Appendix | / from Data Structures & Other Objects Using Jaila

Appendix I: Applets for Interactive Testing
from Data Structures & Other Objects Using Java

It's useful to have a small interactive test program to help you test class methods. Such a program
can be written as a Jagpplet, which is a Java program written in a special format to have a graph-
ical user interface. The graphical user interfacdss aalled a GUI (pronounced “gooey”), and it
allows a user to interact with a program by clicking the mouse, typing information into boxes, and
perfornming other familiar actions. With a Java applet, GUIs are easy to create, even if you've never
run into such goo before.

This appendix shows one simple pattern for developing such applets. To illustrate the
pattern, we’ll implement an applet that lets you test three of the bag’s methiads {dd, and
countOccurrences from Chapter 3). When the bag applet starts, a GUI is created, similar to the
drawing in Figure l.1(a).

By the way, the word “applet’” means a particular kind of Java program, so you might show Figure
I.1 to your boss and say, “My applatated this nice GUL.” But you can also use the word “applet”
to talk about the GUI itself, such as “The applet in Figure 1.1(a) has three buttons in its middle sec-
tion.” And, in fact, there are the buttons in that applet—the rectangles labeled (), add(), and
countOccurrences().

The applet in Figure 1.1 is intended to be used by the programmer who wratecireayBag
class, to check interactively that the class is working correctly. When the applet starts, two sentences
appear at the topThis test program has created a bag. Press buttons to activate
the bag’s methods.” Above these sentences are some extra items, shown here:

EEiApplet Viewer: BagApplet.class O[]

Applet
This test program has created a bag.

Fress huttans to activate the bag's methods.

The display above our sentences is created automatically by the applet display mechanism. The
exact form of this display varies from one system to another, but the daaikrbas the top gener-
ally contains controls such as ti} in the top-right corner. Clicking orf€hat with the mouse
closes the applet on this particular system.

A series of buttons appears in the middle part of the applet, like this:

size() |
add() I
countOccurrences) ||

2 Appendix | / from Data Structures & Other Objects Using Java

FIGURE 1.1

(a) When the applet
first opens, the applet
has the components
shown here.

(b) The user interacts
with the applet by
typing information and
clicking on the buttons
with the mouse. In this
example, the user has
typed 42 into the add
text field and then
clicked the add button.
The applet responds
with the message “42
has been added to the
bag,” written in the
text area at the bottom
of the applet.

Two Views of the Applet to Test the IntArrayBag Class

Anplet

EEiApplet Viewer: BagApplet.class _ o] x|
Anplet
This test program has created a bag. k
FPress buttons to activate the hag's methods.
Sized) |
add() |
countOccurrences() ”
| am ready for your first action.
Applet started.
EEiApplet Viewer: BagApplet.class _ o] x|

This test program has created a bag.

FPress buttons to activate the hag's methods.

size()l

ada() | [42 |

cnuntOccurrenB() ”

| am ready for your first action.
42 has been added to the bag.

Applet started.

Appendix | / from Data Structures & Other Objects Using Jada

To test the bag, the user clicks on the various buttons. For example, the user can size(} on , and
a new message will appear in the large text area at the bottom of the applet. The message will dis-
play the current size of the bag, as obtained by activatingithe() method. If you click on this
button right at the start, you'll get the message"bag’s size is 0.”

The user can also activatdd or countOccurrences, but these methods each need an argument.
For example, to add the number 42 to the bag, the user types the number 42 in the white box next to
theadd button and then click add(y . The result of adding 42 is shown in Figure 1.1(b). After elements
have been added, the user candeshtOccurrences. For example, to count the occurrences of the
number 10, the user types 10 in the box by ¢bhentOccurrences button and then clicks
sountOecurrences() . The applet activatesuntOccurrences (10) and prints the method’s return value
in the large text area at the bottom.

Six Parts of a Simple Interactive Applet

Figure 1.2 on page 8 shows an outline for the Java code of the applet that t&stsAthrayBag.
The same outline can be used for an applet thettactively tests any class. The code has six parts,
which we’ll discuss now.

1. Import statements. As with any Java program, we begin with a collection of import statements to
tell the compiler about the other classes that we'll be using. In the case of the bag applet, we import the
IntArrayBag class (using the s@nhentimport edu.colorado.collections.IntArrayBag;).

Most applets also have these three import statements:

import java.applet.Applet;
import java.awt.¥,
import java.awt.event.*;

The first import statement provides a class caliggl et, which we’ll use in a moment. The other
two import statements provide items from #imstract windowing toolkit (the “AWT”), which is a
collection of classes for drawing buttons and other GUI items.

