The m SDK

Matt Ripley
CSCI 5828
3/12/12

Executive Summary

Qt is one of the leading GUI toolkits out there.
* Great cross platform support (Linux, Windows, Mac)

Allows for rapid development of tools and other native applications
* Code less. Create More. Deploy Everywhere

Extremely well tested and mature API
* Full replacement for the STL
* Pretty much anything you could ever want

Extremely well optimized

Built in concurrency framework
* No more pthreads in C++!

Cool Screencast on how to develop a basic application at the end of presentation!

Background

 What is Ot?
* Qt s a cross platform application development
framework

* Evolved into a leading SDK for developing native
applications

Originally only a GUI toolkit.

Has been extended to include support for nearly
everything (GUI, STL replacement, OpenGL
bindings, Sound support, DB support)

Background (2)

The native app 1s dead, long live the native app.

Who’s using Qt

* Autodesk — Maya and other applications

Adobe — new versions of Photoshop and Creative Suite
VLC media player

Virtual Box

Skype

Google

Mathematica

KDE

Panasonic, Philips, Samsung, Volvo.

History

Development started in 1991 at “Quasar
Technologies”

Company was renamed to Trolltech in 1994

Named Qt because the founders liked the look of the

letter Q in Emacs. T because original versions based
off of Xt toolkit

Started as a small GUI toolkit to compete with Xt
and GTK.

History (2)

Originally built as a Unix/X11 or Windows based
SDK

- Early Qt versions were closed source.

In 1998 became the primary SDK for the KDE
desktop environment

Published under the GPL starting in 2000
Mac OSX support was added in 2001 with Qt 3.0.

History (3)

* Support was added for embedded devices early 2010
* MeeGo
* Symbian OS
* Windows CE
- Wayland

» Extremely popular in the non apple non android
smart phone market.

History (3)

Open sourced mac version with Qt 3.2.
Qt 4.0 released 1n 2005.
Acquired by Nokia in 2008.

Added LGPL support in 2009 to appeal to developers
writing closed source applications.

Source code now hosted on Gitorious for better
community involvement

Qt Labs provides cool cutting edge advancements

History (4)

Recent advancements include language bindings for
most popular languages

* Java, Python, Scheme, Ruby, D.

* http://en.wikipedia.org/wiki/
Ot _(framework)#Bindings

Qt has its own scripting language called QML
* Based on java script

* Designed for rapid tool development
* Qutside the scope of this talk

Qt Feature Set

“...1s big. Really big. You just won't believe how
vastly, hugely, mindbogglingly big it 1s.”
* Douglas Adams, The Hitchhiker's Guide to the Galaxy.

If you can think of i1t, Qt probably has support for it.
Very “Java” like interfaces and conventions.

You may be concerned about the size of Qt but ...

Qt Feature Set (2)

Qt Feature Set (3)

e Qti1s highly modularized.

* Designed with best software practices in mind

» Design patterns
* Cross platform
* Optimized and well tested.

e (Qt feature set as of 4.8:

Qt Feature Set (4)

QtCore

STL replacement — fully STL compatible replacement including
algorithms and container classes. More Java like then C++ like.

File System support — natively interfaces with systems file system

Concurrency frame work. Threads, thread pools, locks, barriers etc....

Basic signal / slot mechanism
Provides support for history and persistent user settings

QtGui

All the standard widgets you’d expect from a GUI tool kit
Full signal / slot implementation

QtDesigner support

Interface for mouse and keyboard interaction

Support for printers and external display devices

Qt Feature Set (5)

* QtMultimedia

* Support for video and audio
+ Full GPU support for video decoding

* QtNetwork
* Support for network programming.
* Cross platform socket layer
* QSocket: is either winsock on windows or unix sockets
HTTP and FTP support
Full Web browser using webkit
SSL and encryption

* QtOpenGL
* Full OpenGL bindings. Tuned for OpenGL > 3.x
* Includes great support for shaders and FBO’s

Qt Feature Set (6)

QtOpenVG

+ Support for vector graphics

QtScript

+ Full support for the QML
scripting language

QtSQL
+ Data base tools for interacting
with a SQL database

QtSVG
* Support for SVG file format

QtWebKit

* Web browser and HTML
rendering engine

QtXml

* Handling XML content

* Read and write XML files
* DOM support

QT Phonon

Qt Feature Set (8)

» Extra programs to aid developers
* QtCreator: A full IDE for developing Qt applications.

