
Appendix I / from Data Structures & Other Objects Using Java1

Appendix I: Applets for Interactive Testing
from Data Structures & Other Objects Using Java

It’s useful to have a small interactive test program to help you test class methods. Such a program
can be written as a Java applet, which is a Java program written in a special format to have a graph-
ical user interface. The graphical user interface is also called a GUI (pronounced “gooey”), and it
allows a user to interact with a program by clicking the mouse, typing information into boxes, and
performing other familiar actions. With a Java applet, GUIs are easy to create, even if you’ve never
run into such goo before.

This appendix shows one simple pattern for developing such applets. To illustrate the
pattern, we’ll implement an applet that lets you test three of the bag’s methods (VL]H, DGG, and
FRXQW2FFXUUHQFHV from Chapter 3). When the bag applet starts, a GUI is created, similar to the
drawing in Figure I.1(a).

By the way, the word “applet” means a particular kind of Java program, so you might show Figure
I.1 to your boss and say, “My applet created this nice GUI.” But you can also use the word “applet”
to talk about the GUI itself, such as “The applet in Figure I.1(a) has three buttons in its middle sec-
tion.” And, in fact, there are three buttons in that applet—the rectangles labeled VL]H� �, DGG� �, and
FRXQW2FFXUUHQFHV� �.

The applet in Figure I.1 is intended to be used by the programmer who wrote the ,QW$UUD\%DJ

class, to check interactively that the class is working correctly. When the applet starts, two sentences
appear at the top: “7KLV WHVW SURJUDP KDV FUHDWHG D EDJ� 3UHVV EXWWRQV WR DFWLYDWH

WKH EDJ·V PHWKRGV�” Above these sentences are some extra items, shown here:

The display above our sentences is created automatically by the applet display mechanism. The
exact form of this display varies from one system to another, but the dark bar across the top gener-
ally contains controls such as the in the top-right corner. Clicking on that with the mouse
closes the applet on this particular system.

A series of buttons appears in the middle part of the applet, like this:

2 Appendix I / from Data Structures & Other Objects Using Java

 FIGURE I.1 Two Views of the Applet to Test the ,QW$UUD\%DJ Class

(a) When the applet
first opens, the applet
has the components
shown here.

(b) The user interacts
with the applet by
typing information and
clicking on the buttons
with the mouse. In this
example, the user has
typed 42 into the add
text field and then
clicked the add button.
The applet responds
with the message “42
has been added to the
bag,” written in the
text area at the bottom
of the applet.

Appendix I / from Data Structures & Other Objects Using Java3

To test the bag, the user clicks on the various buttons. For example, the user can click on , and
a new message will appear in the large text area at the bottom of the applet. The message will dis-
play the current size of the bag, as obtained by activating the VL]H� � method. If you click on this
button right at the start, you’ll get the message “7KH EDJ·V VL]H LV ��”

The user can also activate DGG or FRXQW2FFXUUHQFHV, but these methods each need an argument.
For example, to add the number 42 to the bag, the user types the number 42 in the white box next to
the DGG button and then clicks . The result of adding 42 is shown in Figure I.1(b). After elements
have been added, the user can test FRXQW2FFXUUHQFHV. For example, to count the occurrences of the
number 10, the user types 10 in the box by the FRXQW2FFXUUHQFHV button and then clicks

. The applet activates FRXQW2FFXUUHQFHV���� and prints the method’s return value
in the large text area at the bottom.

Six Parts of a Simple Interactive Applet

Figure I.2 on page 8 shows an outline for the Java code of the applet that tests the ,QW$UUD\%DJ.
The same outline can be used for an applet that interactively tests any class. The code has six parts,
which we’ll discuss now.

1. Im port sta tem ents. A s w ith any Java p rog ram , w e b eg in w ith a co l lec tion o f im port sta tem ents to
te l l th e com p ile r abo u t the o the r c lasses th at w e ’ ll b e u sing . In the case o f the bag app le t, w e im po rt th e
,QW$UUD\%DJ class (using the statement).
Most applets also have these three import statements:

LPSRUW MDYD�DSSOHW�$SSOHW�

LPSRUW MDYD�DZW��

LPSRUW MDYD�DZW�HYHQW��

The first import statement provides a class called $SSOHW, which we’ll use in a moment. The other
two import statements provide items from the abstract windowing toolkit (the “AWT”), which is a
collection of classes for drawing buttons and other GUI items.

