The Dynamics and Control of Internet Attacks

James G. Garnett
Liz Bradley

University of Colorado
Department of Computer Science

(JGG now at Secure64)
Internet fundamentals, part I

• Design assumes that users are good citizens and that hosts don’t move around
• No screening, address verification, …
• Source of many current woes
“Malware”

- popups
- spam
- worms, viruses
- botnets
- spoofing
- sniffers
- direct attacks
- denial-of-service (DoS) attacks
- …
Solutions

- popups: good browser design & hygiene
- spam: spam filters
- worms, viruses: anti-virus software
- botnets: anti-virus software
- spoofing: authentication
- sniffers: cryptography, anti-virus software
- direct attacks: firewalls
- denial-of-service (DoS) attacks: this talk
Internet fundamentals, part II:

- Design assumes that data can get lost
- So *retransmission* is built into its protocols
- Which means that it’s OK to drop resource requests

- The trick is to drop as few of them as possible to keep the resource unclogged.
Internet fundamentals, part III:

- The “black hats” observe the defenses and adapt
- Rapid co-evolution
- So any kind of static response won’t work

- Have to respond adaptively…
• Build an adaptive stochastic model of resource usage

• Use a nonlinear model-reference PID controller to screen resource requests
What computer systems typically do to handle overload:

• Set hard limits (e.g., drop-tail queue mgmt)
• Control average demand
• Use ad hoc linear proportional closed-loop controllers (at best)
The model: Birth/Death Markov chain

- Well known, widely used, and broadly applicable
- State ranges from 0 to n
- Edges denote possible state transitions
- Edges are annotated with transition probabilities
Stationary distributions of the BD chain:

Key point: can calculate the distribution shape from p and q
What if you wanted a different distribution?

Key point: can calculate what p and q would give rise to this shape

Control strategy:
• Calculate desired p, q
• Estimate actual p, q
• Gatekeep on the difference
Controller architecture:

Input Filter \(p_{in} \) → Admission Controller \(p_d \) → Desired Request Calculator \(R(\beta) \) → PID Controller → Nonlinear Transform → Resource Manager

Reference Distribution

Empirical Distribution

1.00 \(- \frac{p_d}{p_{in}} \)
System under control

1.00 - \(p_d/p_{in} \)

Input Filter \(p_{in} \) → Admission Controller \(p_d \) → Desired Request Calculator

Service Filter \(q \)

Resource Requests

Empirical Distribution \(\beta \)

Reference Distribution \(\beta \)

Table \(\beta - 1 \)

Ratio

Serviced Resource Requests

PID Controller

Nonlinear Transform

Resource Manager

\(R(\beta) \)

1.00 - \(p_d/p_{in} \)

\(n \)

\(n-1 \)
Reference distribution: $Q(i)$

1. Resource Requests
2. $1.00 - \frac{p_d}{p_{in}}$
3. Π
4. Input Filter p_{in}
5. Admission Controller p_d
6. Desired Request Calculator
7. Empirical Distribution
8. Reference Distribution
9. Service Filter q
10. $\beta - 1$
11. Ratio
12. Table
13. PID Controller
14. Nonlinear Transform
15. Σ
16. Serviced Resource Requests
17. Resource Manager

β

n
Q(i): The control goal specification
Reference distribution: $Q(i)$
Calculate transition ratios: \(Q(i+1)/Q(i) \)
Estimate transition probabilities:

Incoming Resource Requests

1.00 – \(p_d/p_{in} \)

\(\Pi \)

Input Filter

\(p_{in} \)

Admission Controller

\(p_d \)

Desired Request Calculator

Empirical Distribution

Reference Distribution

\(R(\beta) \)

\(\beta-1 \)

Ratio Table

\(\beta \)

\(n \)

Serviced Resource Requests

Resource Manager

Service Filter

\(q \)

PID Controller

Nonlinear Transform

\(\Sigma \)

\(\varepsilon \)
Calculate desired p_d and drop resource requests accordingly:

$\Pi \cdot 1.00 - \frac{p_d}{p_{in}} \rightarrow \text{Desired Request Calculator}$

Resource Requests

$\text{Input Filter}\rightarrow p_{in} \rightarrow \text{Admission Controller}\rightarrow p_d \rightarrow \text{Desired Request Calculator}$

$q \rightarrow \text{Service Filter}\rightarrow \beta-1 \rightarrow \text{Ratio Table}\rightarrow \beta \rightarrow \text{Empirical Distribution}$

$\text{Reference Distribution} \rightarrow \text{PID Controller} \rightarrow \text{Nonlinear Transform} \rightarrow \Sigma \rightarrow \varepsilon \rightarrow \text{Serviced Resource Requests}$
Model-reference feedback control loop:

\[\Pi \]

1.00 – \(\frac{p_d}{p_{in}} \)

Resource Requests

Input Filter

\(p_{in} \)

Admission Controller

\(p_d \)

Desired Request Calculator

Serviced Resource Requests

Service Filter

q

Reference Distribution

Ratio Table

\(\beta \)

\(\beta - 1 \)

\(R(\beta) \)

Empirical Distribution

\(\beta \)

\(n \)

PID Controller

Nonlinear Transform

\(\varepsilon \)
What if $R(\beta-1)$ is incorrect?
That second feedback loop adjusts it:

Resource Requests $\rightarrow \Pi \rightarrow 1.00 - \frac{p_d}{p_{in}} \rightarrow$ Admission Controller $\rightarrow p_d \rightarrow$ Desired Request Calculator \rightarrow Empirical Distribution \rightarrow Resource Manager

