details about
how a method works. However, the term procedure is a more general term than
method. Computer scientists use the term procedure for any sequence of instruc-
tions, and so they use the term procedural abstraction. Procedural abstraction
can be a powerful tool. It simplifies your reasoning by allowing you to consider
methods one at a time rather than all together.

To make procedural abstraction work for us, we need some techniques for
documenting what a method does without indicating how the method works. Of
course, we could just write a short comment as we did for celsiusToFahrenheit.
However, the short comment is a bit incomplete, for instance the comment
doesn’t indicate what happens if the parameter c is smaller than the lowest
Celsius temperature (−273.16°C, also called absolute zero). For better com-
pleteness and consistency, we will follow a fixed format that is guaranteed to
provide the same kind of information about any method that you may write. The
format has five parts, which are illustrated here for the celsiusToFahrenheit
method:

  ◆ celsiusToFahrenheit
public static double celsiusToFahrenheit(double c)

Convert a temperature from Celsius degrees to Fahrenheit degrees.
Parameters:

c – a temperature in Celsius degrees
Precondition:

c >= -273.16.
Returns:

the temperature c converted to Fahrenheit degrees
Throws: IllegalArgumentException

Indicates that c is less than the smallest Celsius temperature (−273.16).

This documentation is called the method’s specification. Let’s look at the five
parts of this specification.
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Specification, Design, Implementation7

1. Short introduction.   The specification’s first few lines are a brief introduc-
tion. The introduction includes the method’s name, the complete heading
(public static double celsiusToFahrenheit(double c)), and a short
description of the action that the method performs.

2. Parameter description.   The specification’s second part is a list of the
method’s parameters. We have one parameter, c, which is a temperature in
Celsius degrees.

3. Precondition.   A precondition is a condition that is supposed to be true when
a method is called. The method is not guaranteed to work correctly unless the
precondition is true. Our method requires that the Celsius temperature c is no less
than the smallest valid Celsius temperature (−273.16°C). 

4. The returns condition or postcondition.   A returns condition specifies the
meaning of a method’s return value. We used a returns condition for
celsiusToFahrenheit, specifying that the method “returns the temperature c
converted to Fahrenheit degrees.” More complex methods may have additional
effects beyond a single return value. For example, a method may print values or
alter its parameters. To describe such effects, a general postcondition can be pro-
vided instead of just a returns condition. A postcondition is a complete statement
describing what will be true when a method finishes. If the precondition was true
when the method was called, then the method will complete and the postcondi-
tion will be true when the method completes. The connection between a precon-
dition and a postcondition is given here:

For small methods that merely return a calculated value, the specification can
provide a precondition and a returns condition. For more complex methods, the
specfication can provide a precondition and a general postcondition.

5. The “throws” list.   It is always the responsibility of the programmer who
uses a method to ensure that the precondition is valid. Calling a method without
ensuring a valid precondition is a programming error. Once the precondition

A Method’s Precondition and Postcondition

A precondition  is a statement giving the condition that is
supposed to be true when a method is called. The method is
not guaranteed to perform as it should unless the
precondition is true.

A postcondition  is a statement describing what will be true
when a method call is completed. If the method is correct and
the precondition was true when the method was called, then
the method will complete, and the postcondition will be true
when the method’s computation is completed.
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8  Chapter 1 / The Phases of Software Development

fails, the method’s behavior is unpredictable—the method could do anything at
all. Nonetheless, the person who writes a method should make every effort to
avoid the more unpleasant behaviors, even if the method is called incorrectly. As
part of this effort, the first action of a method is often to check that its precondi-
tion has been satisfied. If the precondition fails, then the method throws an
exception. You may have used exceptions in your previous programming, or
maybe not. In either case, the next section describes the exact meaning of throw-
ing an exception to indicate that a precondition has failed.

Throwing an Exception to Indicate a Failed Precondition

It is a programming error to call celsiusToFahrenheit with an argument that
is below −273.16. Celsius temperatures below this level have no physical mean-
ing, they cannot be converted to Fahrenheit, and the method cannot provide a
meaningful return value. Despite this warning, some chilly programmer may try
celsiusToFahrenheit(-1000) or celsiusToFahrenheit(-273.17). In such
a case, our celsiusToFahrenheit method will detect that the precondition has
been violated, immediately halt its own work, and pass a “message” to the call-
ing program to indicate that an illegal argument has occurred. Such messages
for serious programming errors are called exceptions. The act of halting your
own work and passing a message to the calling program is known as throwing
an exception. 

how to throw an 
exception

The Java syntax for throwing an exception is simple. For example, the imple-
mentation of celsiusToFahrenheit might have these statements:

if (c < -273.16)
throw new IllegalArgumentException("Temperature too small.");

Simple exceptions such as this are easy to throw. You begin with the keyword
“throw” and follow this pattern:

throw new  (" ");

This is the type of the 
exception that we are 
throwing. To begin with, all of 
our exceptions will be the type 
IllegalArgumentException, 
which is provided as part of 
the Java language. This type 
of exception tells a 
programmer that one of the 
method’s arguments violated 
a precondition.

This is an error message that will 
be passed as part of the 
exception. The message should 
describe the error in a way that 
will help the programmer fix the 
programming error.

_____________________ _____________________
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Specification, Design, Implementation9

what happens 
when an 
exception is 
thrown?

When an exception is thrown within a method, the method immediately stops
its computation. A new “exception object” is created, incorporating the indicated
error message. The exception, along with its error message, is passed up to the
method or program that made the illegal call in the first place. At that point,
where the illegal call was made, there is a Java mechanism to “catch” the excep-
tion, try to fix the error, and continue with the program’s computation. You can
read about exception-catching in Appendix C. However, exceptions that arise
from precondition violations should never be caught because they indicate pro-
gramming errors that must be fixed. When an exception is not caught, the pro-
gram halts, printing the error message along with a list of the method calls that
led to the exception. This error message can help the programmer fix the
programming error. 

Now you know the meaning of the specification’s “throws list.” It is a list of
all the exceptions that the method can throw, along with a description of what
causes each exception. Certain kinds of exceptions must also be listed in a
method’s implementation, after the parameter list, but an IllegalArgument-
Exception is listed only in the method’s specification.