2. The class definition. After the import statements, we define a class, much like any other Java
class. This class definition begins with the line:

SXEOLF FODVV %DJ$SSOHW H[WHQGV $SSOHW

The definition continues down to the last closing bracket of the file. The class for the bag applet is
called %DJ$SSOHW, which is certainly a good name, but what does “H[WHQGV $SSOHW” mean? It
means that the %DJ$SSOHW class will not be written entirely by us. Instead, the class begins by
already having all the non-private methods of another class called $SSOHW. We imported the $SSOHW
class from MDYD�DSSOHW�$SSOHW, and it is provided as part of the Java language so that a class
such as %DJ$SSOHW does not have to start from scratch. The act of obtaining methods from another
class is called inheritance. The class that provides these methods (such as the $SSOHW class) is
called the superclass, and the new class (such as %DJ$SSOHW) is called the extended class. Chapter
13 studies inheritance in detail, but for now, all you need to know is that the %DJ$SSOHW obtains a

LPSRUW HGX�FRORUDGR�FROOHFWLRQV�,QW$UUD\%DJ�

4 Appendix I / from Data Structures & Other Objects Using Java

bunch of methods from the $SSOHW class without having to do anything more than specify
“H[WHQGV $SSOHW.”

At the top of the class, we define an ,QW$UUD\%DJ instance variable:

,QW$UUD\%DJ E QHZ ,QW$UUD\%DJ� ��

This bag, E, will be manipulated when the user clicks on the applet’s buttons. In general, an interac-
tive test applet will have one or more objects declared here, and these objects are manipulated by
clicking the applet’s buttons.

3. Declarations of the applet’s components. An applet’s components are the buttons and other
items that are displayed when the applet runs. These components are declared as instance variables
of the class. Our bag applet has several kinds of components: buttons (such as), text fields
(which are the white rectangles next to some of the buttons), and a text area (which is the large rect-
angle in the bottom third of the applet). In all, there are six important components in the bag applet,
represented by these six instance variables:

%XWWRQ VL]H%XWWRQ QHZ %XWWRQ��VL]H� ����

%XWWRQ DGG%XWWRQ QHZ %XWWRQ��DGG� ����

7H[W)LHOG HOHPHQW7H[W QHZ 7H[W)LHOG�����

%XWWRQ FRXQW2FFXUUHQFHV%XWWRQ QHZ %XWWRQ��FRXQW2FFXUUHQFHV� ����

7H[W)LHOG WDUJHW7H[W QHZ 7H[W)LHOG�����

7H[W$UHD IHHGEDFN QHZ 7H[W$UHD��� ����

All the instance variables are declared near the top of the class definition before any of the method
definitions. They cannot have the usual private access, because they’ll be accessed from other
classes that we’ll see shortly. But before that, let’s look at the three kinds of components: button,
text field, and text area.

A button is a grey rectangle with a label. When a button is created, the constructor is given a
string that is printed in the middle of the button. For example, this declaration creates a button called
VL]H%XWWRQ, and the label on the button is the string “VL]H� �”:

%XWWRQ VL]H%XWWRQ QHZ %XWWRQ�´VL]H� �µ��

The bag applet has three buttons: VL]H%XWWRQ, DGG%XWWRQ, and FRXQW2FFXUUHQFHV%XWWRQ.
A text field is a white rectangle that can display one line of text. A text field is set up so

that the program’s user can click on the field and type information, and the applet can then read
that information. Our applet has two text fields, one next to the DGG button and one next to the
FRXQW2FFXUUHQFHV button. The 7H[W)LHOG class has a constructor with one argument—an integer
that specifies approximately how many characters can fit in the text field. For example, one of our
text fields is declared as follows:

7H[W)LHOG HOHPHQW7H[W QHZ 7H[W)LHOG�����

The HOHPHQW7H[W text field can hold about 10 characters. The user can actually type beyond
10 characters, but only 10 characters of a long string will be displayed. We plan to display
HOHPHQW7H[W right beside the DGG button, like this:

Appendix I / from Data Structures & Other Objects Using Java5

To test the DGG method, the user will type a number in the text field and click on the DGG button.
A text area is like a text field with more than one line. Its constructor has two arguments that

specify the number of rows and columns of text to display. Our bag applet has one text area:

7H[W$UHD IHHGEDFN QHZ 7H[W$UHD��� ����

This large text area appears at the bottom of the applet. The intention is to use the text area to dis-
play messages to the user.

