
732  Appendix C / Throwing and Catching Java Exceptions

Appendix C
Throwing and Catching Java Exceptions
An exception is a Java Object that is used to indicate abnormal conditions. When a method detects
an abnormal condition, it can create an exception object, and pass this object upwards to the place
where the method was activated—the whole process is called throwing  an exception. 

When an exception is thrown, the problem can sometimes be corrected—a technique called
catching the exception. Other times, the problem is too serious to correct, and it will remain
uncaught, eventually causing the Java runtime system to print an error message and halt the program.

How to Throw an Exception

Some Java statements automatically throw an exception when they are incorrectly used. For exam-
ple, the evaluation of the expression (42/0) will throw an ArithmeticException because an inte-
ger division by zero is illegal. At other times, a method may detect a problem itself and throw an
exception to indicate this problem. For example, Chapter 1 has a method with a specification that
begins like this:

  ◆ celsiusToFahrenheit
public static double celsiusToFahrenheit(double c)

Convert a temperature from Celsius degrees to Fahrenheit degrees.
Parameters:

c – a temperature in Celsius degrees
Precondition:

c >= -273.16.

It is a programming error to call celsiusToFahrenheit with an argument that is below −273.16. In
such a case, the celsiusToFahrenheit method will detect that the precondition has been violated
and throw an IllegalArgumentException, with statements such as these:

if (c < -273.16)
throw new IllegalArgumentException("Temperature too small.");

The general form for throwing an exception uses the keyword throw, following this pattern:

throw new  (" ");

Figure C.1 shows a list of common exceptions that a programmer may use to indicate problems. In
Java terminology, these are actually called Throwable objects, and the list also indicates a further
classification for each kind of Throwable object. We’ll look at the meaning of that further classifi-
cation on page 734.

This is the type of the exception 
that we are throwing.

This is an error message that will be 
passed as part of the exception. 

_____________________ _____________________

java-app.frm  Page 732  Tuesday, October 31, 2000  9:31 PM



Appendix C / Throwing and Catching Java Exceptions733

FIGURE  C.1   Partial List of Java’s Throwable Objects

Name of the Class Typical Meaning Examples or 
Discussion

Further 
Classification

ClassCast
Exception

Attempting to use a reference 
as if it referred to an object of 
some class—but it doesn’t.

Page 75 Exception

CloneNotSupported
Exception

The clone method was 
activated in a class that forgot 
to implement Cloneable

Page 79 Exception 
(not Runtime)

EmptyStack
Exception*

Tried to pop or peek from an 
empty Stack.

Page 281 Runtime 

Exception

IllegalArgument

Exception

An argument to a method 
violates the precondition.

Page 8 Runtime 

Exception

IllegalState

Exception

A method was activated when 
the object was in a state that 
violates the method’s 
precondition.

Page 137 Runtime 

Exception

IndexOutOfBounds

Exception

An array index was used 
beyond the array’s capacity.

int[ ] a;
a = new int[40];
a[42] = 0;

Runtime 

Exception

IOException An input or output error. Trying to read after 
the end of a file.

Exception 

(not Runtime)

NegaviteArraySize

Exception

Allocating an array with a 
negative number of 
components.

int[ ] a;
int s = -1;
a = new int[s];

Runtime 

Exception

NoSuchElement

Exception*

Attempting to get another 
element out of an Iterator 
or other collection class when 
there are no more elements.

Page 269
or
Page 327

Runtime 

Exception

NullPointer

Exception

Attempting to access a 
method or instance variable 
of the null reference.

Page 51 Runtime 

Exception

OutOfMemory
Error

The heap has no more 
memory.

Page 106 Error

StackOverflow

Error

The execution stack has no 
more memory.

Page 381 Error

UnsupportedOperation

Exception

A method of a class is not 
being provided by the class’s 
programmer.

Page 268 Runtime 

Exception

*EmptyStackException and NoSuchElementException are part of java.util.  