With a method’s specification in place, you can think more about the design.
Perhaps the method needs to be broken into yet smaller tasks, or perhaps the task
is now small enough to start the implementation—the actual writing of Java
code. The celsiusToFahrenheit problem is small enough to implement,
though during the implementation you may need to finish small design tasks such
as finding the conversion formula (a celsius temperature C is converted to a Fahr-
enheit temperature F with the formula F = C + 32). The complete implementa-
tion might be something like Figure 1.1 on page 10. The implementation
illustrates two programming tips that we’ll discuss now.

Programming Tip: How and When to Throw Exceptions

It is a programming error to call a method when the precondition is invalid. When
a method detects an invalid precondition, then the method should throw
an IllegalArgumentException. The exception usually includes a copy of the
argument as part of its message. For example, the exception message in
Figure 1.1 is:

"Argument " + c + " is too small."

The argument c is part of the message. If a programmer attempts to call
celsiusToFahrenheit(-300), the message will be “Argument −300 is too
small.”

9
5
---

TIP
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10  Chapter 1 / The Phases of Software Development

Programming Tip: Use Final Variables to Improve Clarity

The method implementation in Figure 1.1 has a local variable declared this way:

final double MINIMUM_CELSIUS = -273.16;

This is a declaration of a double variable called MINIMUM_CELSIUS, which is given
an initial value of −273.16. The keyword final, appearing before the declaration,
makes MINIMUM_CELSIUS more than just an ordinary declaration. It is a final vari-
able , which means that its value will never be changed while the program is run-
ning. A common programming style is to use all capital letters for the names of final
variables. This makes it easy to determine which variables are final and which may
have their values changed.

There are several advantages to defining MINIMUM_CELSIUS as a final variable,
rather than using the constant −273.16 directly in the program. Using the name
MINIMUM_CELSIUS makes the comparison (c < MINIMUM_CELSIUS) easy to
understand; it’s clear that we are testing whether c is below the minimum valid
Celsius temperature. If we used the direct comparison (c < −273.16) instead,
then a person reading our program would have to stop to remember that −273.16 is
“absolute zero,” the smallest Celsius temperature.

Specification

  ◆ celsiusToFahrenheit
public static double celsiusToFahrenheit(double c)

Convert a temperature from Celsius degrees to Fahrenheit degrees.
Parameters:

c – a temperature in Celsius degrees
Precondition:

c >= -273.16.
Returns:

the temperature c converted to Fahrenheit degrees
Throws: IllegalArgumentException

Indicates that c is less than the smallest Celsius temperature (−273.16).

Implementation

{
final double MINIMUM_CELSIUS = -273.16;

if (c < MINIMUM_CELSIUS)
throw new IllegalArgumentException("Argument " + c + " is too small.");

return (9.0/5.0) * c + 32;
}

 FIGURE  1.1 Specification and Implementation of the celsiusToFahrenheit Method

public static double celsiusToFahrenheit(double c)

TIP
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Specification, Design, Implementation11

To increase clarity, some programmers declare all constants as final variables.
As rules go, this is a reasonable rule, particularly if the same constant appears in
several different places of the program or if you plan to compile the program some-
time with a different value for the constant. However, there is another side to the
issue. Well-known formulas may be more easily recognized in their original form
(using constants rather than artificially introduced names). For example, the
conversion from Celsius to Fahrenheit is recognizable as F = C + 32. Thus, Fig-
ure 1.1 uses the return statement shown here:

return (9.0/5.0) * c + 32;

This return statement is clearer and less error-prone than a version that uses final
variables for the constants  and 32.

Advice: Use final variables instead of constants. Make exceptions when con-
stants are clearer or less error-prone. When in doubt, write both solutions and inter-
view several colleagues to decide which is clearer.

The Method for Printing a Number

Our pseudocode for the temperature problem includes a step to print a number
rounded to a specified accuracy. Here is a specification for a method that we can
use to carry out this step:

  ◆ printNumber

Print a number to System.out, using a specified format.

Parameters:
d – the number to be printed
minimumWidth – the minimum number of characters in the entire output
fractionDigits – the number of digits to print on the right side of the 

decimal point

Precondition:
fractionDigits is not negative.

Postcondition:
The number d has been printed to System.out. This printed number is 
rounded to the specified number of digits on the right of the decimal. If 
fractionDigits is 0, then only the integer part of d is printed. If 
necessary, spaces appear at the front of the number to raise the total 
number of printed characters to the minimum. Additional formatting 
details are obtained from the current locale. For example, in the United 
States, a period is used for the decimal and commas are used to separate 
groups of integer digits.

Throws: IllegalArgumentException
Indicates that fractionDigits is negative.

Example:
printNumber(12345.27, 8, 1); // Prints 12,345.3 in the U.S.

9
5
---

9
5
---

public static void printNumber(double d, int minimumWidth, int fractionDigits)
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12  Chapter 1 / The Phases of Software Development

Because printNumber is somewhat complex, we have added an example to the
specification. An example helps a programmer quickly understand the intended
use of a method.

With the specification in place, you can turn to the implementation—or if you
are working in a programming team, you might ask another group member to
implement the method. In fact, I asked several of my students to implement
printNumber, using the specification shown earlier. The students researched
how to round numbers and how to determine other formatting details. I decided
to use one of the implementations, from a student named Judy Abbott. Her
implementation of printNumber was interesting because it used several unfamil-
iar features of the Java language—unfamiliar to me anyway. Does this mean

that I can’t use the method? Of
course not. The specification tells
me how to use the method, even if I
don’t know the implementation
details. In team situations, one pro-
grammer often does not know the
implementation details of another
programmer’s work. In fact, sharing
knowledge about how methods work
can be counterproductive. Instead,
the combination of the precondition
and postcondition provide all the
interaction that’s needed. In effect,
the precondition/postcondition pair
forms a contract between the pro-
grammer who uses a method and the
programmer who writes that method.
If programmers were lawyers, the
contract might look like the scroll

shown in the margin. As a programmer, the contract tells me precisely what
Judy’s method does. It states that if I make sure that the precondition is met
when the method is called, then Judy ensures that the method returns with the
postcondition satisfied.

If you are curious about the printNumber programming, you can read Appen-
dix B, which provides some input/output ideas for Java programming. But even
without the knowledge of how Judy writes printNumber, we can write a pro-
gram that uses Judy’s method. In particular, we can now implement the temper-
ature program as a Java application program with three methods:

• a main method that follows the pseudocode from page 4: This main
method prints the temperature conversion table using printNumber and
celsiusToFahrenheit to carry out the work of its subtasks.

• the celsiusToFahrenheit method.