2. The class definition. After the import statements, we define a class, much like any other Java
class. This class definition begins with the line:

public class BagApplet extends Applet

The definition continues down to the last closing bracket of the file. The class for the bag applet is
called BagApplet, which is certainly a good name, but what doesténds Applet” mean? It
means that th@8agApplet class will not be written entirely by us. Instead, the class begins by
already having all the non-private methods of another class ealddt. We imported thépplet

class fromjava.applet.Applet, and it is provided as part of the Java languagthaba class

such aBagApplet doesnot haveto startfrom scratch. The act of obtaining methods from another
class is callednheritance. The class that provides these methods (such aspfflet class) is

called thesuperdass and the new class (suchBsyApplet) is called theextended classChapter

13 studies inheritance in detail, but for now, all you need to know is thahgiaeplet obtains a

4 Appendix | / from Data Structures & Other Objects Using Java

bunch of methods from thepplet class without having to do anything more than specify
“extends Applet.”
At the top of the class, we define amtArrayBag instance variable:

IntArrayBag b = new IntArrayBag();

This bag,b, will be manipulated when the user clicks on the applet’s buttons. In general, an interac-
tive test applet will have one or more objects dexd here, and thesbjects are manipulated by
clicking the applet’s buttons.

3. Declarations of the applet’'s components.An applet's components are the buttons and other
items that are displayed when the applet runs. These components are declared as instance variables
of the class. Our bag applet has several kinds of components: buttons ({sze{yas), text fields
(which are the white rectangles next to some of the buttons), andaadaxyhich is the large rect-

angle in the bottom third of the applet). In all, there are six important components in the bag applet,
represented by these six instance variables:

Button sizeButton = new Button("size()");

Button addButton = new Button("add()");

TextField elementText = new TextField(10);

Button countOccurrencesButton = new Button("countOccurrences()");
TextField targetText = new TextField(10);

TextArea feedback = new TextArea(7, 60);

All the instance variables are declared near the top of the class definition before any of the method
definitions. They cannot have the usual private access, because they’ll be accessed from other
classes that we’ll see shortly. But before that, let's look at the three kinds of components: button,
text field, and text area.

A button is a grey rectangle with a label. When a buttonrésted, the @nstructor is given a
string that is printed in the middle of the button. For example, this declaration creates a button called
sizeButton, and the label on the button is the strisg2e ()”:

Button sizeButton = new Button(“size()”);

The bag applet has three buttosiszeButton, addButton, andcountOccurrencesButton.

A text field is a white rectangle that can display one line of text. A text field is set up so
that the program’s user can click on the field and type information, and the applet can then read
that information. Our applet has two text fields, one next toathkebutton and one next to the
countOccurrences button. TheTextField class has a constructor with one argument—an integer
that specifies approximately how many characters can fit in the text field. For example, one of our
text fields is declared as follows:

TextField elementText = new TextField(10);

The elementText text field can hold about 10 characters. The user can actually type beyond
10 charactersbut only 10 characters of a long string will be displayed. We plan to display

elementText right beside thadd button, like this:
g add() ||

Appendix | / from Data Structures & Other Objects Using Jaka

To test theadd method, the user will type a number in the text field and click oadédutton.
A text areais like a text field with more than one line. Its constructor has two arguments that
specify the number of rows and columns of text to display. Our bag applet has one text area:

TextArea feedback = new TextArea(7, 60);

This large text area appears at the bottom of the applet. The intention is to use the text area to dis-
play messages to the user.

The declarations we have seen created the three kinds of comp@nents:, TextField, and
TextArea. All three classes are part of theva.awt package that is imported by our applet. When
we declare a button (or other component) amgte itwith the constructor, it does not immediately
appear in the GUI. How do the objects get placed in the GUI? Also, how does the applet know what
to do when the user clicks on a button or takes some other action? The answers to these two questions
lie in a special applet method callédi t, which we’ll discuss next.

