
Concurrency Bugs in Real World Testing Debugging References

Testing and Debugging for Concurrent

Programs

Yi-Fan Tsai

yifan.tsai@colorado.edu

Concurrency Bugs in Real World Testing Debugging References

Outline

Concurrency Bugs in Real World
Deadlock Bugs
Non-Deadlock Bugs

Testing
Coverage Criteria
Systematic Testing

Debugging
Fault Localization
Reconstruction

References

Concurrency Bugs in Real World Testing Debugging References

Concurrency Programming is Chanllenging!

• Writing correct concurrent programs is notoriously
difficult.

• Addressing this challenge requires advances in multiple
directions, including bugs detection, program testing,
programming model design, etc.

• Designing effective techniques in all these directions will
significantly benefit from a deep understanding of real
world concurrency bug characteristics.

[LPSZ08]

Concurrency Bugs in Real World Testing Debugging References

Application Set and Bug Set

105 concurrency bugs are randomly selected from 4
representative server and client open-source applications.

Application Non-Deadlock Deadlock
MySQL 14 9
Apache 13 4
Mozilla 41 16

OpenOffice 6 2
Total 74 31

Concurrency Bugs in Real World Testing Debugging References

Deadlock Bugs I

• 97% of the deadlock bugs are guaranteed to manifest if
certain partial order between 2 threads is enforced.

• 22% are caused by one thread acquiring resource held by
itself.

• Single-thread based deadlock detection and testing
techniques can help eliminate these simple bugs.

• 97% involve 2 threads circularly waiting for at most 2
resources.

• Pairwise testing on the acquisition/release sequences to
two resources can expose most bugs.

• 97% can deterministically manifest, if certain orders
among at most 4 resource acquisition/relase operations
are enforced.

Concurrency Bugs in Real World Testing Debugging References

Deadlock Bugs II

• The most common fix strategy is to let one thread give
up acquiring one resource, such as a lock.

• This strategy is simple, but it may introduce other
non-deadlock bugs.

Concurrency Bugs in Real World Testing Debugging References

Non-Deadlock Bugs I

• Atomicity-Violation

• Programmers tend to assume a small code region will be
executed atomically.

• Example:
thread1: if (thd→proc info) fputs(thd→proc info, ...);
thread2: thd→proc info=NULL;
thread1: if (thd→proc info) fputs(thd→proc info, ...);

• Order-Violation

• Programmers commonly assume an order between two
operations from different threads.

• Example:
parent thread: mThread = PR CreateThread(...);
child thread: mState = mThread→State;
parent thread: mThread = PR CreateThread(...);

Concurrency Bugs in Real World Testing Debugging References

Non-Deadlock Bugs II

• This is a different concept from atomicity violation. The
example emphasizes that the assignment should happen
before the read access. Even if memory accesses are
proected by the same lock, their execution order still
may not be guranteed.

• Multiple-Variable Bugs

• Example: mOffset, mLength together mark the region of
useful characters stored in dynamic string mContent.
thread1: /* change the mContent */
thread2: putc(mContent[mOffset + mLength - 1]);
thread1: /* calculate and set mOffset and mLength */

Concurrency Bugs in Real World Testing Debugging References

Lessons from Non-Deadlock Bugs I

• 97% of non-deadlock bugs are covered by two patterns,
atomicity-violation and order-violation.

• 32% are order-violation bugs.

• A relatively not well-addressed topic.

• 96% are guranteed to manifest if certain partial order
between 2 threads is enforced.

• Testing can pairwise test program threads.

• 66% involve only one variable.

• Focusing on concurrent accesses to one variable is a
good simplifaction.

• 34% involve concurrent accesses to multiple variables.

• A relatively not well-addressed topic! [LPH+07]

Concurrency Bugs in Real World Testing Debugging References

Lessons from Non-Deadlock Bugs II

• 90% can deterministically manifest, if certain order
among no more than 4 memory accesses is enforced.

• Testing can focus on the partial order among every small
groups of accesses. This simplifies the interleaving
testing space from exponential to polynomial regarding
to the total number of accesses.

• Most of the exceptions come from those bugs that
involve more than 2 threads and/or more than 2
variables.

Concurrency Bugs in Real World Testing Debugging References

Testing

Concurrency Bugs in Real World Testing Debugging References

Testing
Requirements

• Fast response: Most bugs should be found very quickly.

• Reproducibility.

• Coverage: It should complete with precise guarantees.

Stategies

• Stress testing provides fast response during initial stages
of software development.

• Heuristic-based fuzzing uses heuristics to direct an
execution towards an interleaving that manifests a bug.
These techniques often provide fast response. [Sen08]

• Stateless model checking systematically enumerates all
schedules. It provides coverage guarantees and
reproducibility.

[CBM10]

Concurrency Bugs in Real World Testing Debugging References

Coverage Criteria

• A fundamental problem of concurrenct program bug
detection and testing is that the interleaving space is too
large.

• Real world testing resource can only check a small portion
of the interleaving spaces.

• In order to systematically explore the interleaving space
and effectively expose concurrent bugs, good coverage
criteria are desired.

[LJZ07]

Concurrency Bugs in Real World Testing Debugging References

Criterion All: All-Interleavings

• The interleaving space gets a “complete coverage” if all
feasible interleavings of shared accesses from all threads
are covered.

• Property Set: |ΓALL| =
M∏
i=1

(∑M
j=i Nj

Ni

)
• M is the number of threads
• Ni is the number of access events from thread i .

Concurrency Bugs in Real World Testing Debugging References

Criterion TPair: Thread-Pair-Interleavings

• The interleaving space gets a “complete coverage” if all
feasible interleavings of all shared memory accesses from
any pair of threads are covered.

• Fault Model: The model assumes that most concurrency
bugs are caused by the interaction between two threads,
instead of all threads.

• Property Set: |ΓTPair| =
∑

1≤i<j≤M

(
Ni + Nj

Ni

)
• M is the number of threads
• Ni is the number of access events from thread i .

Concurrency Bugs in Real World Testing Debugging References

Criterion SVar: Single-Variable-Interleavings

• The interleaving space gets a “complete coverage” if all
feasible interleavings of all shared accesses to any specific
variable from any pair of threads are covered.

• Fault Model: This model is based on the observation that
many concurrency bugs invole conflicting accesses to one
shared variable, instead of multiple variables.

• Property Set: |ΓSVar| =
∑

1≤i<j≤M

∑
v∈V

(
Ni ,v + Nj ,v

Ni ,v

)
.

• V is the set of shared variables.
• Ni ,v is the number of accesses from thread i to shared

variable v .

Concurrency Bugs in Real World Testing Debugging References

Criterion PI: Partial-Interleavings
• Criterion DefUse: Define-Use

• All possible define-use pairs are covered.
• Fault Model: A read access uses a variable defined by a

wrong writer.

• Property Set: |ΓDefUse| = N r +
∑

1≤i 6=j≤M

∑
v∈V

(N r
i ,v · Nw

j ,v)

• N r denotes the total number of read accesses.

• Criterion PInv: Pair-Interleavings
• For each consecutive access pair from any thread, all

feasible interleaving accesses to it have been covered.
• A consecutive access pair accesses the same shared

variable from one thread.

• Fault Model: Atomicity violations.

• Property Set: |ΓPInv| = PN +
∑

1≤i 6=j≤M

∑
v∈V

(PNi ,v · Nj ,v)

• PN: the number of all consecutive access pairs.

Concurrency Bugs in Real World Testing Debugging References

Criterion LR: Local-or-Remote

• Criterion LR-Def: Local-or-Remote-Define
• For each read-access r in the program, both of the

following cases have been covered - r reads a variable
defined by local thread (or the initial memory state) and
r reads a variable defined by a different thread.

• Property Set: |ΓLR−Def | = 2N r .

• Criterion LR-Inv: Local-or-Remote-interleaving
• For every consecutive access pair from any thread

accessing any shared variable, both of the follwing cases
have been covered - the pair has an unserializable
interleaving access and the pair does not have one.
• An unserializable interleaving is an interleaving that does

not have equivalent effects to a serial execution.
[LTQZ06]

• Property Set: |ΓLR−Inv | = 2PN.

Concurrency Bugs in Real World Testing Debugging References

Systematic Testing

• “Heisenbugs” occasionally surface in concurrent systems
that have otherwise been running reliably for months.
Slight changes to a program, such as adding debugging
statements, sometimes drastically reduce the likelihood of
erroneous interleavings, adding frustration to the
debugging process.

• CHESS takes complete control over the scheduling of
threads and asynchronous events, thereby capturing all
the interleaving nondeterminism in the program. 1

[MQB+08]

1CHESS is able to find assertion failures, deadlocks, livelocks, and
“sluggish I/O behavior”.

Concurrency Bugs in Real World Testing Debugging References

CHESS Architecture

• The scheduler is implemented by redirecting calls to
concurrency primitives, such as locks and thread-pools,
alternate implementations provided in a wrapper library.

• The wrappers provide enough hooks to CHESS to control
the thread scheduling. CHESS enables only one thread at
a time.

• CHESS repeatedly executes the same test driving each
iterations of the test through different schedule.

Concurrency Bugs in Real World Testing Debugging References

Preemption Bounding

• A real-world may preempt a thread at just about any
point in its execution.

• CHESS explores thread schedules giving priority to
schedules with fewer preemptions.

• In experience, very serious bugs are reproducible using just
two preemptions. Bounding the number of preemptions is
a very good strategy to tackle state-space explosion.

Concurrency Bugs in Real World Testing Debugging References

Prioritized Search

GAMBIT extends CHESS with prioritized search that
combines the speed benefits of heuristic-guided fuzzing with
the soundness, progress, and reproducibility guarantees of
stateless model checking. [CBM10]

• Techniques for state-space explosion
• Partial-order reduction
• Preemption bounding

• Priority function
• New happens-before executions
• Random search
• Tester guide
• Known patterns

Concurrency Bugs in Real World Testing Debugging References

Debugging

Concurrency Bugs in Real World Testing Debugging References

Fault Localization

• Fault-detection tools for concurrent programs find
data-access patterns among thread interleavings, but they
report benign patterns as well as actual faulty patterns.

• The fault-localization technique can pinpoint faulty
data-access patterns in multi-threaded concurrent
programs.

[PVH10]

Concurrency Bugs in Real World Testing Debugging References

Technique
• Online pattern identification

• The system records unserializable and conflicting
interleaving patterns, and subsequently associates them
with passing and failing runs.

• For example, pattern W1,100 − W2,200 − R1,105 represetns
an unserializable pattern (atomicity violation).
• Between the write and read accesses to a variable from

thread 1 at statement 100 and 105, thread 2 writes to
the same variable at statement 200.

• Pattern suspiciousness ranking
• Fault localization assumes that entities (patterns)

executed more often by failing executions than passing
executions are more suspect.

• suspiciousness(s) = %failed(s)
%failed(s)+%passed(s) .

• Prioritized ranking guides the developer toward the most
likely cause of a fault and mitigates false positives.

Concurrency Bugs in Real World Testing Debugging References

Reconstruction

• Many approaches to detect bugs report too little
information or too much information.
• A single communication event is not enough to

understand concurrency bugs.
• Replay makes programmers sift through an execution

trace to comprehend bugs.

• Reconstructions of buggy executions are short, focused
fragments of the interleaving schedule surrouding a
program event such as shared-memory communication.

[LWC11]

Concurrency Bugs in Real World Testing Debugging References

Communication Graph Debugging

• The process begins with the observation of a bug or a
bug report.

• A test case is designed to trigger the bug, and runs the
test multiple times. A communication graph is collected
from each execution, and the labeled as buggy or
nonbuggy, depending on the outcome of the test.

• Reconstructions are built from edges in buggy graphs.
Statistical features are used to compute the likelihood
and rank the edges and reconstructions.

Concurrency Bugs in Real World Testing Debugging References

Example I

1 c l a s s Queue{
2 dequeue (){
3 i f (q s i z e ==0) return n u l l ;
4 s i z e −−;
5 return i t e m s [. . .] ; }
6 s i z e () { return q s i z e ;} }
7 i f (q . s i z e ()==0) continue ;
8 q . dequeue () . g e t () ;

• Problematic senario may happen when thread 1 reads
qsize at line 3. The value may be written by thread 2 at
line 4 rather than the value read by thread 1 at line 6.

• Identifying the communication 4→ 3 is insufficient
because it occurs in both buggy and nonbuggy executions.

Concurrency Bugs in Real World Testing Debugging References

Context-Aware Communication Graphs

• In a context-aware graph, a node is a pair (I ,C)
representing the execution of a static instruction I in
communication context, C .

• Example: edge (4, LR − RR − RW)→ (3,RW − RW − LR)
only occurs in buggy exxecutions’ graphs.
• The context of the sink nodes implies that the most

recent event is a remote write which can correspond to
thread 2’s write at line 4.

Concurrency Bugs in Real World Testing Debugging References

References I

Katherine E. Coons, Sebastian Burckhardt, and Madanlal
Musuvathi.
Gambit: effective unit testing for concurrency libraries.
In Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP
’10, pages 15–24, New York, NY, USA, 2010. ACM.

Shan Lu, Weihang Jiang, and Yuanyuan Zhou.
A study of interleaving coverage criteria.
In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software
engineering, ESEC-FSE ’07, pages 533–536, New York,
NY, USA, 2007. ACM.

Concurrency Bugs in Real World Testing Debugging References

References II

Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang
Jiang, Zhenmin Li, Raluca A. Popa, and Yuanyuan Zhou.
Muvi: automatically inferring multi-variable access
correlations and detecting related semantic and
concurrency bugs.
In Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, SOSP ’07, pages
103–116, New York, NY, USA, 2007. ACM.

Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from mistakes: a comprehensive study on real
world concurrency bug characteristics.
In Proceedings of the 13th international conference on
Architectural support for programming languages and

Concurrency Bugs in Real World Testing Debugging References

References III

operating systems, ASPLOS XIII, pages 329–339, New
York, NY, USA, 2008. ACM.

Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou.
Avio: detecting atomicity violations via access interleaving
invariants.
In Proceedings of the 12th international conference on
Architectural support for programming languages and
operating systems, ASPLOS-XII, pages 37–48, New York,
NY, USA, 2006. ACM.

Concurrency Bugs in Real World Testing Debugging References

References IV

Brandon Lucia, Benjamin P. Wood, and Luis Ceze.
Isolating and understanding concurrency errors using
reconstructed execution fragments.
In Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation, PLDI
’11, pages 378–388, New York, NY, USA, 2011. ACM.

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard
Basler, Piramanayagam Arumuga Nainar, and Iulian
Neamtiu.
Finding and reproducing heisenbugs in concurrent
programs.
In Richard Draves and Robbert van Renesse, editors,
OSDI, pages 267–280. USENIX Association, 2008.

Concurrency Bugs in Real World Testing Debugging References

References V

Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold.

Falcon: fault localization in concurrent programs.
In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE ’10,
pages 245–254, New York, NY, USA, 2010. ACM.

Koushik Sen.
Race directed random testing of concurrent programs.
In Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation, PLDI
’08, pages 11–21, New York, NY, USA, 2008. ACM.

	Concurrency Bugs in Real World
	Deadlock Bugs
	Non-Deadlock Bugs

	Testing
	Coverage Criteria
	Systematic Testing

	Debugging
	Fault Localization
	Reconstruction

	References