• the printNumber method.

Judy Abbott has written  
printNumber (henceforth known as  
“the method”) and Michael Main is going   
to use the method, we hereby agree that:

(i) Michael will never call the method 
unless he is certain that the precondition
is true, and

(ii) Whenever the method is called and
the precondition is true when the method
is called, then Judy guarantees that:

a. the method will eventually end 
(infinite loops are forbidden!), and

b. when the method ends, the 
postcondition will be true.

Michael Main

the precondition/
postcondition 
contract
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Specification, Design, Implementation13

The Java application program with these three methods appears in Figure 1.2 on
page 14, together with the specifications that we already wrote.

the Javadoc tool 
automatically 
produces nicely 
formatted 
information 
about a class

The specification at the start of Figure 1.2 was produced in an interesting way.
Most of it was automatically produced from the Java code by a tool called
Javadoc. With a web browser, you can access this specification over the Internet
at: http://www.cs.colorado.edu/~main/docs/TemperatureConversion.html. 

To use Javadoc, the actual implementation needs special Javadoc comments.
These necessary comments are not listed in Figure 1.2, but the techniques for
writing these comments are described in Appendix H. You should consider using
Javadoc to produce similar specifications for your programs.

Self-Test Exercises

Each section of this book finishes with a few self-test exercises. Answers to
these exercises are given at the end of each chapter. The first exercise refers to a
method that Judy has written for you to use. Here is the specification:

  ◆ dateCheck
public static int dateCheck(int year, int month, int day)

Compute how long until a given date will occur.
Parameters:

year – the year for a given date
month – the month for a given date (using 1 for Jan, 2 for Feb, etc.)
day – the day of the month for the given date

Precondition:
The three arguments are a legal year, month, and day of the month in the 
years 1900 to 2099.

Returns:
If the given date has been reached on or before today, then the return 
value is zero. Otherwise the return value is the number of days until the 
given date returns.

Throws: IllegalArgumentException
Indicates the arguments are not a legal date in the years 1900 to 2099.

1. Suppose you call the method dateCheck(2003, 7, 29). What is the
return value if today is July 22, 2003? What if today is July 30, 2003?
What about February 1, 2004?

2. Can you use dateCheck, even if you don’t know how it is implemented?
3. Suppose that boodle is a double variable. Write two statements that will

print boodle to System.out in the following format: $ 42,567.19
The whole dollars part of the output can contain up to nine characters, so
this example has three spaces before the six characters of 42,567. The
fractional part is rounded to the nearest hundredth. You may use the
printNumber method from this section.
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14  Chapter 1 / The Phases of Software Development

4. Consider a method with this heading:
public static void printSqrt(double x)

The method prints the square root of x to the standard output. Write a
reasonable specification for this method, and compare your answer to the
solution at the end of the chapter. The specification should forbid a nega-
tive argument.

5. Consider a method with this heading:
public static double sphereVolume(double radius)

The method computes and returns the volume of a sphere with the given
radius. Write a reasonable specification for this method, and compare
your answer to the solution at the end of the chapter. The specification
should forbid a negative radius.

6. Write an if-statement to throw an IllegalArgumentException when x
is less than zero. (Assume that x is a double variable.)

7. When can a final variable be used?
8. How was the specification produced at the start of Figure 1.2?

Class TemperatureConversion

❖ public class TemperatureConversion
The TemperatureConversion Java application prints a table converting Celsius to Fahrenheit 
degrees.

Specification

  ◆ main
public static void main(String[ ] args)

The main method prints a Celsius to Fahrenheit conversion table. The String arguments (args) 
are not used in this implementation. The bounds of the table range from –50C to +50C in 10 
degree increments.

(continued)

 FIGURE  1.2 Specification and Implementation for the Temperature Conversion Application
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 (FIGURE  1.2 continued)

  ◆ celsiusToFahrenheit
public static double celsiusToFahrenheit(double c)

Convert a temperature from Celsius degrees to Fahrenheit degrees.
Parameters:

c – a temperature in Celsius degrees
Precondition:

c >= -273.16.
Returns:

the temperature c converted to Fahrenheit degrees
Throws: IllegalArgumentException

Indicates that c is less than the smallest Celsius temperature (−273.16).

  ◆ printNumber
public static void printNumber(double d, int minimumWidth, int fractionDigits)

Print a number to System.out, using a specified format.
Parameters:

d – the number to be printed
minimumWidth – the minimum number of characters in the entire output
fractionDigits – the number of digits to print on the right side of the decimal point

Precondition:
fractionDigits is not negative.

Postcondition:
The number d has been printed to System.out. This printed number is rounded to the specified 
number of digits on the right of the decimal. If fractionDigits is 0, then only the integer part 
of d is printed. If necessary, spaces appear at the front of the number to raise the total number 
of printed characters to the minimum. Additional formatting details are obtained from the 
current locale. For example, in the United States, a period is used for the decimal, and commas 
are used to separate groups of integer digits.

Throws: IllegalArgumentException
Indicates that fractionDigits is negative.

Example:
printNumber(12345.27, 8, 1); // Prints 12,345.3 in the U.S.

(continued)    

Most of this information was 
automatically produced by the Javadoc 
tool. Appendix H describes how to use 
Javadoc to produce similar information 
for your programs.
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 (FIGURE  1.2 continued)

Java Application Program

// File: TemperatureConversion.java
// A Java application to print a
// temperature conversion table.
// Additional Javadoc information is available on pages 14–15 or at
// http://www.cs.colorado.edu/~main/docs/TemperatureConversion.html

import java.text.NumberFormat; // Used in the printNumber method.

public class TemperatureConversion 
{

{
// Declare values that control the table’s bounds.

      final double TABLE_BEGIN = -50.0; // The table's first Celsius temperature
      final double TABLE_END   =  50.0; // The table's final Celsius temperature
      final double TABLE_STEP  =  10.0; // Increment between temperatures in table
      final int    WIDTH       =     6; // Number of characters in output numbers

final int ACCURACY = 2; // Number of digits to right of decimal point
 

      double celsius;                   // A Celsius temperature
      double fahrenheit;                // The equivalent Fahrenheit temperature

      System.out.println("TEMPERATURE CONVERSION");
System.out.println("----------------------");

      System.out.println("Celsius     Fahrenheit");
      for (celsius = TABLE_BEGIN; celsius <= TABLE_END; celsius += TABLE_STEP) 