The declarations we have seen created the three kinds of components: %XWWRQ, 7H[W)LHOG, and
7H[W$UHD. All three classes are part of the MDYD�DZW package that is imported by our applet. When
we declare a button (or other component) and create it with the constructor, it does not immediately
appear in the GUI. How do the objects get placed in the GUI? Also, how does the applet know what
to do when the user clicks on a button or takes some other action? The answers to these two questions
lie in a special applet method called LQLW, which we’ll discuss next.

4. The LQLW method. A Java application program has a special static method called PDLQ, but a
Java applet does not have PDLQ. Instead, an applet has a special nonstatic method called LQLW. When
an applet runs, the runtime system creates an object of the applet class and activates LQLW� � for that
object. There are several other applet methods that the runtime system also activates at various times,
but an interactive test program needs only LQLW.

Our LQLW method carries out four kinds of actions:

A. The DGG method. We can add one of the interactive components to the GUI. This is done
with an applet method called DGG. The method has one argument, which is the component
being added to the GUI. For example, one of our buttons is VL]H%XWWRQ, so we can write the
statement:

DGG�VL]H%XWWRQ��

As components are added, the GUI fills up from left to right. If there is no room for a compo-
nent on the current line, then the GUI moves down and starts a new row of components. Later
you can learn more sophisticated ways of laying out the components of a GUI, but the simple
left-to-right method used by an applet is a good starting point.

B. Displaying messages. We can display messages in the GUI. Each message is a fixed
string that provides some information to the user. Each of these messages is a /DEHO

object (from the package MDYD�DZW). To create and display a message, we activate DGG

with a newly created /DEHO as the argument. For example:
DGG�QHZ /DEHO��7KLV WHVW SURJUDP KDV FUHDWHG D EDJ����

The /DEHO constructor has one argument, which is the string that you want to display. The
DGG method will put the message in the next available spot of the GUI.

C. New lines and horizontal lines. If our applet class has other methods (besides LQLW), then
we can activate these other methods. For example, we plan to have two other methods in
the ,QW$UUD\%DJ class:

YRLG DGG1HZ/LQH� ��

YRLG DGG+RUL]RQWDO/LQH�&RORU F��

The DGG1HZ/LQH method forces the GUI to start a new line, even when there’s room for more
components on the current line. The second method, DGG+RUL]RQWDO/LQH, draws a horizon-

6 Appendix I / from Data Structures & Other Objects Using Java

tal line in the specified color. We’ll have to define these two methods as part of
%DJ$SSOHW�-DYD, but they won’t be difficult. (The data type &RORU is part of MDYD�ODQJ.
It includes &RORU�EOXH and 12 other colors, plus the ability to define your own colors.)

D. Activate methods of the components. The buttons and other components have methods
that can be activated. For example, one of the methods of a 7H[W$UHD is called DSSHQG.
The method has one argument, which is a string, and this string is appended to the end of
what’s already in the text field. One of the statements in our LQLW method will activate
DSSHQG:

IHHGEDFN�DSSHQG�´, DP UHDG\ IRU \RXU ILUVW DFWLRQ�?Qµ��

This causes the message “, DP UHDG\ IRU \RXU ILUVW DFWLRQ�” to be written in the
IHHGEDFN text field (with a newline character ?Q at the end of the message).

The most important method for buttons involves a new kind of object called an action lis-
tener. An action listener is an object that an applet programmer creates to describe the action
that should be taken when certain events occur. Our bag applet will have a different kind of
action listener for each of the three buttons:

Each kind of action listener is actually a new class that we’ll define in a moment. But the only
thing you need to know for the LQLW method is how to connect an action listener to a %XWWRQ.
The solution is to activate a method called DGG$FWLRQ/LVWHQHU for each %XWWRQ. For exam-
ple, to connect VL]H%XWWRQ to its action listener, we place this statement in the LQLW method:

VL]H%XWWRQ�DGG$FWLRQ/LVWHQHU�QHZ 6L]H/LVWHQHU� ���

Notice that DGG$FWLRQ/LVWHQHU is a method of the %XWWRQ class, and its one argument is a new
6L]H/LVWHQHU object. Of course, we still need to implement the 6L]H/LVWHQHU class, as well as the
other two action listener classes. But first let’s summarize all the pieces that are part of the LQLW

method for the %DJ$SSOHW. Within LQLW, we expect to activate these methods to carry out our work:

• DGG—An $SSOHW method to add the buttons and other components to the display

• DGG1HZ/LQH and DGG+RUL]RQWDO/LQH—Two methods that we will write for the %DJ$SSOHW

• IHHGEDFN�DSSHQG—A method of IHHGEDFN (a 7H[W$UHD object) to place the message “I am
ready for your first action” in IHHGEDFN

Kind of Action Listener Purpose

6L]H/LVWHQHU Describes the actions to be taken when
VL]H%XWWRQ is clicked.