4. Theinit method. A Java application program has a special static method cadled but a
Java applet does not hawein. Instead, an applet has a special nonstatic method ¢aiedWhen
an applet runs, the runtime system creates an object of the applet class and acfivate$or that
object. There are several other applet methods that the runtime system also activates at various times,
but an interactive test program needs omyt.
Ourinit method carries out four kinds of actions:

A. The add method. We can add one of the interactive components to the GUI. This is done
with an applet method callestid. The method has one argument, which is the component
being added to the GUI. For example, one of our buttosiszisButton, SO we can write the
statement:

add(sizeButton);

As componentare added, the GUI fills up from left tayht. If there is no room for a compo-

nent on the current line, then the GUI moves down and starts a new row of components. Later
you can éarn more sdpsticated ways of laying out the components of a GUI, but the simple
left-to-right method used by an applet is a good starting point.

B. Displaying messagesWe can display messages in the GUI. Each message is a fixed
string that provides some information to the user. Each of these messagesbisl a
object (from the packaggava.awt). To create and display a message, we actixdde
with a newly ceatedLabel as the argument. For example:

add(new Label("This test program has created a bag"));

The Label constructor has one argument, which is the string that you want to display. The
add method will put the message in the next available spot of the GUI.

C. New lines and horizontal lineslf our applet class has other methods (besidés), then
we can activate these other methods. For example, we plan to have two other methods in
the IntArrayBag class:
void addNewLine();
void addHorizontalLine(Color c);

TheaddNewLine method forces the GUI to start a new line, even when there’s room for more
components on the current line. The second methtitiorizontallLine, draws a horizon-

6 Appendix | / from Data Structures & Other Objects Using Java

tal line in the specified color. We'll have to define these two methods as part of
BagApplet.Java, but they won't be difficult. (The data tyg®1or is part ofjava.Tlang.
ItincludesColor.blue and 12 other colors, plus the ability to define your own colors.)

D. Activate methods of the componentsThe buttons and other components have methods
that can be activated. For example, one of the methodg@ftarea is calledappend.
The method has one argument, which is a string, and this string is appended to the end of
what's already in the text field. One of the statements iniatit method will activate
append:
feedback.append(“I am ready for your first action.\n”);

This causes the message am ready for your first action.” to be written in the
feedback text field (with a newline charactgn at the end of the message).

The most important method for buttons involves a new kind of object called an action lis-
tener. An action listener is an object that an applet programmer creates to describe the action
that should be taken whewrtain evats occur. Our bag applet will have delientkind of
action listener for each of the three buttons:

Kind of Action Listener Purpose

SizelListener Describes the actions to be taken when
sizeButton is clicked.

AddListener Describes the actions to be taken when
addButton is clicked.

CountOccurrencesListener Describes the actions to be taken when
countOccurrencesButton is clicked.

Each kind of action listener is actually a new class that we’ll define in a moment. But the only
thing you need to know for thimit method is how to connect an action listener Boteton.

The solution is to activate a method calleidActionListener for eachButton. For exam-

ple, to connectizeButton to its action listener, we place this statement inithie method:

sizeButton.addActionListener(new SizelListener());

Notice thataddActionListener is a method of thButton class, and its one argument is a new
SizeListener object. Of course, we still need to implementsfieeListener class, as well as the
other two action listener classes. But first let's summarize all the pieces that are pariroftthe
method for theBagApplet. Within init, we expect to activate these methodsaimycout our work:

« add—An Applet method to add the buttons and other components to the display
« addNewLine andaddHorizontallLine—Two methods that we will write for thEagApplet

« feedback.append—A method offeedback (aTextArea object) to place the message “l am
ready for your first action” irfeedback

Appendix | / from Data Structures & Other Objects Using Java

« addActionListener—A method that will be called once for each of the three buttons

The completeinit implementation is shown in Figure 1.2. We’'ve used just one method that we
haven't yet mentioned. That one methadtEditable) is summarized in Figure 1.3 on page 9,
along with the other applet-oriented methods that we have used or plan to use.

5. Implementations of the action listeners. The next step of the applet implementation is to
design and implement three action listener classes—one for each of our three buttons. The purpose
of an action listener is to describe the actions thatamgedout when a button is pushed.

Here’s the Java syntax for defining an action listener class; the blank line is filled in with your
choice of a name for the action listener class.

class implements ActionListener

void actionPerformed(ActionEvent event)

{

}
}

The phrase fmplements ActionListener” informs the Java compiler that the class will have a
certain method that is specified in thetionListener interface that is part gfava.awt.*. The
method, callechictionPerformed, is shown with “...” to indicate its body. TheetionPerformed

method will be executed when an action occurs in the action listener’s component, such as clicking
a button. For exampleghe is the complete daftion of the action listener that handles the clicking

of the 'sizery | button of our test applet:

class SizelListener implements ActionListener
void actionPerformed(ActionEvent event)

feedback.append("The bag has size " + b.size() + ".\n");

}
}

This declares a class callgtlzeListener, which includes its owactionPerformed method. For

most classes, the class definition would go in a separate file Salledistener.java. But a sep-

arate file is undesirable here becauseatte onPerformed method needs access to two instance
variables: the bap and the text areéeedback. The necessary access can be provided by placing
the entireSizeListener definition within theBagApplet. This is an example of a@nner class

where the definition of one class is placed inside of another. An inner class has two key properties:

e The larger class that encloses an inner class may use the inner class, but the inner class may
not be used elsewhere.

« The inner class may access non-private instance variables and methods of the larger class.
Some Java implementations also permit an inner class to access private instance variables of
the larger class. But other implementations forbid private access from an inner class. (Java
implementations that are built into web browsare particularly apt to foid the private
access.)

8 Appendix | / from Data Structures & Other Objects Using Java

FIGURE 1.2 Implementation of the BagApplet's init Method

Implementation

public void init()
{
// Some messages for the top of the applet:
add(new Label("This test program has created a bag."));
add(new Label("Press buttons to activate the bag's methods."));
addHorizontalLine(Color.blue);

// The Button for testing the size method:
add(sizeButton);
addNewLine();

// The Button and TextField for testing the add method:
add(addButton) ;

add(elementText) ;

addNewLine();

// The Button and TextField for testing the countOccurrences method:
add (countOccurrencesButton);

add(targetText);

addNewLine();

// A TextArea at the bottom to write messages:
addHorizontalLine(Color.blue);

addNewLine();

feedback.setEditable(false);

feedback.append("I am ready for your first action.\n");
add(feedback) ;

// Tell the Buttons what they should do when they are clicked:
sizeButton.addActionListener(new SizelListener());
addButton.addActionListener(new AddListener());
countOccurrencesButton.addActionListener(new CountOccurrencesListener());

Appendix | / from Data Structures & Other Objects Using Jata

FIGURE 1.3 Guide to Building an Applet for Interactive Testing

Methods to Call from an Applet or from a Class That Extends an Applet

add(component) The component may be any of Java’s AWT
components, such as Button, TextArea, or
TextField. As components are added, the
applet fills up from left to right. If there is no
room for a component on the current line, then
the applet moves down and starts a new row of

components.
addNewLine() These are not actually Applet methods—you’ll
addHorizontallLine(Color c) need to define them if you want to use them

(see page 12).

Constructors for Three Useful Applet Components

Button(String label) Creates a button with a given label.

TextField(int size) Creates a white box where the user can type
information. The size is the number of charac-
ters.

TextArea(int rows, int columns) Creates a box with the given number of rows

and columns, often used for displaying infor-
mation to the user.

Six Useful Methods for a Component

b.setActionListener We use b.setActionListener for a Button b.
(ActionListener act) The ActionListener, act, describes the actions
to take when the Button b is pressed. See
page 7 for information on how to create an

ActionlListener.

t.append(String message) We use t.append for a TextArea t. The specified
message is added to the end of the TextArea.
t.getText() We use t.getText for a TextField t. The

method returns a copy of the String that the
user has typed in the field.

t.setEditable(boolean editable) The component t can be either a TextArea or
a TextField. The boolean parameter tells
whether you want the user to be able to type
text into the component.

t.requestFocus() We use these methods with a TextField. The

t.selectAl1() requestFocus method causes the mouse to go
to the field, and selectAl1 causes all text to be
highlighted.

c.setSize(int width, int height) This method may be used with any component

c. The component’s width and height are set to
the given values in pixels.

10 Appendix I/ from Data Structures & Other Objects Using Java

So, by makingSizeListener an inner class, thactionPerformed method can activate
feedback.append to print a message in tifeedback component of the applet. The message itself
includes an activation ob.size(), so an entire message is something likehé bag has size 42.”

The actionPerformed Method

The SizelListener class is an inner class, declared within
BagApplet. Therefore, its actionPerformed method has
access to the instance variables of the BagApplet.

By the way, theactionPerformed method has a parameter calledent. For more complex
actions, theavent can provide more information about exactly which kind of action érigd the
actionPerformed method.

Once an action listener is created, it must be regidtvith its particular button. The registra-
tion is made in theinit method. Our applet had these three statements to register the three
ActionListener objects:

sizeButton.addActionListener(new SizelListener());
addButton.addActionListener(new AddListener());
countOccurrencesButton.addActionListener

(new CountOccurrencesListener());

For example, the first of these statememeates a newizelistener and registers it with the but-
ton sizeButton.

Let's look at the second action listener class for our apfdeit:istener. This action listener
handles the actions afidButton, which is shown ére dong with theTextField that’s right beside

it in the applet:
add() | |

What actions should occur when the user clicks dddButton? The text is read from the
TextField. This text is &tring, such as “42”, but it can be converted to its value as an integer by
using the Java methathteger.parseInt. The methodinteger.parseInt has one argument (a
String that contains an integer value), and the return value isnthealue of theString. Once

we know the value of the integer provided by the user, we can add it to theabdgrint an appro-
priate message. Here’s one implementation of these steps:

Appendix | / from Data Structures & Other Objects Using Jal4d

class AddListener implements ActionListener

{
void actionPerformed(ActionEvent event)
{
String userInput = elementText.getText();
int element = Integer.parselnt(userInput);
b.add(element) ;
feedback.append(element + " has been added to the bag.\n");
}
}

The actionPerformed method defined here uses three of the applet's instance variables:
(1) eTementText, which is theTextField where the user typed a number; (2) the lhaghere the

new element is added; and (3) trextArea feedback, where a message is printed providing feed-
back to the user.

The method works fine, though a problem arises if the user forgets to type a number in the
TextField before clicking the button. In this caseNanberFormatException will occur when
Integer.parselnt tries to convert the user’s string to an integer.

The best solution to this problem is to “catch” the exception when it occurs rather than allowing
the exception to stop the applet. The syntax for catchiuglae rFormatException looks like this:

try
{
. . .code that might throw a NumberFormatException. . .
}
catch (NumberFormatException e)
{
. ..code to execute if the NumberFormatException happens. . .
}

The wordstry andcatch are Java keywords for handling exceptions. The full powerpfand
catch are described in Appendix C. For our purposes, we’'ll follow the giegeattern to write a
better version okddListener, show as part of Figure 1.4 on page 14. In that implementation,
berFormatException might occur, in which case the code in dwxch-block is executed. This
code prints a message in the feedback area of the applet and then activates two megheds for
mentText (which is theTextField where the user was supposed to type a mujnb

elementText.requestFocus();
elementText.selectAl1();

The requestFocus method causes the mouse cursor to jump into TinecField, and the
selectA11l method causes any text in the field to be highlighted. So now, if the user forgets to
type a number, the applet will print a niegor message andgwide a second chance.

Our applet needs one more action listener forthmtOccurrences button. That implementa-
tion is part of Figure 1.4 on page 14.

12 Appendix | / from Data Structures & Other Objects Using Java

6. Implementations of other methods. Our applet has two other methods that we’ve mentioned:
(1) addHorizontalLine, which draws a horizontal line in a specified color; anda(@NewL1ne,
which causes a new line to start in the GUI, even when there’s room for more components on the
current line.

OuraddHorizontallLine doesn't really draw a line. Instead, it adds a component called/as
to the applet. ACanvas is another applet component, likeBatton, primarily used for drawing
graphical images. The size of ttenvas can be set ipixels, which are the individual dots on a com-
puter screen. Today’s typical screens have ab@Qtpixels per inch, so @nvas that is only one
pixel high looks like a horizontal line. Our implementation is also part of Figure 1.4. Notice that in
the implementation, theéanvas is 10,000 pixels wide, which is wide enough to span even the largest
applet—at least on today’s computer screens.

Our last methodaddNewL1ine, works by callingaddHorizontalLine with the color set to the
background color of the applet. Irfedt, we are dnaing a horizontal line, but it is invisible because
it's the same color as the applet’s background.

The implementation oiddNewLine is given in Figure 1.4 as part of the complete applet. Look
through the implementation with an eye toward how it can be expanded to test all of the bag’s meth-
ods or to test a different class, such athé1eArraySeq class.

How to Compile and Run an Applet

An applet can be compiled just like any other Java program. For example, using the Java Develop-
ment Kit, we can compilBagApplet.java with the command line:

javac BagApplet.java

You may have some other way of compiling Java programs in your development environment, but
the result will be the same. The act of compiling produces thedgé&pplet.class. The compila-
tion will probably produce three other files with names sudbagspplet$SizeListener.class.
These are the compiled versions of the inner classes.

Applets were actually created to run as part of a paggdhatiew over the Internet with a web
browser. These pages are calteohl pages which stands for “hypertext markup language.” So, to
run theBagApplet, we need a small html file. The file, calledgApplet.htm1, should be created
by you in the same directory BsgApplet.class, and it should contain the two lines of html code
shown here:

<applet code="BagApplet.class" width=480 height=340>
</applet>

Appendix |/ 13

The first line, containingapplet. . .>, tells the web browser that you are going to start an applet.
Usually, you will have at least three pieces of information about the applet:

code = "BagApplet.class” Tells the browser where to
find the compiled class.

width = 480 Sets the applet’s size in pix-

height = 340 els. Today’s typical screens

have about 100 pixels per
inch, so a size of 480 x 340
is about 4.8 inches by 3.4
inches.

Many Java development environments ha¥eadure to automaticallgreate a small html file such
as this.

Once the html file is in place, you can run the applet in one of two ways. One approach is to run
anappletviewer, which is a tool that reads an html file and runs any applets that it finds. The Java
Development Kit has an appletviewer that is executed from the command line. For example, to run
the JDK appletviewer, you change to the directory that congzipspplet.html and type the
command:

appletviewer BagApplet.html

This command runs the applet, resulting in the display shown in Figure 1.1 on page 791.

The applet can also be displayed by putting it in a location that's available to your web browser.
My latest information about this approach is availablé@tp: //www.cs.colorado.edu/~main/
java.html.

Beyond the init Method

Our test applet needed to define only thét method. More complex applets can also be created,
involving graphical images plus interaction. Graphical applets will generally provide other methods
calledstart, paint, update, stop, anddestroy. A good resorce isGraphic Java, Mastering the
AWTDby David M. Geary.

14 Appendix 1/

FIGURE 1.4 Complete Implementation of the BagApplet

Java Applet Implementation

// File: BagApplet. java

// This applet is a small example to illustrate how to write an interactive applet that
// tests the methods of another class. This first version tests three of the IntArrayBag
// methods.

import edu.colorado.collections.IntArrayBag;

import java.applet.Applet;

import java.awt.?*, // Imports Button, Canvas, TextArea, TextField
import java.awt.event.*; // Imports ActionEvent, ActionlListener

public class BagApplet extends Applet

{
// An IntArrayBag for this applet to manipulate:
IntArrayBag b = new IntArrayBag();

// These are the interactive components that will appear in the applet.

// We declare one Button for each IntArrayBag method that we want to be able to
// test. If the method has an argument, then there is also a TextField

// where the user can enter the value of the argument,

// At the bottom, there is a TextArea to write messages.

Button sizeButton = new Button("size()");

Button addButton = new Button("add()");

TextField elementText = new TextField(10);

Button countOccurrencesButton = new Button("countOccurrences()");
TextField targetText = new TextField(10);

TextArea feedback = new TextArea(7,60);

(confinued)

Appendix |/ 15

(FIGURE 1.4 continued)

public void init()

| See the implementation in Figure I.2 on page 8.

}
class SizelListener implements ActionListener
{
public void actionPerformed(ActionEvent event)
{
feedback.append("The bag has size " + b.size() + ".\n");
}
}
class AddListener implements ActionListener
{
public void actionPerformed(ActionEvent event)
{
try
{
String userInput = elementText.getText();
int element = Integer.parselnt(userInput);
b.add(element);
feedback.append(element + " has been added to the bag.\n");
}
catch (NumberFormatException e)
{
feedback.append("Type an integer before clicking button.\n”);
elementText.requestFocus();
elementText.selectAl1();
}
}
}

(confinued)

16 Appendix 1/

(FIGURE 1.4 continued)

class CountOccurrencesListener implements ActionListener

{
public void actionPerformed(ActionEvent event)
{
try
{
String userInput = targetText.getText();
int target = Integer.parseInt(userInput);
feedback.append(target + " occurs ");
feedback.append(b.countOccurrences(target) + “times.\n”);
}
catch (NumberFormatException e)
{
feedback.append("Type a target before clicking button.\n");
targetText.requestFocus();
targetText.selectAl1();
}
}
}
private void addHorizontalLine(Color c)
{
// Add a Canvas 10,000 pixels wide but only 1 pixel high, which acts as
// a horizontal line to separate one group of components from the next.
Canvas 1line = new Canvas();
line.setSize(10000,1);
Tine.setBackground(c);
add(1ine);
}
private void addNewLine()
{
// Add a horizontal line in the background color. The line itself is
// invisible, but it serves to force the next component onto a new line.
addHorizontalLine(getBackground());
}