* QtCreator is made up of several programs
* Qt Designer: A WYSIWYG GUI editor
* Qt Assistant: Full documentation for the Qt SDK
* GUI signal and slots editor
* QML scripting
» UIC - User interface compiler
* MOC - meta object compiler
* QMake — Qt make file generator.

Scope

Qt is HUGE. Far beyond the scope of this talk.

In this presentation we will cover
+ Basic Qt applications
Building a Qt Application
Designing a GUI 1in Qt
Signals and Slots

Qt concurrency framework.
* Relevant to this class

Scope (2)

Learning Qt 1s complicated and can’t be easily
linearized into a power point.

But to understand best practices you have to
understand a bit about the library.

But to understand the library you need to know
about the best practices.

Understanding the Qt build tools requires
understanding the best practices and the library

Basic Qt Application

#include <QtGui>

Most Basic “Hello World” int main(int argc, char *argv[])
Application {

QApplication app(argc, argv);
QLabel label("Hello, world!");
label.show();

return app.exec();

QApplication provides needed
services for Qt development

+ Signals and slots
* Message loops
* Other internal mechanisms

Qlabel 1s a text widget

All widgets have the ability to be
considered a window.

App.exec starts message loop.

Signals and Slots

Message passing handled by “Signals and Slots”

Signals / slots implemented by extending the C++
language with new keywords

 <public | private | protected> signals:
* <public | private | protected> slots:

Extensions handled by “MOC” the Meta Object
Compiler.

All Qt objects using signals and slots must declare
the Q_OBJECT macro

Signals and Slots (2)

« All Qt objects that declare oS o
Q yout;
class QLabel;

Q_OBIJECT can declare EE

class QVBoxLayout;

Signals and SlOtS t{:laas Screenshot : public QWidget

Q_OBJECT
I

+ Signals / slots are really just

Screenshot();

ﬁlnctions- protected:

void resizeEvent(QResizeEvent *event);

Under the hood signal slots S ——

void saveScreenshot();

connections are really just Toid mmtatachecien ()
SpeCial Cal]. baCkS pri":::; createOptionsGroupBox();

void createButtonsLayout();

QPushButton *createButton(const QString &text, QWidget *receiver,
const char *member);

void updateScreenshotLabel();

Specj.a«l keywords Only QPixmap originalPixmap;

M M QLabel *screenshotLabel;

needed during declaration. Qoroupsox soptionsirouphox;
QSpinBox *delaySpinBox;
QLabel *delaySpinBoxLabel;
QCheckBox *hideThisWindowCheckBox;
QPushButton *newScreenshotButton;
QPushButton *saveScreenshotButton;
QPushButton *guitScreenshotButton;

Connecting Signals with Slots

Any 2 Qt objects can be
connected with the _
“connect()” macro signal

signal2

signall
Ex.

—

4 Obiect! ™\ connect(Object1, signal1, Object2, slot1)
J connect(Object1, signal1, Object2, slot2)

* connect(ui-
>AddModelButton,
SIGNAL(clicked()), this, /" Objects)
SLOT(&ddN@WMOdClS())), signalt connect(Object1, signal2, Object4, slot1)

(" Objectd)

Connect function breaks slot1
down as follows: \ ‘
slot1

* Connect(sender, signal, > ot
: lot3
recelver, slot) connect(Object3, signal1, Object, s|ot3)>LJ

Connecting Signals with Slots

(2)

Just being able to call callback functions i1sn’t super
useful.