{ // The for-loop has set celsius equal to the next Celsius temperature of the table.
         fahrenheit = celsiusToFahrenheit(celsius);
         printNumber(celsius, WIDTH, ACCURACY);                               
         System.out.print("C        ");
         printNumber(fahrenheit, WIDTH, ACCURACY);
         System.out.println("F");
      }
      System.out.println("----------------------");
   }

{
      final double MINIMUM_CELSIUS = -273.16;
      if (c < MINIMUM_CELSIUS)
         throw new IllegalArgumentException("Argument " + c + " is too small.");
      return (9.0/5.0) * c + 32;
   } (continued)

public static void main(String[ ] args)

public static double celciusToFahrenheit(double c)

The actual implementation includes Javadoc comments
that are omitted here but are listed in Appendix H. The

comments allow Javadoc to produce nicely formatted
information automatically. See Appendix H to read about

using Javadoc for your programs.
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 (FIGURE  1.2 continued)

{
// Note: getNumberInstance( ) creates a NumberFormat object using local
// information about the characters for a decimal point and separators.
NumberFormat form = NumberFormat.getNumberInstance( );
String output;
int i;
int length;

// Set the number of digits to appear on the right of the decimal.
if (fractionDigits < 0)

throw new IllegalArgumentException("fractionDigits < 0:" + fractionDigits);
form.setMinimumFractionDigits(fractionDigits);
form.setMaximumFractionDigits(fractionDigits);

        
// Round and format the number. I have added code to handle a Java bug that 
// occurs when fractionDigits is zero.
output = form.format(d);

      length = output.length( );
      if (fractionDigits == 0 && length > 1 && output.charAt(length-2) == '.')
         output = "  " + output.substring(0,length-2);
            

// Print any leading spaces and the number itself.
for (i = output.length( ); i < minimumWidth; i++)

System.out.print(' ');
System.out.print(output);

}

}

Output of  the Application

TEMPERATURE CONVERSION
----------------------
Celsius Fahrenheit
-50.00C -58.00F
-40.00C -40.00F
-30.00C -22.00F
-20.00C -4.00F
-10.00C 14.00F

0.00C 32.00F
10.00C 50.00F
20.00C 68.00F
30.00C 86.00F
40.00C 104.00F
50.00C 122.00F

----------------------

public static void printNumber(double d, int minimumWidth, int fractionDigits)
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1.2 RUNNING TIME ANALYSIS

Time analysis consists of reasoning about an algorithm’s speed. Does the algo-
rithm work fast enough for my needs? How much longer does the algorithm take
when the input gets larger? Which of several different algorithms is fastest?
We’ll discuss these issues in this section. An example will start the discussion.

The Stair-Counting Problem

Suppose that you and your friend Judy are standing at the top of the Eiffel Tower.
As you gaze out over the French landscape, Judy turns to you and says, “I won-
der how many steps there are to the bottom?” You, of course, are the ever-
accommodating host, so you reply, “I’m not sure, . . . but I’ll find out.” We’ll
look at three techniques that you could use and analyze the time requirements of
each.

Technique 1: Walk down and keep a tally.   In the first technique, Judy gives
you a pen and a sheet of paper. “I’ll be back in a minute,” you say as you dash
down the stairs. Each time you take a step down, you make a mark on the sheet
of paper. When you reach the bottom, you run back up, show Judy the piece of
paper, and say, “There are this many steps.”

Technique 2: Walk down, but let Judy keep the tally.   In the second tech-
nique, Judy is unwilling to let her pen or paper out of her sight. But you are
undaunted. Once more you say, “I’ll be back in a minute,” and you set off down
the stairs. But this time you stop after one step, lay your hat on the step, and run
back to Judy. “Make a mark on the piece of paper!” you exclaim. Then you run
back to your hat, pick it up, take one more step, and lay the hat down on the sec-
ond step. Then back up to Judy: “Make another mark on the piece of paper!”
you say. You run back down the two stairs, pick up your hat, move to the third
step, and lay down the hat. Then back up the stairs to Judy: “Make another
mark!” you tell her. This continues until your hat reaches the bottom, and you
speed back up the steps one more time. “One more mark, please.” At this point,
you grab Judy’s piece of paper and say, “There are this many steps.”

Il y a 2689
marches
dans cet
escalier

(vraiment!)

Technique 3: Jervis to the rescue.   In the third technique,
you don’t walk down the stairs at all. Instead, you spot your
friend Jervis by the staircase, holding the sign drawn here. The
translation is There are 2689 steps in this stairway (really!).
So, you take the paper and pen from Judy, write the number
2689, and hand the paper back to her, saying, “There are this
many steps.”

This is a silly example, but even so, it does illustrate the
issues that arise when performing a time analysis for an algo-
rithm or program. The first issue is deciding exactly how you
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will measure the time spent carrying out the work or executing the program. At
first glance the answer seems easy: For each of the three stair-counting tech-
niques, just measure the actual time it takes to carry out the work. You could do
this with a stopwatch. But, there are some drawbacks to measuring actual time.
Actual time can depend on various irrelevant details, such as whether you or
somebody else carried out the work. The actual elapsed time may vary from per-
son to person, depending on how fast each person can run the stairs. Even if we
decide that you are the runner, the time may vary depending on other factors
such as the weather, what you had for breakfast, and what other things are on
your mind.

So, instead of measuring the actual elapsed time, we count certain operations
that occur while carrying out the work. In this example, we will count two kinds
of operations:

1. Each time you walk up or down one step, that is one operation.

2. Each time you or Judy marks a symbol on the paper, that is also one 
operation.

decide what 
operations to 
count

Of course, each of these operations takes a certain amount of time, and making a
mark may take a different amount of time than taking a step. But this doesn’t
concern us because we won’t measure the actual time taken by the operations.
Instead, we will ask: How many operations are needed for each of the three
techniques?

For the first technique, you take 2689 steps down, another 2689 steps up, and
you also make 2689 marks on the paper, for a total of  operations—that
is 8067 total operations.

For the second technique, there are also 2689 marks made on Judy’s paper,
but the total number of operations is considerably more. You start by going down
one step and back up one step. Then down two and up two. Then down three and
up three, and so forth. The total number of operations taken is:

Downward steps = 3,616,705 (which is )

Upward steps = 3,616,705

Marks made = 2689

Total operations = Downward steps
+ Upward steps
+ Marks made

= 7,236,099

The third technique is the quickest of all: Only four marks are made on the
paper (that is, we’re counting one “mark” for each digit of 2689), and there is no

3 2689×

1 2 … 2689+ + +
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20  Chapter 1 / The Phases of Software Development

going up and down stairs. The number of operations used by each of the tech-
niques is summarized here:

Technique 1 8067 operations
Technique 2 7,236,099 operations
Technique 3 4 operations

Doing a time analysis for a program is similar to the analysis of the stair-
counting techniques. For a time analysis of a program, we do not usually mea-
sure the actual time taken to run the program because the number of seconds can
depend on too many extraneous factors—such as the speed of the processor, and
whether the processor is busy with other tasks. Instead, the analysis counts the
number of operations required. There is no precise definition of what constitutes
an operation, although an operation should satisfy your intuition of a “small
step.” An operation can be as simple as the execution of a single program state-
ment. Or we could use a finer notion of operation that counts each arithmetic
operation (addition, multiplication, etc.) and each assignment to a variable as a
separate operation.

dependence on 
input size

For most programs, the number of operations depends on the program’s input.
For example, a program that sorts a list of numbers is quicker with a short list
than with a long list. In the stairway example, we can view the Eiffel Tower as
the input to the problem. In other words, the three different techniques all work
on the Eiffel Tower, but the techniques also work on Toronto’s CN Tower or on
the stairway to the top of the Statue of Liberty or on any other stairway.

When a time analysis depends on the size of the input, then the time can be
given as an expression, where part of the expression is the input’s size. The time
expressions for our three stair-counting techniques are:

Technique 1 3n

Technique 2 n + 2
Technique 3 The number of digits in the number n

The expressions on the right give the number of operations performed by each
technique when the stairway has n steps.

The expression for the second technique is not easy to interpret. It needs to be
simplified in order to become a formula that we can easily compare to other for-
mulas. So, let’s simplify it. We start with the subexpression

simplification of 
the time analysis 
for Technique 2

There is a trick that will enable us to find a simplified form for this expression.
The trick is to compute twice the amount of the expression and then divide the
result by 2. Unless you’ve seen this trick before, it sounds crazy. But it works

1 2 … n+ + +( )

1 2 … n+ + +( )
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fine. The trick is illustrated in Figure 1.3. Let’s go through the computation of
that figure step-by-step.

We write the expression twice and add the two expressions.
But as you can see in Figure 1.3, we also use another trick: When we write the
expression twice, we write the second expression backwards. After we write
down the expression twice, we see the following:

We want the sum of the numbers on these two lines. That will give us twice the
value of , and we can then divide by 2 to get the correct value
of the subexpression .

Now, rather than proceed in the most obvious way, we instead add pairs of
numbers from the first and second lines. We add the 1 and the n to get . Then
we add the 2 and the  to again get . We continue until we reach the last
pair consisting of an n from the top line and a 1 from the bottom line. All the pairs
add up to the same amount, namely . Now that is handy! We get n numbers,
and all the numbers are the same, namely . So the total of all the numbers
on the preceding two lines is

The value of twice the expression is n multiplied by . We are now essen-
tially done. The number we computed is twice the quantity we want. So, to

1 2 … n+ + +( )

1 2 … n+ + +( )
+ n … 2 1+ + +( )

1 2 … n+ + +( )
1 2 … n+ + +( )

FIGURE  1.3    Deriving a Handy Formula

 can be computed by first computing the sum of twice , as 
shown here:

The sum is , so  is half this amount:

1 2 … n+ + +( ) 1 2 … n+ + +( )

 1 + 2 + … + n 1–( ) + n

+ n + n 1–( ) + … + 2 + 1

 n 1+( ) + n 1+( ) + … + n 1+( ) + n 1+( )

n n 1+( ) 1 2 … n+ + +( )

1 2 … n+ + +( ) n n 1+( )
2

--------------------=

n 1+
n 1– n 1+

n 1+
n 1+

n n 1+( )

n 1+
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obtain our simplified formula, we only need to divide by 2. The final simplifica-
tion is thus

We will use this simplified formula to rewrite the Technique 2 time expres-
sion, but you’ll also find that the formula occurs in many other situations. The
simplification for the Technique 2 expression is as follows:

Number of operations for Technique 2

= n + 2

= n + 2 Plug in the formula for 

= n + n(n + 1) Cancel the 2s

= n + n2 + n Multiply out

= n2 + 2n Combine terms

So, Technique 2 requires n2 + 2n operations.
simplification of 
time analysis for 
Technique 3

The number of operations for Technique 3 is just the number of digits in the
integer n when written down in the usual way. The usual way of writing down
numbers is called base 10 notation. As it turns out, the number of digits in a
number n, when written in base 10 notation, is approximately equal to another
mathematical quantity known as the base 10 logarithm of n. The notation for the
base 10 logarithm of n is written:

log10 n

base 10 notation 
and base 10 
logarithms

The base 10 logarithm does not always give a whole number. For example, the
actual base 10 logarithm of 2689 is about 3.43 rather than 4. If we want the
actual number of digits in an integer n, we need to carry out some rounding. In
particular, the exact number of digits in a positive integer n is obtained by
rounding log10 n downward to the next whole number, and then adding 1. The
notation for rounding down and adding 1 is obtained by adding some marks to
the logarithm notation as follows:

This is all fine if you already know about logarithms, but what if some of this is
new to you? For now, you can simply define the notation to mean the number of

1 2 … n+ + +( ) n n 1+( )
2

--------------------=

1 2 … n+ + +( )

n n 1+( )
2

-------------------- 
  1 2 … n+ + +( )

n10log 1+
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digits in the base 10 numeral for n. You can do this because if others use any of
the other accepted definitions for this formula, they will get the same answers
that you do. You will be right! (And they will also be right.) In Section 10.3 of
this book, we will show that the various definitions of the logarithm function are
all equivalent. For now, we will not worry about all that detail. We have larger
issues to discuss first. The table of the number of operations for each technique
can now be expressed more concisely as shown here:

Technique 1 3n

Technique 2 n2 + 2n

Technique 3

Big-O Notation

The time analyses we gave for the three stair-counting techniques were very pre-
cise. They computed the exact number of operations for each technique. But
such precision is sometimes not needed. Often it is enough to know in a rough
manner how the number of operations is affected by the input size. In the stair
example, we started by thinking about a particular tower, the Eiffel Tower, with
a particular number of steps. We expressed our formulas for the operations in
terms of n, which stood for the number of steps in the tower. Now suppose that
we apply our various stair-counting techniques to a tower with ten times as
many steps as the Eiffel Tower. If n is the number of steps in the Eiffel Tower,
then this taller tower will have 10n steps. The number of operations needed for
Technique 1 on the taller tower increases tenfold (from 3n to 3× (10n) = 30n);
the time for Technique 2 increases approximately 100-fold (from about n2 to
about (10n)2 = 100n2); and Technique 3 increases by only one operation (from
the number of digits in n to the number of digits in 10n, or to be very concrete,
from the 4 digits in 2689 to the 5 digits in 26,890). We can express this kind of
information in a format called big-O notation. The symbol O in this notation is
the letter O, so big-O is pronounced “big Oh.”