$GG/LVWHQHU Describes the actions to be taken when
add%XWWRQ is clicked.

&RXQW2FFXUUHQFHV/LVWHQHU Describes the actions to be taken when
FRXQW2FFXUUHQFHV%XWWRQ is clicked.

Appendix I / from Data Structures & Other Objects Using Java7

• DGG$FWLRQ/LVWHQHU—A method that will be called once for each of the three buttons

The complete LQLW implementation is shown in Figure I.2. We’ve used just one method that we
haven’t yet mentioned. That one method (VHW(GLWDEOH) is summarized in Figure I.3 on page 9,
along with the other applet-oriented methods that we have used or plan to use.

5. Implementations of the action listeners. The next step of the applet implementation is to
design and implement three action listener classes—one for each of our three buttons. The purpose
of an action listener is to describe the actions that are carried out when a button is pushed.

Here’s the Java syntax for defining an action listener class; the blank line is filled in with your
choice of a name for the action listener class.

FODVV LPSOHPHQWV $FWLRQ/LVWHQHU
^

YRLG DFWLRQ3HUIRUPHG�$FWLRQ(YHQW HYHQW�

^
���

`
`

The phrase “LPSOHPHQWV $FWLRQ/LVWHQHU” informs the Java compiler that the class will have a
certain method that is specified in the $FWLRQ/LVWHQHU interface that is part of MDYD�DZW�. The
method, called DFWLRQ3HUIRUPHG, is shown with “...” to indicate its body. The DFWLRQ3HUIRUPHG

method will be executed when an action occurs in the action listener’s component, such as clicking
a button. For example, here is the complete definition of the action listener that handles the clicking
of the button of our test applet:

FODVV 6L]H/LVWHQHU LPSOHPHQWV $FWLRQ/LVWHQHU

^
YRLG DFWLRQ3HUIRUPHG�$FWLRQ(YHQW HYHQW�

^
IHHGEDFN�DSSHQG��7KH EDJ KDV VL]H � � E�VL]H� � � ��?Q���

`
`

This declares a class called 6L]H/LVWHQHU, which includes its own DFWLRQ3HUIRUPHG method. For
most classes, the class definition would go in a separate file called 6L]H/LVWHQHU�MDYD. But a sep-
arate file is undesirable here because the DFWLRQ3HUIRUPHG method needs access to two instance
variables: the bag E and the text area IHHGEDFN. The necessary access can be provided by placing
the entire 6L]H/LVWHQHU definition within the %DJ$SSOHW. This is an example of an inner class,
where the definition of one class is placed inside of another. An inner class has two key properties:

• The larger class that encloses an inner class may use the inner class, but the inner class may
not be used elsewhere.

• The inner class may access non-private instance variables and methods of the larger class.
Some Java implementations also permit an inner class to access private instance variables of
the larger class. But other implementations forbid private access from an inner class. (Java
implementations that are built into web browsers are particularly apt to forbid the private
access.)

8 Appendix I / from Data Structures & Other Objects Using Java

Implementation

^

�� Some messages for the top of the applet:

DGG�QHZ /DEHO��7KLV WHVW SURJUDP KDV FUHDWHG D EDJ�����

DGG�QHZ /DEHO��3UHVV EXWWRQV WR DFWLYDWH WKH EDJ
V PHWKRGV�����

DGG+RUL]RQWDO/LQH�&RORU�EOXH��

�� The Button for testing the size method:

DGG�VL]H%XWWRQ��

DGG1HZ/LQH� ��

�� The Button and TextField for testing the add method:

DGG�DGG%XWWRQ��

DGG�HOHPHQW7H[W��

DGG1HZ/LQH� ��

�� The Button and TextField for testing the countOccurrences method:

DGG�FRXQW2FFXUUHQFHV%XWWRQ��

DGG�WDUJHW7H[W��

DGG1HZ/LQH� ��

�� A TextArea at the bottom to write messages:

DGG+RUL]RQWDO/LQH�&RORU�EOXH��

DGG1HZ/LQH� ��

IHHGEDFN�VHW(GLWDEOH�IDOVH��

IHHGEDFN�DSSHQG��, DP UHDG\ IRU \RXU ILUVW DFWLRQ�?Q���

DGG�IHHGEDFN��

�� Tell the Buttons what they should do when they are clicked:

VL]H%XWWRQ�DGG$FWLRQ/LVWHQHU�QHZ 6L]H/LVWHQHU� ���

DGG%XWWRQ�DGG$FWLRQ/LVWHQHU�QHZ $GG/LVWHQHU� ���

FRXQW2FFXUUHQFHV%XWWRQ�DGG$FWLRQ/LVWHQHU�QHZ &RXQW2FFXUUHQFHV/LVWHQHU� ���

`

 FIGURE I.2 Implementation of the BagApplet’s LQLW Method

SXEOLF YRLG LQLW� �

Appendix I / from Data Structures & Other Objects Using Java9

 FIGURE I.3 Guide to Building an Applet for Interactive Testing

Methods to Call from an Applet or from a Class That Extends an Applet
DGG�FRPSRQHQW� The component may be any of Java�s AWT

components, such as %XWWRQ, 7H[W$UHD, or
7H[W)LHOG. As components are added, the
applet fills up from left to right. If there is no
room for a component on the current line, then
the applet moves down and starts a new row of
components.

DGG1HZ/LQH� �

DGG+RUL]RQWDO/LQH�&RORU F�
These are not actually $SSOHW methods�you�ll
need to define them if you want to use them
(see page 12).

Constructors for Three Useful Applet Components
%XWWRQ�6WULQJ ODEHO� Creates a button with a given label.

7H[W)LHOG�LQW VL]H� Creates a white box where the user can type
information. The size is the number of charac-
ters.

7H[W$UHD�LQW URZV� LQW FROXPQV� Creates a box with the given number of rows
and columns, often used for displaying infor-
mation to the user.

Six Useful Methods for a Component
E�VHW$FWLRQ/LVWHQHU

�$FWLRQ/LVWHQHU DFW�

We use E�VHW$FWLRQ/LVWHQHU for a %XWWRQ E.
The $FWLRQ/LVWHQHU, DFW, describes the actions
to take when the %XWWRQ E is pressed. See
page 7 for information on how to create an
$FWLRQ/LVWHQHU.

W�DSSHQG�6WULQJ PHVVDJH� We use t.append for a 7H[W$UHD W. The specified
message is added to the end of the 7H[W$UHD.

W�JHW7H[W� � We use W�JHW7H[W for a 7H[W)LHOG W. The
method returns a copy of the 6WULQJ that the
user has typed in the field.

W�VHW(GLWDEOH�ERROHDQ HGLWDEOH� The component W can be either a 7H[W$UHD or
a 7H[W)LHOG. The ERROHDQ parameter tells
whether you want the user to be able to type
text into the component.

W�UHTXHVW)RFXV� �

W�VHOHFW$OO� �
We use these methods with a 7H[W)LHOG. The
UHTXHVW)RFXV method causes the mouse to go
to the field, and VHOHFW$OO causes all text to be
highlighted.

F�VHW6L]H�LQW ZLGWK� LQW KHLJKW� This method may be used with any component
F. The component�s width and height are set to
the given values in pixels.

10 Appendix I / from Data Structures & Other Objects Using Java

So, by making 6L]H/LVWHQHU an inner class, the DFWLRQ3HUIRUPHG method can activate
IHHGEDFN�DSSHQG to print a message in the IHHGEDFN component of the applet. The message itself
in c lu d es an ac t iv a t io n o f E�VL]H� �, so an en t ire m essag e is som eth in g l ike “7KH EDJ KDV VL]H ���”

By the way, the DFWLRQ3HUIRUPHG method has a parameter called HYHQW. For more complex
actions, the HYHQW can provide more information about exactly which kind of action triggered the
DFWLRQ3HUIRUPHG method.