Signals and slots can also pass objects between sender
and receiver.

Ex:

* connect(ui->modelList,
SIGNAL (itemClicked(QListWidgetItem*)), this,
SLOT(newModelClicked(QListWidgetItem™)));

In the above example a QListWidgetltem 1s passed to the
slot

Connecting Signals with Slots

(3)

Signals are emitted with the “emit” keyword.

The emit keyword is blocking

Execution continues after the code in the connect
slot completes

Slots do not block the GUI. If 2 or more signals are
emitted at the same time then the slots are queued
and will execute 1n order of delivery.

Connecting Signals with Slots

(4)

* The signal slots mechanism i1s slightly slower than
traditional call backs but the sitmplicity is worth 1t

« Qt says that you can issue 2,000,000 signals to 1

receiver per second or around 1,200,000 signals to 2
receivers per second.

(less) Basic Qt Applications

As the complexity of an app grows doing everything
programmatically becomes tiresome.

Leverage QtCreator to help with code completion
and UI design.

Compile static resources (icons, strings) into the
application.

QtCreator

More recent versions of Qt ship with a Qt specific IDE

Extremely powerful editing capabilities

* Very eclipse like but not as many refactoring tools
* Very dynamic Qt based UI.

* Autocomplete and bug detection support

Handles all of the more complicated Qt build steps
Can be used with non Qt projects.

Built in GUI debugger (either GDB or MSVC debugger)

Ot Creator (2)

* Bundles all the Qt tools together
- UIC
- MOC
* QtDesigner — GUI builder

« QtAssistent — Qt documentation

* Built in support for version control systems
* SVN
« Git

Qt Designer

Filter L L] Object
File Edit Type Here v ModelView
Layouts v £ centralWidget
= Vertical Layout % GlLayout
Horizontal Layout v menuBar
v menuFile
Grid Layout actionOpen
Form Layout actionQuit
menuEdit
Spacers mainToolBar
Horizontal Spacer statusBar
ModelDockWidget
v ® dockWidgetContents_3
Buttons v gridLayout
Push Button v [l horizontalLayout
Projects AddModel|Button
Tool Button removeModelButtc
Radio Button RemoveAllButton

= horizontalS

Analyze Check Box Remove All I’Iffllll{ E mot::ize?fisat pace

[9Y © command Link Button OptionsDock

r Options. v % dockWidgetContents_2

Help Button Box v & gridLayout_2

Item Views (Model-Based) M Lighting [_] Animation AnimationCheck

ict Vi LightingCheck
List View [_INDC Shader | [_|Shadows ShaderCheck
Tree View Py : ShadinaCamhn yiTE Y
Table View

Filter

Column View View: ModelView : QMainWindow
Item Widgets (Item-Based) Property Value

List Widget X Look At: X v
Tree Widget objectN... | ModelView

Vertical Spacer

. v
Table Widget Y Look At: X
window... | NonModal

Grou 30:: " Z Look At enabled | W
; g y |0, 0), 922 x 858]

sizePolicy | [Preferred, Preferr...

Scroll Area Shaders

Tool Box minimu... | 0x0
Tab Widget imu... | 16777215 x 1677...

Stacked Widget + sizelncre... 0x 0
baseSize | 0x0

Update

DesmQr

Frame
palette Inherited

font A [Lucida Grand...

- MdiArea rsor Arrow
vosevia actionQuit V' Quit rso k_Amo
Dock Widget mouseTr... | [J

a Widget Name Used Shortcut Checkable ToolTip
© act...pen |V Open

» Input Widgets focusPoli... NoFocus
| Combo Box context... | DefaultContextMenu
Font Combo Box acceptDr... | [
Line Edit ... | ModelView

Text Edit

1.000000

Advanced Qt Ul

* