
The SDK

Matt Ripley
CSCI 5828

3/12/12

kj

Executive Summary

•  Qt is one of the leading GUI toolkits out there.
•  Great cross platform support (Linux, Windows, Mac)

•  Allows for rapid development of tools and other native applications
•  Code less. Create More. Deploy Everywhere

•  Extremely well tested and mature API
•  Full replacement for the STL
•  Pretty much anything you could ever want

•  Extremely well optimized

•  Built in concurrency framework
•  No more pthreads in C++!

•  Cool Screencast on how to develop a basic application at the end of presentation!

kj

Background

•  What is Qt?
•  Qt is a cross platform application development

framework

•  Evolved into a leading SDK for developing native
applications

•  Originally only a GUI toolkit.

•  Has been extended to include support for nearly
everything (GUI, STL replacement, OpenGL
bindings, Sound support, DB support)

Background (2)

•  The native app is dead, long live the native app.

•  Who’s using Qt
•  Autodesk – Maya and other applications
•  Adobe – new versions of Photoshop and Creative Suite
•  VLC media player
•  Virtual Box
•  Skype
•  Google
•  Mathematica
•  KDE
•  Panasonic, Philips, Samsung, Volvo.

kj

History

•  Development started in 1991 at “Quasar
Technologies”

•  Company was renamed to Trolltech in 1994

•  Named Qt because the founders liked the look of the
letter Q in Emacs. T because original versions based
off of Xt toolkit

•  Started as a small GUI toolkit to compete with Xt
and GTK.

kj

History (2)

•  Originally built as a Unix/X11 or Windows based
SDK
•  Early Qt versions were closed source.

•  In 1998 became the primary SDK for the KDE
desktop environment

•  Published under the GPL starting in 2000

•  Mac OSX support was added in 2001 with Qt 3.0.

kj

History (3)

•  Support was added for embedded devices early 2010
•  MeeGo

•  Symbian OS

•  Windows CE

•  Wayland

•  Extremely popular in the non apple non android
smart phone market.

kj

History (3)

•  Open sourced mac version with Qt 3.2.

•  Qt 4.0 released in 2005.

•  Acquired by Nokia in 2008.

•  Added LGPL support in 2009 to appeal to developers
writing closed source applications.

•  Source code now hosted on Gitorious for better
community involvement

•  Qt Labs provides cool cutting edge advancements

kj

History (4)

•  Recent advancements include language bindings for
most popular languages
•  Java, Python, Scheme, Ruby, D.

•  http://en.wikipedia.org/wiki/
Qt_(framework)#Bindings

•  Qt has its own scripting language called QML
•  Based on java script

•  Designed for rapid tool development

•  Outside the scope of this talk

kj

Qt Feature Set

•  “... is big. Really big. You just won't believe how
vastly, hugely, mindbogglingly big it is.”
•  Douglas Adams, The Hitchhiker's Guide to the Galaxy.

•  If you can think of it, Qt probably has support for it.

•  Very “Java” like interfaces and conventions.

•  You may be concerned about the size of Qt but …

kj

Qt Feature Set (2)

kj

Qt Feature Set (3)
•  Qt is highly modularized.

•  Designed with best software practices in mind
•  Design patterns

•  Cross platform

•  Optimized and well tested.

•  Qt feature set as of 4.8:

kj

Qt Feature Set (4)

•  QtCore
•  STL replacement – fully STL compatible replacement including

algorithms and container classes. More Java like then C++ like.
•  File System support – natively interfaces with systems file system
•  Concurrency frame work. Threads, thread pools, locks, barriers etc….
•  Basic signal / slot mechanism
•  Provides support for history and persistent user settings

•  QtGui
•  All the standard widgets you’d expect from a GUI tool kit
•  Full signal / slot implementation
•  QtDesigner support
•  Interface for mouse and keyboard interaction
•  Support for printers and external display devices

kj

Qt Feature Set (5)

•  QtMultimedia
•  Support for video and audio
•  Full GPU support for video decoding

•  QtNetwork
•  Support for network programming.
•  Cross platform socket layer
•  QSocket: is either winsock on windows or unix sockets

•  HTTP and FTP support
•  Full Web browser using webkit
•  SSL and encryption

•  QtOpenGL
•  Full OpenGL bindings. Tuned for OpenGL > 3.x
•  Includes great support for shaders and FBO’s

kj

Qt Feature Set (6)

•  QtOpenVG
•  Support for vector graphics

•  QtScript

•  Full support for the QML
scripting language

•  QtSQL

•  Data base tools for interacting
with a SQL database

•  QtSVG

•  Support for SVG file format

•  QtWebKit
•  Web browser and HTML

rendering engine

•  QtXml

•  Handling XML content

•  Read and write XML files

•  DOM support

•  QT Phonon

kj

Qt Feature Set (8)

•  Extra programs to aid developers

•  QtCreator: A full IDE for developing Qt applications.

•  QtCreator is made up of several programs
•  Qt Designer: A WYSIWYG GUI editor
•  Qt Assistant: Full documentation for the Qt SDK
•  GUI signal and slots editor
•  QML scripting
•  UIC - User interface compiler
•  MOC - meta object compiler
•  QMake – Qt make file generator.

kj

Scope

•  Qt is HUGE. Far beyond the scope of this talk.

•  In this presentation we will cover
•  Basic Qt applications

•  Building a Qt Application

•  Designing a GUI in Qt

•  Signals and Slots

•  Qt concurrency framework.
•  Relevant to this class

kj

Scope (2)

•  Learning Qt is complicated and can’t be easily
linearized into a power point.

•  But to understand best practices you have to
understand a bit about the library.

•  But to understand the library you need to know
about the best practices.

•  Understanding the Qt build tools requires
understanding the best practices and the library

kj

Basic Qt Application

•  Most Basic “Hello World”
Application

•  QApplication provides needed
services for Qt development
•  Signals and slots

•  Message loops

•  Other internal mechanisms

•  Qlabel is a text widget

•  All widgets have the ability to be
considered a window.

•  App.exec starts message loop.

#include <QtGui>

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 QLabel label("Hello, world!");
 label.show();
 return app.exec();
}

kj

Signals and Slots

•  Message passing handled by “Signals and Slots”

•  Signals / slots implemented by extending the C++
language with new keywords
•  <public | private | protected> signals:
•  <public | private | protected> slots:

•  Extensions handled by “MOC” the Meta Object
Compiler.

•  All Qt objects using signals and slots must declare
the Q_OBJECT macro

kj

Signals and Slots (2)

•  All Qt objects that declare
Q_OBJECT can declare
signals and slots
•  Signals / slots are really just

functions.

•  Under the hood signal slots
connections are really just
special call backs

•  Special keywords only
needed during declaration.

kj

Connecting Signals with Slots

•  Any 2 Qt objects can be
connected with the
“connect()” macro

•  Ex.
•  connect(ui-

>AddModelButton,
SIGNAL(clicked()), this,
SLOT(addNewModels()));

•  Connect function breaks
down as follows:
•  Connect(sender, signal,

receiver, slot)

kj

Connecting Signals with Slots
(2)

•  Just being able to call callback functions isn’t super
useful.

•  Signals and slots can also pass objects between sender
and receiver.

•  Ex:
•  connect(ui->modelList,

SIGNAL(itemClicked(QListWidgetItem*)), this,
SLOT(newModelClicked(QListWidgetItem*)));

•  In the above example a QListWidgetItem is passed to the
slot

kj

Connecting Signals with Slots
(3)

•  Signals are emitted with the “emit” keyword.

•  The emit keyword is blocking

•  Execution continues after the code in the connect
slot completes

•  Slots do not block the GUI. If 2 or more signals are
emitted at the same time then the slots are queued
and will execute in order of delivery.

kj

Connecting Signals with Slots
(4)

•  The signal slots mechanism is slightly slower than
traditional call backs but the simplicity is worth it

•  Qt says that you can issue 2,000,000 signals to 1
receiver per second or around 1,200,000 signals to 2
receivers per second.

kj

(less) Basic Qt Applications

•  As the complexity of an app grows doing everything
programmatically becomes tiresome.

•  Leverage QtCreator to help with code completion
and UI design.

•  Compile static resources (icons, strings) into the
application.

kj

QtCreator

•  More recent versions of Qt ship with a Qt specific IDE

•  Extremely powerful editing capabilities
•  Very eclipse like but not as many refactoring tools

•  Very dynamic Qt based UI.

•  Autocomplete and bug detection support

•  Handles all of the more complicated Qt build steps

•  Can be used with non Qt projects.

•  Built in GUI debugger (either GDB or MSVC debugger)

 kj

Qt Creator (2)

•  Bundles all the Qt tools together
•  UIC

•  MOC

•  QtDesigner – GUI builder

•  QtAssistent – Qt documentation

•  Built in support for version control systems
•  SVN

•  Git

kj

Qt Designer

kj

Advanced Qt UI

•  Qt Designer stores all UI information in *.uic files.
•  XML description of the UI.

•  XML matches nearly 1:1 with C++ classes.

•  Convention has UI stored in a ui_<class name>.h file.
•  Declares all the UI elements needed

•  All signals and slots created in Qt Designer

•  By convention the best practice is to subclass this ui file.
•  GUI changes don’t effect logic.

kj

Advanced Qt UI (2)
•  Qt .ui example

kj

Advanced Qt UI (3)

•  Qt has a lot of functionality to create very dynamic
UI
•  Widgets can be windows and windows can be widgets

•  Allows for very user configurable interfaces.
•  Qframes allow for detachable windows and widgets

•  Most UI elements can be “skinned” using regular
CSS

•  QML can be mixed with C++ to create custom
widget animations

kj

Advanced Qt UI (4)

•  Qt provides translation support.
•  If you app is distributed in multiple countries then you can

encode all strings in a resource file and tag them with a locale
string.

•  Qt automatically determines what the default language is and
attempts to load strings in that languages if possible.

•  If you don’t like the default UI widgets you can subclass
and extend any widget

•  Qt designer allows you to integrate your own widgets by
inserting basic QObjects and then promoting them to
your new subclass.

kj

Building a Qt Application

•  With the extensions to the C++ language and other
special features Qt apps can’t be compiled normally.

•  This is where QMake comes in.
•  QMake is a makefile / project file generator.

•  Qt can be built against
•  GCC
•  Clang – either using gcc-clang or XCode
•  MinGW
•  MSVC

kj

Building a Qt Application

•  Qt projects are defined by
a .pro file.

•  .Pro files are a meta makefile
•  QT: sets Qt options like which

modules are included

•  Sources / Headers: The source
code

•  Forms: All .ui files
•  Resources: any resource files

to be be compiled

•  Libraries can be added with
LIBS option

kj

Building a Qt Application (2)

•  Building a Qt application goes through multiple steps

1.  Qmake *.pro -> builds a system specific makefile. Make is
invoked

2.  Uic (User Interface compiler) -> converts .ui files into .h
and .cpp files

3.  Moc (meta object compiler) -> expands all the signal and slots
macros and adds extra code to glue together a project.

4.  Compilation

5.  Linking

6.  Final executable

kj

Qt Concurrency Framework

•  Introduced in Qt 4.4

•  Developed as a extension to Qt’s existing threading
model
•  Threads

•  Thread specific storage

•  Thread Pools

•  Locks

•  Semaphores

kj

Qt Concurrency Framework
(2)

•  QThread similar to Java threads

•  To make a new thread inherit from Qthread and add
implementation to virtual run method

•  Very similar to java
•  Start method

•  Can set thread priority

kj

Qt Concurrency Framework
(3)

•  Qt also provides QThreadStorage class which
provides storage for individual threads in a thread
safe way

•  Template class to store pointers to any object

•  Synchronization is done at a high level
•  Similar to tagging all getter and setter functions with

Synchronized key word in java

kj

Qt Concurrency Framework
(4)

•  Qt provides basic thread pool class.

•  Functions as a collection of threads

•  Not as evolved as java concurrent thread pools

•  Submit a Qrunnable to the start method of the
thread pool
•  If the number of running threads is < maxThreads then

a new thread starts.

kj

Qt Concurrency Framework
(5)

•  Qt concurrency frame work still young

•  Exports basic functions for concurrent operations.
•  Map

•  mapReduce

•  blockingMap

•  BlockingMapReduce

kj

Qt Concurrency
Framework(6)

•  All functions in the concurrency framework follow
similar conventions

•  Pass in a list of futures and a function to apply

•  Blocking variants will block until all functions complete

•  Threads are allocated from the global thread pool
•  When including the concurrency module is global thread

pool is created automatically.

•  Non blocking ones depend on the blocking functionality
of the Futures.

kj

Qt Concurrency Examples
•  Example using mapped to rescale images:

kj

Qt Concurrency Examples

•  Previous example makes use of a “function object”
•  Allows you to quickly develop parallel code without the

need to subclass runnables or threads

•  Overloaded () operator means that when the object is
called by the mapped function the operator is invoked.

kj

Qt Concurrency Examples

•  Using map reduce
•  Takes function pointers similar to map.

•  Must follow certain interface

•  Map functions must have the form
•  U function(T &t)

•  Reduce function must have the form
•  U function(T &result, const V intermediate)

kj

Qt Concurrency Examples
•  Extend the previous example by creating a collage of

images

kj

Summary

•  Qt is a full cross platform application development
framework

•  Handy for internal tool development

•  Good alternative for many problem domains that
don’t need a web app
•  Often times simpler and easier to write.

•  Tons of support and large community and user base.

kj

Summary

•  Qt empowers developer to quickly create rich
applications with a min of effort

•  Create more code less.

•  Highly tested and stable

•  Check out the short screencast on creating a quick
Qt based tool!

kj

Resources

•  Qt main webpage

•  Qt language bindings

•  Documentation for Qt 4.8

•  Qt’s tutorial site

kj