We will describe three common examples of the big-O notation. In these
examples, we use the notion of “the largest term in a formula.” Intuitively, this
is the term with the largest exponent on n, or the term that grows the fastest as n
itself becomes larger. For now, this intuitive notion of “largest term” is enough.
Here are the examples:

quadratic time 
O(n2)

Quadratic Time.   If the largest term in a formula is no more than a constant
times n2, then the algorithm is said to be “big-O of n2,” written O(n2), and the
algorithm is called quadratic. In a quadratic algorithm, doubling the input size
makes the number of operations increase by approximately fourfold (or less).
For a concrete example, consider Technique 2, requiring n2 + 2n operations. A
100-step tower requires 10,200 operations (that is, 1002 + 2× 100). Doubling the
tower to 200 steps increases the time by approximately fourfold, to 40,400 oper-
ations (that is, 2002 + 2× 200).

n10log 1+
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linear time O(n) Linear Time.   If the largest term in the formula is a constant times n, then the
algorithm is said to be “big-O of n,” written O(n), and the algorithm is called
linear. In a linear algorithm, doubling the input size makes the time increase by
approximately twofold (or less). For example, a formula of 3n + 7 is linear, so
that 3× 200 + 7 is about twice 3× 100 + 7.

logarithmic time 
O(log n)

Logarithmic Time.   If the largest term in the formula is a constant times a log-
arithm of n, then the algorithm is “big-O of the logarithm of n,” written
O(log n), and the algorithm is called logarithmic . (The base of the logarithm
may be base 10, or possibly another base. We’ll talk about the other bases in
Section 10.3.) In a logarithmic algorithm, doubling the input size will make the
time increase by no more than a fixed number of new operations, such as one
more operation, or two more operations—or in general by c more operations,
where c is a fixed constant. For example, Technique 3 for stair-counting has a
logarithmic time formula. And doubling the size of a tower (perhaps from 500
stairs to 1000 stairs) never requires more than one extra operation.

Using big-O notation, we can express the time requirements of our three
stair-counting techniques as follows:

Technique 1 O(n)
Technique 2 O(n2)
Technique 3 O(log n)

order of an 
algorithm

When a time analysis is expressed with big-O, the result is called the order of
the algorithm. We want to reinforce one important point: Multiplicative con-
stants are ignored in the big-O notation. For example, both 2n and 42n are linear
formulas, so both are expressed as O(n), ignoring the multiplicative constants 2
and 42. As you can see, this means that a big-O analysis loses some information
about relative times. Nevertheless, a big-O analysis does provide some useful
information for comparing algorithms. The stair example illustrates the most
important kind of information provided by the order of an algorithm.

For example, using the quadratic technique (Technique 2) the fastest stair
climber in the world is still unlikely to do better than a slowpoke—provided that
the slowpoke uses one of the faster techniques. In an application such as sorting
a list, a quadratic algorithm can be impractically slow on even moderately sized
lists, regardless of the processor speed. To see this, notice the comparisons
showing actual numbers for our three stair-counting techniques, which are
shown in Figure 1.4. 

The order of an algorithm generally is more important than
the speed of the processor.
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Time Analysis of Java Methods

The principles of the stair-climbing example can be applied to counting the
number of operations required by code written in a high-level language such as
Java. As an example, consider the method implemented in Figure 1.5 on
page 26. The method searches through an array of numbers to determine
whether a particular number occurs.

As with the stair-climbing example, the first step of the time-analysis is to
decide precisely what we will count as a single operation. For Java, a good choice
is to count the total number of Java operations (such as an assignment, an arith-
metic operation, or the < comparison). If a method calls other methods, then we
would also need to count the operations that are carried out in the other methods.

for our first 
analysis, the 
number that we 
are searching for 
does not occur 
in the array

With this in mind, let’s do a first analysis of the search method for the case
where the array’s length is a non-negative integer n, and (just to be difficult) the
number that we are searching for does not occur in the array. How many opera-
tions does the search method carry out in all? Our analysis has three parts:

1. When the for-loop starts, there are two operations: an assignment to ini-
tialize the variable i to 0, and an execution of the test to determine
whether i is less than data.length.

2. We then execute the body of the loop, and because the number that we are
searching for does not occur, we will execute this body n times. How
many operations occur during each execution of the loop body? We could
count this number, but let’s just say that each execution of the loop body
requires k operations, where k is some number around 3 or 4 (including
the work at the end of the loop where i is incremented and the termination
test is executed). If necessary, we’ll figure out k later, but for now it is
enough to know that we execute the loop body n times, and each execu-
tion takes k operations, for a total of kn operations.

3. After the loop finishes, there is one more operation (a return statement).

FIGURE  1.4    Number of Operations for Three Techniques

Logarithmic
O(log n)

Linear
O(n)

Quadratic
O(n2)

Number of stairs (n)

Technique 3, with

operations

Technique 1, with
3n

operations

Technique 2, with
n 2 + 2n

operations

10 2 30 120

100 3 300 10,200

1000 4 3000 1,002,000

10,000 5 30,000 100,020,000

n10log 1+
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The total number of operations is now kn + 3. The +3 is from the two operations
before the loop and the one operation after the loop. Regardless of how big k is,
this formula is always linear time. So, in the case where the sought-after number
does not occur, the search method takes linear time. In fact, this is a frequent
pattern that we summarize here:

Frequent Linear Pattern

A loop that does a fixed amount of operations n times
requires O(n) time.

Specification

  ◆ search
public static boolean search(double[ ] data, double target)

Search an array for a specified number.
Parameters:

data – an array of double numbers
target – a particular number that we are searching for

Returns:
true (to indicate that target occurs somewhere in the array),
or false (to indicate that target does not occur in the array)

Implementation

{
int i;

for (i = 0; i < data.length; i++)
{ // Check whether the target is at data[i].

if (data[i] == target)
return true;

}

// The loop finished without finding the target.
return false;

}

 FIGURE  1.5 Specification and Implementation of a search Method

public static boolean search(double[ ] data, double target)

Examples:

Suppose that the data array has the 
five numbers {2, 4, 6, 8, 10}. Then 
search(data, 10) returns true, but 
search(data, 42) returns false.

Notice that there is 
no precondition.

java01.frm  Page 26  Saturday, August 26, 2000  5:48 PM



Running Time Analysis27

Later you will see additional patterns, resulting in quadratic, logarithmic, and
other times. In fact, in Chapter 11 you will rewrite the search method in a way
that uses an array that is sorted from smallest to largest, but requires only
logarithmic time.

Worst-Case, Average-Case and Best-Case Analyses

The search method has another important feature: For any particular array size
n, the number of required operations can differ depending on the exact parame-
ter values. For example, with n equal to 100, the target could be 27 and the very
first array element could also be 27—so the loop body executes just one time.
On the other hand, maybe the number 27 doesn’t occur until data[99] and the
loop body executes the maximum number of times (n times). In other words, for
any fixed n, different possible parameter values result in a different number of
operations. When this occurs, we usually count the maximum number of
required operations for inputs of a given size. Counting the maximum number
of operations is called the worst-case analysis. In fact, the worst case for the
search method occurs when the sought-after number is not in the array, which
is the reason that we used the “not in array” situation in our previous analysis.

During a worst-case time analysis, you may sometimes find yourself unable
to provide an exact count of the number of operations. If the analysis is a worst-
case analysis, you may estimate the number of operations, always making sure
that your estimate is on the high side. In other words, the actual number of
operations must be guaranteed to be less than the estimate that you use in the
analysis.

In Chapter 11, when we begin the study of searching and sorting, you’ll see
two other kinds of time-analysis: average-case analysis, which determines the
average number of operations required for a given n, and best-case analysis,
which determines the fewest number of operations required for a given n.

Self-Test Exercises

9. Each of the following is a formula for the number of operations in some
algorithm. Express each formula in big-O notation.
a. n2 + 5n d. 100n + 5

b. 3n2 + 5n e. 5n + 3n2

c. (n + 7)(n - 2) f. the number of digits in 2n

10. Write code for a method that computes the sum of all the numbers in an
integer array. If the array’s length is zero, then the sum should also be
zero. Do a big-O time analysis of your method.

worst-case 
analysis
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1.3 TESTING AND DEBUGGING

Always do right. This will gratify some people, and
astonish the rest.

MARK TWAIN

To the Young People’s Society,  February 16, 1901

program testing Program testing occurs when you run a program and observe its behavior. Each
time you execute a program on some input, you are testing to see how the pro-
gram works for that particular input, and you are also testing to see how long the
program takes to complete. Part of the science of software engineering is the
systematic construction of a set of test inputs that is likely to discover errors,
and such test inputs are the topic of this section.

Choosing Test Data

To serve as good test data, your test inputs need two properties.

Do not take the first property lightly—you must choose test data for which you
know the correct output. Just because a program compiles, runs, and produces
output that looks about right does not mean the program is correct. If the correct
answer is 3278 and the program outputs 3277, then something is wrong. How
do you know the correct answer is 3278? The most obvious way to find the cor-
rect output value is to work it out with pencil and paper using some method
other than that used by the program. To aid you in doing this, you might choose
test data for which it is easy to calculate the correct answer, perhaps by using
smaller input values or by using input values for which the answer is well
known.

Boundary Values

We will focus on two approaches for finding test data that is most likely to cause
errors. The first approach is based on identifying and testing inputs called
boundary values, which are particularly apt to cause errors. A boundary value
of a problem is an input that is one step away from a different kind of behavior.

Properties of Good Test Data

1. You must know what output a correct program should
produce for each test input.

2. The test inputs should include those inputs that are most
likely to cause errors.
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For example, recall the dateCheck method from the first self-test exercise on
page 13. It has the following precondition:

Precondition:
The three arguments are a legal year, month, and day of the month in the 
years 1900 to 2099.

Two boundary values for dateCheck are January 1, 1900 (since one step below
this date is illegal) and December 31, 2099 (since one step above this date is
illegal). If we expect the method to behave differently for “leap days,” then we
should try days such as February 28, 2000 (just before a leap day), February 29,
2000 (a leap day), and March 1, 2000 (just after a leap day).

test zero as a 
boundary value

Frequently zero has special behavior, so it is a good idea to consider zero to
be boundary values whenever it is a legal input. For example, consider the
search method from Figure 1.5 on page 26. This method should be tested with
a data array that contains no elements (data.length is 0). For example:

double[ ] EMPTY = new double[0]; // An array with no elements

// Searching the EMPTY array should always return false.
if (search(EMPTY, 0))

System.out.println(“Wrong answer for an empty array.”);
else

System.out.println(“Right answer for an empty array.”);

test 1 and –1 as 
boundary values

The numbers 1 and −1 also have special behavior in many situations, so they
should be tested as boundary values whenever they are legal input. For example,
the search method should be tested with an array that contains just one element
(data.length is 1). In fact, it should be tested twice with a one-element array:
once when the target is equal to the element, and once when the target is different
from the element.

boundary values 
are “one step 
away from 
different 
behavior”

In general, there is no precise definition of a boundary value, but you should
develop an intuitive feel for finding inputs that are “one step away from different
behavior.”

Test Boundary Values

If you cannot test all possible inputs, at least test the
boundary values. For example, if legal inputs range from zero
to one million, then be sure to test input 0 and input
1000000. It is a good idea also to consider 0, 1, and –1 to be
boundary values whenever they are legal input.
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Fully Exercising Code

The second widely used testing technique requires intimate knowledge of how a
program has been implemented. The technique, called fully exercising code, is
stated with two rules:

1. Make sure that each line of your code is executed at least once by some of
your test data. For example, there might be a portion of your code that is
only handling a rare situation. Make sure that this rare situation is
included among your set of test data.

2. If there is some part of your code that is sometimes skipped altogether,
then make sure that there is at least one test input that actually does skip
this part of your code. For example, there might be a loop where the body
is sometimes executed zero times. Make sure that there is a test input that
causes the loop body to be executed zero times.

profiler Some Java programming environments have a software tool called a profiler  to
help fully exercise code. A typical profiler will generate a listing indicating how
many times each method was called, so you can easily check that each method
has been executed at least once. Some profilers offer more complete informa-
tion, telling how often each individual statement of your program was executed.
This can help you spot parts of your program that were not tested.

Programming Tip: How to Debug

Finding a test input that causes an error is only half the problem of testing and
debugging. After an erroneous test input is found, you still must determine exactly
why the “bug” occurs, and “debug the program.” When you have found an error,
there is an impulse to dive right in and start changing code. It is tempting to look for
suspicious parts of your code and change these suspects to something “that might
work better.”

Avoid the temptation.
An impulsive change to suspicious code almost always makes matters worse.

Instead, you must discover exactly why a test case is failing and limit your changes
to corrections of known errors. Once you have corrected a known error, all test
cases should be rerun.

Fully Exercising Code

1. Make sure that each line of your code is executed at
least once by some of your test data. 

2. If there is part of your code that is sometimes skipped
altogether, then make sure that there is at least one test
input that actually does skip this part of your code. 

TIP
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Tracking down the exact reason why a test case is failing can be difficult. For
large programs, tracking down errors is nearly impossible without the help of a soft-
ware tool called a debugger.  A debugger executes your code one line at a time, or
it may execute your code until a certain condition arises. Using a debugger, you can
specify what conditions should cause the program execution to pause. You can also
keep a continuous watch on the location of the program execution and on the val-
ues of specified variables.

Self-Test Exercises

11. Suppose you write a program that accepts as input any integer in the
range —20 through 20, and outputs the number of digits in the input inte-
ger. What boundary values should you use as test inputs?

12. Suppose you write a program that accepts a single line as input, and out-
puts a message telling whether or not the line contains the letter A, and
whether or not it contains more than three A’s. What is a good set of test
inputs?

13. What does it mean to “fully exercise” code?

CHAPTER SUMMARY

• The first step in producing a program is to write down a precise descrip-
tion of what the program is supposed to do.

• Pseudocode is a mixture of Java (or some other programming language)
and English (or some other natural language). Pseudocode is used to
express algorithms so that you are not distracted by details about Java
syntax.

• One good method for specifying what a method is supposed to do is to
provide a precondition and postcondition for the method. These form a

Debugging Tips

1. Never start changing suspicious code in the hope that
the change “might work better.”

2. Instead, discover exactly why a test case is failing and
limit your changes to corrections of known errors.

3. Once you have corrected a known error, all test cases
should be rerun.

Use a software tool called a debugger to help track down
exactly why an error occurs.
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contract between the programmer who uses the method and the program-
mer who writes the method.

• Time analysis is an analysis of how many operations an algorithm
requires. Often, it is sufficient to express a time analysis in big-O notation,
which is the order of an algorithm. The order analysis is often enough to
compare algorithms and estimate how running time is affected by chang-
ing input size. 

• Three important examples of big-O analyses are linear (i.e., O(n)),
quadratic (i.e., O(n2)), and logarithmic (i.e., O(log n)).

• An important testing technique is to identify and test boundary values.
These are values that lie on a boundary between different kinds of behav-
ior for your program.

• A second important testing technique is to ensure that your test cases are
fully exercising the code. A software tool called a profiler can aid in fully
exercising code.

• During debugging, you should discover exactly why a test case is failing
and limit your changes to corrections of known errors. Once you have cor-
rected a known error, all test cases should be rerun. Use a software tool
called a debugger to help track down exactly why an error occurs.

SOLUTIONS TO SELF-TEST EXERCISES? Solutions to Self-Test Exercises

1. The method returns 7 on July 22, 2003. On
both July 30, 2003 and February 1, 2004 the
method returns 0 (since July 29, 2003 has
already passed).

2. Yes. In order to use a method, all you need to
know is the specification.

3. System.out.print("$");

printNumber(boodle, 12, 2);

4. printSqrt
public static void 
printSqrt(double x)
Prints the square root of a number.

Parameters:
x – any non-negative double number

Precondition:
x >= 0.

Postcondition:
The positive square root of x has been
printed to standard output.

Throws: IllegalArgumentException
Indicates that x is negative.
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5. sphereVolume
public static double
sphereVolume(double radius)
Computes the volume of a sphere.

Parameters:
radius– any non-negative double number

Precondition:
radius >= 0.

Returns:
the volume of a sphere with the specified
radius

Throws: IllegalArgumentException
Indicates that radius is negative.

6. if (x < 0)
throw new IllegalArgumentException
("x is negative: " + x);

7. A final variable is given an initial value
when it is declared, and this value will never
change while the program is running.

8. Most of the specification was automatically
produced using the Javadoc tool described in
Appendix H.

9. Part d is linear (i.e., O(n));  part f is logarith-
mic (i.e., O(log n)); all of the others are qua-
dratic (i.e., O(n2)).

10. Here is a specification for the method, along
with an implementation:
sum

public static int sum(int[ ] a)
Computes the sum of the numbers in an
array.

Parameters:
a – an array whose numbers are to be 

summed
Returns:

the sum of the numbers in the array (which
is zero if the array has no elements)

public static int sum(int[ ] a)
{
int answer, i;

answer = 0;
for (i = 0; i < a.length; i++)

answer += a[i];
return answer;

}

Our solution uses answer += i, which
causes the current value of i to be added to
what’s already in answer.

For a time analysis, let n be the array size.
There are two assignment operations (i = 0
and answer = 0). The < test is executed n + 1
times (the first n times it is true, and the final
time, with i equal to n, it is false). The ++
and += operations are each executed n times,
and an array subscript (a[i]) is taken n times.
The entire code is O(n).

11. As always, 0, 1, and —1 are boundary values.
In this problem, —20 (smallest value) and 20
(largest value) are also boundary values. Also
9 and 10 (since the number changes from a
single digit to two digits) and —9 and —10. (By
the way, this particular problem is small
enough that it would be reasonable to test all
legal inputs, rather than just testing the bound-
ary values.)

12. You should include an empty line (with no
characters before the carriage return) and lines
with 0, 1, 2, 3 A’s. Also include a line with 4
A’s (the smallest case with more than three)
and a line with more than 4 A’s. For the lines
with 1 or more A’s, include lines that have
only the A’s, and also include lines that have
A’s together with other characters. Also test
the case where all the A’s appear at the front or
the back of the line.

13. See the box “Fully Exercising Code” on
page 30.
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