See http://www.cs.colorado.edu/~main/java.html for a listing of all Java Throwable objects.

java-app.frm  Page 733  Tuesday, October 31, 2000  9:31 PM



734  Appendix C / Throwing and Catching Java Exceptions

The RuntimeException and Error Classes

Most of the exceptions listed in Figure C.1 have a “further classification” of RuntimeException or
Error. These are two particular kinds of Throwable objects, with conventional meanings for
programmers:

• RuntimeException: These tend to be exceptions that are caused by programming mistakes,
such as the violation of a precondition.

• Error: These are problems with resources and the Java Virtual Machine. For example, run-
ning out of memory is a resource problem. Not having a needed class is an example of a prob-
lem with the Java Virtual Machine.

Catching an Exception

Sometimes an exception occurs, but the programmer has some way to handle the problem. In this
situation, the programmer can use try-catch blocks of the following form:

try
{

}
catch (  e)
{

} 

In this example, the variable name e was used for the name of the exception, but you can choose
whatever name you like. The “type of the possible exception” is one of the exception data types
such as CloneNotSupportedException.

As a specific example, consider the following code that tries to fill an array with clones of a given
object. However, if the object is not clonable, then the code fills the array with references to the
actual object (rather than clones of the object):

// In this code, obj is a non-null reference to a Java Object and copies is an array of objects. 
// The variable i is an int.
try
{

for (i = 0; i < copies.length; i++)
copies[i] = obj.clone( );

}
catch (CloneNotSupportedException e)
{ // Fill the array with references to the actual object instead of clones.

for (i = 0; i < copies.length; i++)
copies[i] = obj;

}

Statements that might cause an exception to be thrown.

Type of the possible exception

These are statements to handle the problem. Within these 
statements, the name e refers to the exception object. For example, 
e.toString( ) is a message that’s attached to the exception.

java-app.frm  Page 734  Tuesday, October 31, 2000  9:31 PM



Appendix C / Throwing and Catching Java Exceptions735

If a section of code has the possibility of throwing several different types of exceptions, then the
try-block may be followed by several different catch-blocks. After the final catch-block, there can
be one more block that starts with the keyword finally. The finally-block is executed at the end,
whether or not the exception is caught. For example, the following format has two catch-blocks and
a finally-block:

try
{

}
catch (  e1)
{

} 
catch (  e2)
{

}
finally
{

}

The throws Clause

Java has some exceptions that are neither a RuntimeException nor an Error. The examples in our
list are CloneNotSupportedException and IOException, but there are several dozen more and
programmers can even create new classes of exceptions. You must follow a special rule when you
write a statement that might throw one of these exceptions:

When a method includes a statement that might throw an
exception that is neither RuntimeException nor an Error,
then there are two possibilities: (1) Catch the exception, or
(2) Include the name of the exception in a throws clause
after the heading of the method.

Statements that might cause an exception to be thrown.

Type of the first possible exception

These are statements to handle the problem. Within these 
statements, the name e1 refers to the exception object. For example, 
e1.toString( ) is a message that’s attached to the exception.

Type of the second possible exception
d i )bli i id i b (d

These are statements to handle the problem. Within these 
statements, the name e2 refers to the exception object. 

These are statements that will always be executed after the above 
try- and catch-blocks. Note that this code is executed in all cases: 
when no exception occurs, when an exception is thrown and caught, 
or when an uncaught exception is thrown.

java-app.frm  Page 735  Tuesday, October 31, 2000  9:31 PM



736  Appendix C / Throwing and Catching Java Exceptions

The format of a throws clause is the keyword throws followed by the type of the possible excep-
tion. If there are several possible exceptions, then their types may be written separated by commas
in a single throws clause. For example, the following main method has a throws clause indicating
that it may throw a CloneNotSupportedException or an IOException:

public static main(String[ ] args) 
throws CloneNotSupportedException, IOException
{

}

Further Information

For a complete list of Java exceptions, follow the Exceptions link in the file
http://www.cs.colorado.edu/~main/java.html

These are statements that might throw an uncaught 
CloneNotSupportedException or an uncaught IOException.

java-app.frm  Page 736  Tuesday, October 31, 2000  9:31 PM


