This is exactly like section 4.3.5 in the textbook, except that

\[
\begin{align*}
\vec{u}_1 &= \vec{v}_3 \\
\vec{u}_2 &= 2\vec{v}_1 + \vec{v}_3 \\
\vec{u}_3 &= \vec{v}_3 - \vec{v}_2
\end{align*}
\]

so the matrix \(M \) and its transpose \(M^T \) are:

\[
M = \begin{bmatrix}
0 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \quad M^T = \begin{bmatrix}
0 & 2 & 0 & 0 \\
0 & 0 & -1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\] (1)

The confusing part here is figuring out which to use: the matrix, its transpose, or its inverse-transpose. The coordinates in the old basis are \(a = [1, 2, 3, 0]^T \). What we want is the coordinates in the new basis, \(b \). The equation for going from \(b \) to \(a \) is

\[
a = M^T b
\]

Going the other way, we need to use

\[
b = (M^T)^{-1} a
\]

In this case, we have \(a \) and we want \(b \), so we need to use the second version of the equation, which means we need to compute the inverse of \(M^T \):

\[
(M^T)^{-1} = \begin{bmatrix}
-1/2 & 1 & 1 & 0 \\
1/2 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\] (2)

(Consult your linear algebra textbook if you don’t remember how to find the inverse of a matrix. I did this one above by augmenting it with the identity matrix and doing elementary row operations to reduce the left-hand side to the identity – which took me two times to get right.)

Plugging all of this in:

\[
b = \begin{bmatrix}
-1/2 & 1 & 1 & 0 \\
1/2 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 \\
2 \\
3 \\
1
\end{bmatrix} = \begin{bmatrix}
-1/2 + 2 + 3 \\
1/2 \\
-2 \\
1
\end{bmatrix}
\] (3)