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The variational equation is the mathematics that goes with pictures like this:

This equation describes how pertubations (or state-space volumes) evolve along a tra-
jectory. This kind of information is essential to any kind of in-depth understanding of the
landscapes of dynamical systems: stability, Liouville’s theorem and dissipation, un/stable
manifolds, λs, etc.

Given some state-space point ~x0 and some dynamical system ~x′ = ~F (~x), it’s easy to
generate the state-space trajectory φ(~x0) that emanates from that point; just use any old
ODE solver like RK4. What we’d like to know, now, is how that would change if someone
wiggled ~x. Consider the Rössler system

~F (~x) =







ẋ

ẏ

ż





 =







fx(x, y, z)
fy(x, y, z)
fz(x, y, z)





 =







−(y + z)
x+ 0.398y
2 + z(x− 4)





 (1)

with ~x0 = [0, 1, 2]T . The state-space trajectory φ(~x0) from that point is shown below:
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Imagine, now, that we add a small perturbation to ~x0, in the x-direction. That pertur-
bation will evolve as the system moves along the trajectory:

The same is also true of perturbations in the other two directions:

The change in length and orientation of each arrow, as well as the resultant to which
all three add up in the end (which is equal to the volume into which the original box has
grown), depends on the differential slope of the ODE “landscape” around the trajectory:

• If a particular perturbation points out over a sharp dropoff, that arrow will lengthen

• If it points over a gentle rise, that arrow will shrink

• If it points out diagonally from a saddle point (not in the direction of either the stable
or the unstable direction), it will be pulled sideways: it will grow along the unstable
direction and shrink along the stable one

• If it points out over a region of constant slope, it will not change length.

The formal way to describe these differential slopes to which the variations react is with
partial derivatives:

∂fx

∂y
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for instance, is how much the x-slope (fx) changes if you wiggle y. In n dimensions, there
are n variables and n slopes, so you need n2 of these different partials to describe everything.
One way to write these down is in an n× n matrix called the Jacobian:

Dx
~F =









∂fx
∂x

∂fx
∂y

∂fx
∂z

∂fy
∂x

∂fy
∂y

∂fy
∂z

∂fz
∂x

∂fz
∂y

∂fz
∂z









For the Rössler system, the Jacobian is







0 −1 −1
1 0.398 0
z 0 x− 4







The last thing we need to set up the variational equation is a way to describe the
variations. The notation is a little complicated; δxy is the component of the x variation
that came from the previous y variation, and so on. Again, there are nine of these:

[δ] =







δxx δyx δzx
δxy δyy δzy
δxz δyz δzz







The column sums of this matrix are the lengths of the x, y, and z coordinates (respectively)
of the evolved variation. The rows are the coordinates of the vectors into which the original
x, y, and z components of the variation have evolved.

The variational equation is [δ̇] = Dx
~F [δ], or







δ̇xx δ̇yx δ̇zx
δ̇xy δ̇yy δ̇zy
δ̇xz δ̇yz δ̇zz





 =









∂fx
∂x

∂fx
∂y

∂fx
∂z

∂fy
∂x

∂fy
∂y

∂fy
∂z

∂fz
∂x

∂fz
∂y

∂fz
∂z















δxx δyx δzx
δxy δyy δzy
δxz δyz δzz







For the Rössler system, this looks like:







δ̇xx δ̇yx δ̇zx
δ̇xy δ̇yy δ̇zy
δ̇xz δ̇yz δ̇zz





 =







0 −1 −1
1 0.398 0
z 0 x− 4













δxx δyx δzx
δxy δyy δzy
δxz δyz δzz







To figure out what happens to the variations, you have to solve the variational equation
and the system equation simultaneously (because the variations react to the differential
slopes at each point along the trajectory). To do this, you work with a new n + n2 length
augmented state vector:

(x y z δxx δxy δxz δyx δyy δyz δzx δzy δzz)
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and its derivative:
(ẋ ẏ ż δ̇xx δ̇xy δ̇xz δ̇yx δ̇yy δ̇yz δ̇zx δ̇zy δ̇zz)

...and you stack the system equation ~x′ = ~F~x on top of the variational equation [δ̇] =

Dx
~F [δ]. The equations are:

ẋ = −(y + z)

ẏ = x+ 0.398y

ż = 2 + z(x− 4)

δ̇xx = −δxy − δxz

δ̇xy = δxx + 0.398δxy

δ̇xz = zδxx + (x− 4)δxz

δ̇yx = −δyy − δyz

δ̇yy = δyx + 0.398δyy

δ̇yz = zδyx + (x− 4)δyz

δ̇zx = −δzy − δzz

δ̇zy = δzx + 0.398δzy

δ̇zz = zδzx + (x− 4)δzz

If you wrote your RK4 for arbitrary length vectors and derivatives, you should have no
problem here; it’s just a 12D system instead of Rössler’s three.

For example, if you want to see how unit variations grow near the point [0, 1, 2]T , you’d
fire up your ODE solver starting at

[0 1 2 1 0 0 0 1 0 0 0 1]

and let it go. Say, for the purposes of this example, that after some number of time steps,
the new state of this augmented system were:

[13.087 23.455 24.204 0.79 0.95 0.89 0.61 1.23 0.79 − 0.14 − 0.48 0.66

To figure out the actual variations from this, you need to look at the appropriate rows or
columns. The total x variation at t = 5sec is δxx+δxy+δxz = 0.79+0.95+0.89; the original
x perturbation (at t = 0) has grown into the vector δxxx̂+δyxŷ+δzxẑ = 0.79x̂+0.61ŷ−0.14ẑ:

X+Y+Z

0.79X+0.61Y-0.14Z
^

^ ^ ^

^ ^
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If you’ve coded up that example and want to check it, by the way, here’s the real system
state after 100 timesteps at a stepsize of 0.05:

[2.6756 0.0456 1.6155 1.1329 -1.6884 0.2086 1.5200 -0.5250 1.6069 -0.1888 0.3604 0.02554]
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