Once an action listener is created, it must be registered with its particular button. The registra-
tion is made in the LQLW method. Our applet had these three statements to register the three
$FWLRQ/LVWHQHU objects:

VL]H%XWWRQ�DGG$FWLRQ/LVWHQHU�QHZ 6L]H/LVWHQHU� ���

DGG%XWWRQ�DGG$FWLRQ/LVWHQHU�QHZ $GG/LVWHQHU� ���

FRXQW2FFXUUHQFHV%XWWRQ�DGG$FWLRQ/LVWHQHU

�QHZ &RXQW2FFXUUHQFHV/LVWHQHU� ���

For example, the first of these statements creates a new 6L]H/LVWHQHU and registers it with the but-
ton VL]H%XWWRQ.

Let’s look at the second action listener class for our applet: $GG/LVWHQHU. This action listener
handles the actions of DGG%XWWRQ, which is shown here along with the 7H[W)LHOG that’s right beside
it in the applet:

What actions should occur when the user clicks the DGG%XWWRQ? The text is read from the
7H[W)LHOG. This text is a 6WULQJ, such as “42”, but it can be converted to its value as an integer by
using the Java method ,QWHJHU�SDUVH,QW. The method ,QWHJHU�SDUVH,QW has one argument (a
6WULQJ that contains an integer value), and the return value is the LQW value of the 6WULQJ. Once
we know the value of the integer provided by the user, we can add it to the bag E and print an appro-
priate message. Here’s one implementation of these steps:

The actionPerformed Method

The 6L]H/LVWHQHU class is an inner class, declared within
%DJ$SSOHW. Therefore, its DFWLRQ3HUIRUPHG method has
access to the instance variables of the %DJ$SSOHW.

Appendix I / from Data Structures & Other Objects Using Java11

FODVV $GG/LVWHQHU LPSOHPHQWV $FWLRQ/LVWHQHU

^
YRLG DFWLRQ3HUIRUPHG�$FWLRQ(YHQW HYHQW�

^
6WULQJ XVHU,QSXW HOHPHQW7H[W�JHW7H[W� ��

LQW HOHPHQW ,QWHJHU�SDUVH,QW�XVHU,QSXW��

E�DGG�HOHPHQW��

IHHGEDFN�DSSHQG�HOHPHQW � � KDV EHHQ DGGHG WR WKH EDJ�?Q���
`

`

The DFWLRQ3HUIRUPHG method defined here uses three of the applet’s instance variables:
(1) HOHPHQW7H[W, which is the 7H[W)LHOG where the user typed a number; (2) the bag E, where the
new element is added; and (3) the 7H[W$UHD IHHGEDFN, where a message is printed providing feed-
back to the user.

The method works fine, though a problem arises if the user forgets to type a number in the
7H[W)LHOG before clicking the button. In this case, a 1XPEHU)RUPDW([FHSWLRQ will occur when
,QWHJHU�SDUVH,QW tries to convert the user’s string to an integer.

The best solution to this problem is to “catch” the exception when it occurs rather than allowing
the exception to stop the applet. The syntax for catching a 1XPEHU)RUPDW([FHSWLRQ looks like this:

WU\

^

���code that might throw a NumberFormatException���

`

FDWFK �1XPEHU)RUPDW([FHSWLRQ H�

^

���code to execute if the NumberFormatException happens���

`

The words WU\ and FDWFK are Java keywords for handling exceptions. The full power of WU\ and
FDWFK are described in Appendix C. For our purposes, we’ll follow the preceding pattern to write a
better version of $GG/LVWHQHU, show as part of Figure I.4 on page 14. In that implementation, 1XP�

EHU)RUPDW([FHSWLRQ might occur, in which case the code in the FDWFK-block is executed. This
code prints a message in the feedback area of the applet and then activates two methods for HOH�

PHQW7H[W (which is the 7H[W)LHOG where the user was supposed to type a number):

HOHPHQW7H[W�UHTXHVW)RFXV� ��

HOHPHQW7H[W�VHOHFW$OO� ��

The UHTXHVW)RFXV method causes the mouse cursor to jump into the 7H[W)LHOG, and the
VHOHFW$OO method causes any text in the field to be highlighted. So now, if the user forgets to
type a number, the applet will print a nice error message and provide a second chance.

Our applet needs one more action listener for the FRXQW2FFXUUHQFHV button. That implementa-
tion is part of Figure I.4 on page 14.

12 Appendix I / from Data Structures & Other Objects Using Java

6. Implementations of other methods. Our applet has two other methods that we’ve mentioned:
(1) DGG+RUL]RQWDO/LQH, which draws a horizontal line in a specified color; and (2) DGG1HZ/LQH,
which causes a new line to start in the GUI, even when there’s room for more components on the
current line.

Our DGG+RUL]RQWDO/LQH doesn’t really draw a line. Instead, it adds a component called a &DQYDV

to the applet. A &DQYDV is another applet component, like a %XWWRQ, primarily used for drawing
graphical images. The size of the &DQYDV can be set in pixels, which are the individual dots on a com-
puter screen. Today’s typical screens have about 100 pixels per inch, so a &DQYDV that is only one
pixel high looks like a horizontal line. Our implementation is also part of Figure I.4. Notice that in
the implementation, the &DQYDV is 10,000 pixels wide, which is wide enough to span even the largest
applet—at least on today’s computer screens.

Our last method, DGG1HZ/LQH, works by calling DGG+RUL]RQWDO/LQH with the color set to the
background color of the applet. In effect, we are drawing a horizontal line, but it is invisible because
it’s the same color as the applet’s background.

The implementation of DGG1HZ/LQH is given in Figure I.4 as part of the complete applet. Look
through the implementation with an eye toward how it can be expanded to test all of the bag’s meth-
ods or to test a different class, such as the 'RXEOH$UUD\6HT class.

How to Compile and Run an Applet

An applet can be compiled just like any other Java program. For example, using the Java Develop-
ment Kit, we can compile %DJ$SSOHW�MDYD with the command line:

MDYDF %DJ$SSOHW�MDYD

You may have some other way of compiling Java programs in your development environment, but
the result will be the same. The act of compiling produces the file %DJ$SSOHW�FODVV. The compila-
tion will probably produce three other files with names such as %DJ$SSOHW�6L]H/LVWHQHU�FODVV.
These are the compiled versions of the inner classes.

Applets were actually created to run as part of a page that you view over the Internet with a web
browser. These pages are called html pages, which stands for “hypertext markup language.” So, to
run the %DJ$SSOHW, we need a small html file. The file, called %DJ$SSOHW�KWPO, should be created
by you in the same directory as %DJ$SSOHW�FODVV, and it should contain the two lines of html code
shown here:

�DSSOHW FRGH �%DJ$SSOHW�FODVV� ZLGWK ��� KHLJKW ���!

��DSSOHW!

Appendix I / 13

The first line, containing �DSSOHW���!, tells the web browser that you are going to start an applet.
Usually, you will have at least three pieces of information about the applet:

Many Java development environments have a feature to automatically create a small html file such
as this.

Once the html file is in place, you can run the applet in one of two ways. One approach is to run
an appletviewer, which is a tool that reads an html file and runs any applets that it finds. The Java
Development Kit has an appletviewer that is executed from the command line. For example, to run
the JDK appletviewer, you change to the directory that contains %DJ$SSOHW�KWPO and type the
command:

DSSOHWYLHZHU %DJ$SSOHW�KWPO

This command runs the applet, resulting in the display shown in Figure I.1 on page 791.
The applet can also be displayed by putting it in a location that’s available to your web browser.

My latest information about this approach is available atKWWS���ZZZ�FV�FRORUDGR�HGX�aPDLQ�

MDYD�KWPO.

Beyond the init Method

Our test applet needed to define only the LQLW method. More complex applets can also be created,
involving graphical images plus interaction. Graphical applets will generally provide other methods
called VWDUW, SDLQW, XSGDWH, VWRS, and GHVWUR\. A good resource is Graphic Java, Mastering the
AWT by David M. Geary.

FRGH �%DJ$SSOHW�FODVV� Tells the browser where to

find the compiled class.

ZLGWK ���

KHLJKW ���

Sets the applet�s size in pix-

els. Today�s typical screens

have about 100 pixels per

inch, so a size of 480 x 340

is about 4.8 inches by 3.4

inches.

14 Appendix I /

Java Applet Implementation

�� File: BagApplet.java

�� This applet is a small example to illustrate how to write an interactive applet that

�� tests the methods of another class. This first version tests three of the IntArrayBag

�� methods.

LPSRUW HGX�FRORUDGR�FROOHFWLRQV�,QW$UUD\%DJ�

LPSRUW MDYD�DSSOHW�$SSOHW�

LPSRUW MDYD�DZW�� �� Imports Button, Canvas, TextArea, TextField

LPSRUW MDYD�DZW�HYHQW�� �� Imports ActionEvent, ActionListener

SXEOLF FODVV %DJ$SSOHW H[WHQGV $SSOHW

^

�� An IntArrayBag for this applet to manipulate:

,QW$UUD\%DJ E QHZ ,QW$UUD\%DJ� ��

�� These are the interactive components that will appear in the applet.

�� We declare one Button for each IntArrayBag method that we want to be able to

�� test. If the method has an argument, then there is also a TextField

�� where the user can enter the value of the argument.

�� At the bottom, there is a TextArea to write messages.

%XWWRQ VL]H%XWWRQ QHZ %XWWRQ��VL]H� ����

%XWWRQ DGG%XWWRQ QHZ %XWWRQ��DGG� ����

7H[W)LHOG HOHPHQW7H[W QHZ 7H[W)LHOG�����

%XWWRQ FRXQW2FFXUUHQFHV%XWWRQ QHZ %XWWRQ��FRXQW2FFXUUHQFHV� ����

7H[W)LHOG WDUJHW7H[W QHZ 7H[W)LHOG�����

7H[W$UHD IHHGEDFN QHZ 7H[W$UHD�������

(continued)

 FIGURE I.4 Complete Implementation of the %DJ$SSOHW

Appendix I / 15

 (FIGURE I.4 continued)

^

`

^

SXEOLF YRLG DFWLRQ3HUIRUPHG�$FWLRQ(YHQW HYHQW�

^

IHHGEDFN�DSSHQG��7KH EDJ KDV VL]H � � E�VL]H� � � ��?Q���

`

`

^

SXEOLF YRLG DFWLRQ3HUIRUPHG�$FWLRQ(YHQW HYHQW�

^

WU\

^

6WULQJ XVHU,QSXW HOHPHQW7H[W�JHW7H[W� ��

LQW HOHPHQW ,QWHJHU�SDUVH,QW�XVHU,QSXW��

E�DGG�HOHPHQW��

IHHGEDFN�DSSHQG�HOHPHQW � � KDV EHHQ DGGHG WR WKH EDJ�?Q���

`

FDWFK �1XPEHU)RUPDW([FHSWLRQ H�

^

IHHGEDFN�DSSHQG��7\SH DQ LQWHJHU EHIRUH FOLFNLQJ EXWWRQ�?Qµ��

HOHPHQW7H[W�UHTXHVW)RFXV� ��

HOHPHQW7H[W�VHOHFW$OO� ��

`

`

`

(continued)

SXEOLF YRLG LQLW� �

See the implementation in Figure I.2 on page 8.

FODVV 6L]H/LVWHQHU LPSOHPHQWV $FWLRQ/LVWHQHU

FODVV $GG/LVWHQHU LPSOHPHQWV $FWLRQ/LVWHQHU

16 Appendix I /

 (FIGURE I.4 continued)

^

SXEOLF YRLG DFWLRQ3HUIRUPHG�$FWLRQ(YHQW HYHQW�

^

WU\

^

6WULQJ XVHU,QSXW WDUJHW7H[W�JHW7H[W� ��

LQW WDUJHW ,QWHJHU�SDUVH,QW�XVHU,QSXW��

IHHGEDFN�DSSHQG�WDUJHW � � RFFXUV ���

IHHGEDFN�DSSHQG�E�FRXQW2FFXUUHQFHV�WDUJHW� � ´WLPHV�?Qµ��

`

FDWFK �1XPEHU)RUPDW([FHSWLRQ H�

^

IHHGEDFN�DSSHQG��7\SH D WDUJHW EHIRUH FOLFNLQJ EXWWRQ�?Q���

WDUJHW7H[W�UHTXHVW)RFXV� ��

WDUJHW7H[W�VHOHFW$OO� ��

`

`

`

^

�� Add a Canvas 10,000 pixels wide but only 1 pixel high, which acts as

�� a horizontal line to separate one group of components from the next.

&DQYDV OLQH QHZ &DQYDV� ��

OLQH�VHW6L]H����������

OLQH�VHW%DFNJURXQG�F��

DGG�OLQH��

`

^

�� Add a horizontal line in the background color. The line itself is

�� invisible, but it serves to force the next component onto a new line.

DGG+RUL]RQWDO/LQH�JHW%DFNJURXQG� ���

`

`

FODVV &RXQW2FFXUUHQFHV/LVWHQHU LPSOHPHQWV $FWLRQ/LVWHQHU

SULYDWH YRLG DGG+RUL]RQWDO/LQH�&RORU F�

SULYDWH YRLG DGG1HZ/LQH� �

