
By: Ronny Trefftzs
CSCI 5828: Foundations of Software Engineering

Spring 2012
Professor: Kenneth Anderson

WATERFALL?

XP?

SCRUM?

` While there is really no standard solution, the
following presentation will hopefully guide you
into making the best choice for your situation.

` You must first understand what drives your team
structure.

` High level explanations of software lifecycles
will be presented.

` Typical roles within these lifecycles will be
shown.

` Finally, guiding principles to develop a successful
software team are shared.

` Software Development teams are made up of
different types of individuals with different
opinions, perspectives, and talents that need to
work together and communicate effectively in order
to successfully complete a project.

` Your software team may include architects,
designers, testers, application developers, and/or
experts in technology. Throughout the project all
of these different members must communicate and
resolve issues.

` Different teams and team members will interact to
form a unique set of behaviors that must be
managed.

` Project Manager
Ń – This person develops the project plan which

includes schedule, budget, and priorities. The
project is usually staffed by this person. This
person is responsible for the daily leadership of the
team.

` Architect
Ń – This person is responsible for the overall design

of the system. The architect is key to project
success. Brooks states, “Conceptual Integrity is the
most important consideration in System Design.”

` Architect
Ń – The architect is the foundation for all to build on

in order to help maintain that conceptual integrity.
You will want to consider the architect a key team
member. Since they may be scarce in your
organization and cannot be a direct team member,
you must schedule time and interface your team
with the architects.

` Business/System Analyst
Ń – These people generally model the processes and

have a key role in developing the requirements.

` Chief Programmer
Ń - They usually define the functional and

performance specifications. Also involved in design,
coding, and documentation.

` Developer
Ń – They typically are responsible for the development

and implementation of the software.

` Tester
Ń – Although listed last here, this person is a critical part

of the team. They ensure test plans are developed and
that system testing is carried out.

` As Brooks states, “large software projects
suffer major issues due to division of labor.”

` As the number of communication paths, n,
increases, the effort increases by:

n(n-1)/2
This indicates a critical need to develop a

team that communicates with the least
amount of paths necessary in order to help
maintain schedule.

` The leader of the team will definitely
influence the success of the team by the very
nature of their communication style. Effective
communication by a leader keeps the team
focused and leads successful team
performance.

` Of course in a perfect world one could find
the best-of-the-best team members with all
the best skills needed. For finding
developers, the most likely scenario will be to
hire ones that are generally competent and
offer training to develop whatever skills are
necessary to build an effective team. Some
training will naturally occur during
development. But it is critical to get the right
training upfront before the project begins.

` At the start of a project the skill levels of needed
team members should be assessed in the
following areas:

1. Domain knowledge. Is this an Embedded
System or a Business application on a client?
Each requires a totally different set of skills
relevant to their particular domain.

2. Development knowledge. Here any project will
need skills in design and a particular
programming language(s). Will the project need
single experts in UML, C++, Java, Ruby, etc. Or
will Polyglots be needed?

3. Development Environment knowledge – List all
the development tools available or that will be
needed.

4. Software Technology Expert knowledge – Will
expert architects or systems experts be
needed?

` Make sure to have all computers, development
environments, compilers, etc. ready for your
team on day 1.

` Build the team around subsystem components.
This allows management of smaller tasks. It
also has the advantage of isolating issues to a
smaller part of an entire system.

` Tools
Ń Make sure of what tools will be needed and what

training team members will need. The list of
useful tools is definitely long, and one usually will
not find one person that is expert, or even
efficient at all of them.

Ń Do you need?
x Requirements capture tools
x UML tools for architecture capture.
x Test automation tools
x Configuration Managers
x Code editors, compilers, linkers…

` Company Status Quo

` Application Type

` Project Scale

` Skill Level of Available People

` Architecture

` Existing Architecture – If the company already
has an existing architecture from which to build
that is a great opportunity to reuse and you may
have team members that are already very
familiar. The team will definitely have an
advantage in effort estimation using an existing,
familiar architecture.

` Development Life Cycle in place – We don’t
always have a choice between Waterfall and Agile.
The team will have to be staffed accordingly.
However, a wise team will apply Agile techniques
where it can, even if forced to Use Waterfall. In
fact, today some companies will overlay an Agile
approach on top of their Waterfall process.

` Client Server – This type of application will
require a skill set in networking and perhaps
Object Oriented Technology.

` Mobile Device – Depending on whether team
members are developing application on top
of Android or iOS, or whether they are
developing actual OS, JVM, or BSP software
requires totally different skill sets.

` You must completely understand the
application for your project in order to staff
correctly.

` Large projects need a lot of manpower in
order to develop in a timely manner.

` According to Brooks, on large projects, team
size must be weighed against the number of
communication paths. Too many paths and
the effort increases exponentially.

` In a February 2010 study by the GAO, one of
the major reasons given for software project
failure was competent people.

` Skill is Object Oriented Design is more
difficult to master than Functional Design.

` A high level of competence may be needed in
use and understanding of UML.

` James Rumbaugh defined architecture as “the
organizational structure of a
system,…components, connectivity, interaction,
and principles that guide the design of the system.”

` In software development, architecture is the
foundation for the entire software project.

` A sound software architecture is indeed critical for
managing the work effort, partitioning the design
and implementation, and provides a common
ground for communication for the team.

` Use an existing architecture, or make sure to
establish one before proceeding with feature
implementation.

` Use UML to show your architecture from different
views.
Ń Use Case View – Shows the behavior and

functionality of the system. Items may include
Use Case Diagrams, Scenario Diagrams, and
Activity Diagrams. Use Cases help develop a
communication path between your team and
users of the system.
Ń Logical View – Shows the system structure, and in

UML can be represented by Class Diagrams.

¾ Use UML to show your architecture from different
views.
o Component View – Shows how the logical pieces

are grouped and can be represented by UML
Package Diagrams.

o Deployment View- Maps software subsystems to
actual hardware.

` No matter which lifecycle chosen, all have
similar tasks. The tasks are just performed
or captured differently.

Ń Feasibility Study
Ń Requirements Analysis and Capture
Ń Design
Ń Coding
Ń Testing
Ń Maintenance

` The earliest of the formal software lifecycles.
x Even though it is presented in a bad light today,

waterfall is still the most prolific software
lifecycle used today.

` It seems to have been the basis for most, if
not all, life cycles in subsequent years.
Ń Spiral
Ń Functional Decomposition

` Tasks are serialized into phases.
` Team members can work across all phases,

but typically do most of their work in the
phase designed for their specialty.

` Requirements are developed and agreed to
upfront, so your team members doing
Analysis would need to play an active role in
this phase in producing a Requirements Spec.

` Design follows next, so Technical Leads and
Architects would be heavily involved.

` After the design is complete, coding begins with
all programmers on deck. In traditional waterfall,
the requirements and design are set, so any
issues caught in coding have major impact. More
modern waterfall approach would allow some
iteration to go back to a previous phase. So your
software developer in the coding phase would
have an “easier” time going back to change a
design document.

` Finally, we have verification and deployment.
Once these phases are reached, it is very costly
to back up into other phases. Your team better
have it right in these phases!

` Customer – Plays a limited role, if any, after the
Requirements phase.

` System Engineer/Analyst – This person typically
is responsible for developing the Requirements
Specification, to include functional and non-
function specs.

` Chief Engineer/Programmer – Responsible for the
design of the implementation and the work of
junior programmers.

` Architect – Responsible for the interfaces to
software and hardware. Typically decides on the
operating system and BSP for embedded system.

` Lead Test Engineer – Will work with the Chief
Engineer and Developers towards the end of
the Design Phase to develop the test plan and
begin any upfront work to develop automated
tests.

` Team tends to be of a horizontal structure.
That is, the team is full of specialists.

` Many requirements (Use Cases) are usually
attacked by the team all at once.

` Tendency is for the team not to really have
anything “done” until late in development.
Pieces of many Use Cases are “done” early,
instead of a few Use Cases being completely
done early.

` Agile is a managed software process that
allows frequent inspection and adaptation to
change that provides continuous
improvement.

` Desired team members are more than
generalists. We want members that know a
lot about a lot of things.

` Leads to a vertically oriented team structure,
whereby User Stories can be assigned to a
developer or two and worked from beginning
to end by the same person or small group.

` In the real world, these type of members are not
always readily available, so while team members
develop these skills, interfacing to outside
specialists will be necessary.

` The team members will be kept together and not
shuffled around to other projects while working
on a particular project. This leads to immense
increases in productivity due to team synergy and
increasing team members’ skills.

` Team members deliver working software to the
customer about every two weeks.

` The team must realize that since each person
can assume multiple roles, the responsibility
of a team member is usually much higher
than with traditional life cycles.

` The team is cross-functional, self organizing,
and accountable for every part of
development, including screw ups!

` The Product Owner
represents the
interface between
the team and
stakeholders.

` Product Owner Team
Ń Composed of one or more Product Owners

` Project Management Team
Ń Composed of one or more Team Leads

` Architecture Owner Team
Ń Composed of one or more Architects

` Key difference from small team is that large
Agile team must have an architect. The
architects keep conceptual integrity.

` XP is an Agile process that takes “everything
to the Extreme.

` No production Software is deployed without a
pair of your team members developing it.

` Testing is done immediately, as no software
is developed except through first having
failing tests.

` Team members run tests after every change.
` Development is iterative and easily adapted

to changing customer requirements.

` Everyone on the team owns the software and
anyone has the potential work on any portion.

` Team members are encourage to “grow”
software, not build it.

` No one needs to work more than 40 hours a
week!

` Team members are co-located. This brings
immediate awareness to the current state of
development.

` Team members constantly refactor code in order
to get rid of “smelly” software.

` The team has the shared goal of providing value
to the customer.

` On-Site Customer – As stated in the Agile Samurai,
“source of the truth” from which all requirements flow
on an agile project. An actual customer or customer
representative is key to the team. Some XP teams
require one to be co-located. The customer sets the
priorities for the team.

` Manager – They track how well the team is doing by
monitoring things such as velocity, burn down charts,
and work-in-progress (WIP). They keep external
distractions from the team and remove any
impediments that affect the teams progress. They
make sure the team is co-located and that it has all
the things it needs to be successful in the way of
tools, computers, etc.

` Analyst – This person helps to write User Stories.
They do the detailed analysis. When a feature comes
up for development, they are responsible for figuring
out how things need to work.

` Programmer – The programmer takes the User Stories
and creates working software. They help in the
estimation and planning during reviews and planning
sessions. They make technical decisions about tools,
design and architecture.

` Tester - Writes the test cases for User Stories. These
test cases are normally part of, or are, the Acceptance
Criteria. The tester verifies that the deployed
software works as expected.

` SCRUM is an Agile process that borrows many
of the XP practices, but may scale them.

` Requirements are captured via User Stories
and stored in a Backlog. A product owner sets
the priorities of the stories, but the team
decides what to work on within these priority
boundaries.

` It should be noted, however, that SRUM is not
a methodology. It is a framework within
which an Agile development process is
employed.

` It should be noted, however, that SRUM is not a
methodology. It is a framework within which an
Agile development process is employed.

` The teams performance, whether good or not, is
highly transparent. This allows a team to
continuously improve.

` The Scrum Master mentors the team.
` The team must participate in a daily “standup”

meeting where each member gets a change to let
the team know what they did yesterday, and what
they plan to do today.

` Product Owner- Represents the stakeholders.
Responsible for the backlog and setting
priorities. They make decisions that should be
customer focused.

` Scrum Master – Responsible for facilitation,
obtaining resources for the team, and isolating
from external factors. This person will need
project management skills outside of planning
and scheduling. Their chief job is to maximize
team productivity. They facilitate meetings and
remove any impediments that hinder, or may
hinder, team productivity.

` Developer/Team Member – Try for 10
members +- 2. They create and deploy the
working system/software. In addition these
team members have the responsibility for
estimating User Stories. They have full
autonomy and authority during a Sprint. This
aspect is sometimes difficult for “old school”
style management.

` Program Manager -> Scrum Master

` Business Analysis -> Product Owner

` Planning and Scheduling -> Team

1. Architecture comes first!
2. Build teams around the system(subsystem)

architecture.
3. Plan to develop a team that can handle

change. Change happens!
4. Brooks truism: A key to developing

successfully is the correct amount of
communication.

5. Use Object Oriented Technology.
6. Adopt an Incremental Development

Strategy.

7. Allow continuous integration and testing to
occur within the team, but keep system testing
separate from the team.

8. Clearly define team members roles. This
doesn’t mean each member has just a single
role. Competent generalists are normally
favored.

9. Embedded developer and PC developers are
typically not interchangeable in the PC to
embedded direction without a lot of training.

10. Putting a large number of members on a team
creates more interplay than effort. Don’t do it!

11. Look for team players. Find developers that
don’t mind blurring the lines between
analysis, design, coding, and testing.

12. Brooks Truism, “Make a clear distinction
between architecture and implementation.”

` Grady Booch, James Rumbaugh, Ivar Jacobson. The
Unified Modeling Language, Addison-Wesley, 1999.

` Frederick Brooks. The Mythical Man Month, Addison-
Wesley, 1995.

` Dean Leffingwell, Agile Software Requirements,
Addison-Wesley, 2011.

` Jonathan Rasmusson, The Agile Samurai, The
Pragmatic Bookshelf, 2010.

` Ken Anderson, Agile Methods and Teams lecture,
CSCI 5828, Spring 2012.

` Internet References
Ń http://www.ambysoft.com/essays/agileRoles.html
Ń http://www.epmbook.com/structure.htm

