
Mock Objects and the
Mockito Testing

Framework
Carl Veazey
CSCI 5828

Friday, March 23, 12

Introduction

• Mock objects are a powerful testing pattern
for verifying the behavior and interactions
of systems.

• This presentation aims to introduce mock
objects and related concepts such as Stubs
and Testing Doubles.

• We’ll also look in depth at the Mockito
framework, a modern mock testing
framework for Java.

Friday, March 23, 12

Test Doubles
• Mock objects are a type of object that

serves as a “test double”

• The use of test doubles is a testing pattern
identified at xunitpatterns.com.

• Doubles allow testing the System Under
Test (SUT) without having to test its
Depended-on Component (DOC).

• The double provides a fake implementation
of the DOC’s interface to the SUT.

Friday, March 23, 12

Test Doubles

• Test doubles enable manipulation of the
SUT through the fake DOC API, and allows
us to make assertions about state or
behavior in situations like:

• No extant implementation of the DOC

• The DOC’s implementation is slow, e.g. a
web service.

• Critical inputs and outputs are not
available through the SUT’s public API

Friday, March 23, 12

Test Doubles and Stubs

• Test stubs are types of test doubles that
provide inputs to the SUT.

• Test fixtures can be loaded and returned by
the stub through its implementation of the
DOC’s API.

• Allows assertions on SUT’s state to be
made based on contrived inputs from the
DOC.

Friday, March 23, 12

Mocks and Stubs
• A mock object often implements the same

behavior as a stub, i.e. it can interact with
the SUT through loading predetermined
fixtures.

• However, its main purpose is to verify the
SUT’s interaction with the DOC. The
programmer provides it with expectations
about how the SUT should collaborate
with it, and then verifies those
expectations.

Friday, March 23, 12

Mocks Verify Behavior

• Consider a system where the requirements
for the interaction between SUT and DOC
are described by the following sequence
diagram:

Friday, March 23, 12

State vs. Behavior
• Traditional unit tests test the state of the

SUT after the test has been exercised.

• In contrast, tests with mock objects verify
the way the SUT behaves with respect to
its collaborators.

• State-based testing presents its assertions
after the code has executed, while with
mocks the assertions are presented as
expectations before the SUT is exercised.

Friday, March 23, 12

State vs. Behavior

• A more traditional test often takes the
form of setup - act - assert. We assert a
certain state of the system based on known
inputs and actions.

• Mock-based testing often takes the form
expect - act - verify. This allows one to focus
solely on the behavior of and interactions
between the SUT and its DOCs.

Friday, March 23, 12

Mocks Verify Behavior
• A stub alone wouldn’t be sufficient to test

this interaction. The SUT has no change in
state that can be observed after exercising
the test.

• The mock then takes on the responsibility
of verifying the requirement has been met.

• As mentioned before, the programmer
provides the mock with a set of
expectations and then verifies those
expectations have been met.

Friday, March 23, 12

Expectations
• The following pseudocode illustrates

setting expectations and verifying them:

• The mocked DOC is told to expect both the
methods foo() and bar() to be called on it.
The test is exercised by calling
doSomething() on the SUT, and then the
mock’s expectations are verified.

Friday, March 23, 12

Applications for Mocks
• Anytime the SUT invokes side effects in any

of its DOC’s, this is a prime opportunity to
use a mock, e.g. logging systems

• Verifying messages were sent in a particular
order.

• Verifying certain messages were not sent.

• Verify certain arguments were passed
without interfering with the SUT’s public
API.

Friday, March 23, 12

Example Motivation

• Verifying interactions of your client side
with a web service.

• You don’t want to have you test code
actually hit the web service, as your tests
would be dependent on a slow external
service. To get around this, we can create a
mock of a web service.

Friday, March 23, 12

Mock Web Service
• Suppose we have an application that makes

requests to a web service to fulfill its
functionality.

• We’ve created a WebService object in our
application that forwards requests and
responses to and from the network.

• Additionally, we have WebServiceClient
objects that construct HTTP requests and
submit them to the WebService.

Friday, March 23, 12

Mock Web Service
• We’ll want to write tests for the structure

of the HTTP requests and the order in
which they are made.

• We can create a mock of the WebService
and verify that clients are asking it to
handle the expected requests.

• Consider a WebServiceClient tasked with
passing a user’s credentials to the server:

+submitHTTPRequest(method, url)
WebServiceWebServiceClient

login(username,password)
LoginClient

Friday, March 23, 12

Mock Web Service

• A test for such a case would look
something like this:

• Notice that we haven’t had to expose any
state of the WebServiceClient, or expose any
private methods constructing an HTTP
request. We’ve purely tested the interaction
between the client and the service.

Friday, March 23, 12

Limitations and
Criticisms

• Tests written with mock objects can
become coupled tightly with the
implementation of the system, making
refactoring difficult.

• Assertions about the order and number of
times methods are called and other details
that may be brittle

• Not a substitute for integration tests.

Friday, March 23, 12

Mock object
frameworks

• Mock object frameworks exist for many
OO languages and testing platforms.

• This presentation will take a look at
Mockito, a modern mocking framework for
Java.

Friday, March 23, 12

Mockito
• Mockito is a lightweight, modern mocking

framework. It is designed for cleanliness
and speed in testing.

• Mockito takes a different approach from
the test presented previously. Instead of the
expect - act - verify test pattern, Mockito
implicitly expects actions through the
verification step, cutting down on the code
you have to write.

• “There is only stubbing and verifications.”

Friday, March 23, 12

Expectations and
Verifications with Mockito
• Recall the contrived sequence diagram

from before, and the pseudocode to test
this interaction.

Friday, March 23, 12

Expectations and
Verifications with Mockito
• Here’s how the previous code would look

in Mockito:

• A Mockito mock remembers all of its
interactions so that they can be verified
selectively and after the fact. As interactions
become more complex, this reduces the
amount of test code significantly.

Friday, March 23, 12

Stubbing in Mockito (I)
• Stubs often important in the use of mocks

to provide context to the SUT in order to
provoke the correct interactions with the
DOC.

• In Mockito, all method calls must be
stubbed or they will return null or some
other appropriate empty value.

• Stubbed methods can be used to throw
exceptions, forward messages, or return
values.

Friday, March 23, 12

Stubbing In Mockito (II)
• Let’s look at an example of stubbing a Java

List. Obviously this is a contrived example
but it illustrates the ability to inject
arbitrary return values or force other code
to be executed.

Friday, March 23, 12

Stubbing in Mockito (III)

• Stub methods can also invoke blocks of
code instead of returning prefabricated
answers, using the thenAnswer() method.

• An example from Mockito documentation:

Friday, March 23, 12

Verifying Arguments
• Stubbing is of course secondary to any

mock object implementation. We are
interested in verifying the interaction
between the SUT and the DOC, so
Mockito gives us tools to verify that certain
methods with certain arguments were
called by the DOC.

• Mockito can verify that specific or generic
arguments were passed to the mock.

Friday, March 23, 12

Verifying Arguments (II)

• Verifying a specific argument:

• More generic arguments can also be
expected using the Matchers class, which
provides a rich variety of verification
functions.

Friday, March 23, 12

Verifying Arguments(III)

• We’re not limited to built in Java types; we
can create our own custom argument
matchers.

• From the Mockito documentation:

Friday, March 23, 12

Verifying Behavior

• Beyond just matching arguments, Mockito
can verify the number of times methods
were called on the mocked object and the
order methods were called.

• It can also verify that methods were never
called.

• The verify() method can take an optional
argument of an instance of a
VerificationMode implementation.

Friday, March 23, 12

Verification Modes
• Pass the return value of the times() method

to verify() in order to verify the number of
times a method was called:

Friday, March 23, 12

Verification Modes

• We don’t have to know a specific number,
we can use atLeastOnce(), atLeast(), and
atMost() as well.

• From the docs:

Friday, March 23, 12

Order Verification

• Similar to verification modes, the InOrder
class allows us to make assertions about
the order methods were called.

• In this case, verify() is called on the InOrder
object itself, with invocations of verify()
called in the expected order.

Friday, March 23, 12

More Verification
• We can make sure a method was never

called on a mock using the VerificationMode
returned by never().

• We can verify that there was no interaction
with a mock using the
verifyZeroInteractions() method, passing
the mock we are asserting as the argument.

• To verify there were no unexpected
interactions with the DOC, we can call the
verifyNoMoreInteractions() method.

Friday, March 23, 12

More Mockito

• Mockito offers more features than would
fit in this presentation, including advanced
stubbing APIs.

• Find out more with the Mockito
documentation at http://
docs.mockito.googlecode.com/hg/latest/
org/mockito/Mockito.html or at the project
homepage: http://code.google.com/p/
mockito/

Friday, March 23, 12

http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html
http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html
http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html
http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html
http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html
http://docs.mockito.googlecode.com/hg/latest/org/mockito/Mockito.html
http://code.google.com/p/mockito/
http://code.google.com/p/mockito/
http://code.google.com/p/mockito/
http://code.google.com/p/mockito/

Further Reading
• xunitpatterns.com provides information

about Mock Objects and other related
Testing Doubles.

• Martin Fowler explains the difference
between Mocks and Stubs in the article
“Mocks Aren’t Stubs”. http://
martinfowler.com/articles/
mocksArentStubs.html

• An older but still informative article from
IBM on testing with mocks in Java: http://
www.ibm.com/developerworks/java/library/
j-mocktest/index.html

Friday, March 23, 12

http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html
http://www.ibm.com/developerworks/java/library/j-mocktest/index.html
http://www.ibm.com/developerworks/java/library/j-mocktest/index.html
http://www.ibm.com/developerworks/java/library/j-mocktest/index.html
http://www.ibm.com/developerworks/java/library/j-mocktest/index.html
http://www.ibm.com/developerworks/java/library/j-mocktest/index.html
http://www.ibm.com/developerworks/java/library/j-mocktest/index.html

Conclusion

• We looked at Testing Doubles, Stubs, and
Mock Objects.

• Saw how testing with mocks verifies
behaviors and interactions, while traditional
testing verifies state.

• Dug into the Mockito framework.

• Any questions? Email me at
carl.veazey@gmail.com! Thanks!

Friday, March 23, 12

mailto:carl.veazey@gmail.com
mailto:carl.veazey@gmail.com