Input Filter $\rightarrow p_{in} \rightarrow$ Admission Controller $\rightarrow p_d$

Service Filter $\rightarrow q \rightarrow$ Reference Distribution \rightarrow Ratio Table $\rightarrow \beta - 1$ \rightarrow Empirical Distribution \rightarrow N (beta) \rightarrow PID Controller \rightarrow Nonlinear Transform $\rightarrow \epsilon$ Serviced Resource Requests
Nonlinear transform accelerates convergence:

1.00 \(-\frac{p_d}{p_{in}}\)

Input Filter \(p_{in}\) Admission Controller \(p_d\) Desired Request Calculator

Service Filter \(q\) Reference Distribution \(\beta\) Table \(\beta - 1\) Ratio

PID Controller

Empirical Distribution \(\beta\) (n)

Resource Manager

Serviced Resource Requests
Denial of Service (DoS) example:

- identical unix machines
- 10 Mb/sec networks
- NB: single s/w manager in victim handles all incoming traffic
Without control:

96.9% packet loss 97.0% packet loss
With control:

93.4% loss 0.0% loss
Results:

- It works.
- It converges fairly quickly (1-3 sec in our tests).
- It’s lightweight:
 - Small amount of code (~100 lines of C)
 - Low computational and memory overhead
 - $|Q|$ subtracts are primary computational load; runs in μsec
 - 128 bytes per controller for state information
 - Advantages of RED, without RED’s disadvantages (this is the IETF’s standard for congestion control)
Half a dozen equations, really…

Resource Requests → \(\Pi \) → 1.00 - \(p_{d}/p_{in} \) → Resource Manager

Resource Requests → Input Filter → \(p_{in} \) → Admission Controller → \(p_{d} \) → Desired Request Calculator

Service Filter → \(q \) → Reference Distribution → Table → Ratio → \(\beta \) → Empirical Distribution

Table → \(\beta - 1 \) → \(R(\beta) \) → PID Controller → Nonlinear Transform → \(\Sigma \) → Serviced Resource Requests

Reference Distribution → \(\beta \) → Table → \(\beta - 1 \) → \(n \) → Resource Manager

\(p _{in} \) → PID Controller
How you implement this:

Resource

existing manager s/w

incoming requests

slots
Conclusions:

• It works.
• It converges fairly quickly (1-3 sec in our tests).
• It’s lightweight:
 – Small amount of code (~100 lines of C)
 – Low computational and memory overhead
 • |Q| subtracts are primary computational load; runs in µsec
 • 128 bytes per controller for state information
 – Advantages of RED, without RED’s disadvantages
• It’s broadly applicable (any system that can be modeled by a G/G/1 queue)
• And it has been already been deployed in practice…
Commercialization...

- Secure64 Wildfire/CE² (12/1/2004)
- And then shot down.

JGG’s thesis proposal was circulated to other students by a committee member, which constituted “prior disclosure” and kills a patent. (You have one year from the first disclosure to file it.)

Moral: be careful with your ideas if you’re thinking of patenting them — keep dated, initialed notebooks, don’t share ideas until you’re ready to patent, etc.

www.cs.colorado.edu/~lizb/papers/dos.html
On the stove:

Nonlinear dynamics

- Modeling & control of internet attacks
- Nonlinear time-series analysis of computer systems
- MEMS-based flow control in jets
- Recurrence plots
- Computational topology & topology-based filters

Artificial intelligence

- Nonlinear system identification
- Radioisotope dating
- Movement patterns
- Clear-air turbulence forecasting

www.cs.colorado.edu/~lizb
Collaborators

• *graduate students:*

 Jenny Abernethy, Matt Easley, James Garnett, John Giardino, Kenny Gruchalla, Joe Iwanski, Zhichun Ma, Ricardo Mantilla, Todd Mytkowicz, Laura Rassbach, Vanessa Robins, Natalie Ross, Reinhard Stolle

• *postdocs:*

 Tom Peacock (now at MIT)

• *undergrads:*

 Ellenor Brown, Nate Farrell, Jesse Negretti, John Nord, Alex Renger, Roscoe Schenk, Stephen Schroeder, Evan Sheehan, Josh Stuart (now at UCSC)

• *faculty:*

 — Jessica Hodgins, Computer Science, CMU

 — David Capps, Theater & Dance, Hunter College

 — Jean Hertzberg & YC Lee, Mechanical Engineering, CU

 — Amer Diwan, Computer Science, CU
Related work in computer systems lit:

- Software Control
 - Floyd et al. (RED [2001])
 - Hellerstein et al. (servers [1999 – 2003])
 - Stankovic (realtime scheduling [1999])
- Markov Chain Monte Carlo
 - Sinclair & Jerrum (Conductance [1989])
 - Morris & Peres (Evolving Sets [2003])
- DoS Mitigation
 - Mirkovic (D-WARD [2002])

None uses adaptive nonlinear closed-loop control, though Karmanolis (HotOS 2005) moves in that direction
What’s different here, from the standpoint of that community:

Control (shape) the distribution of resource states, rather than just the average of that distribution or the instantaneous state.

Do this with adaptive nonlinear PID control
- adaptive: using Markov-chain model and parameter estimation
- nonlinear: to overcome quasistability effects and improve performance
- PID: to allow wider range of modern controls techniques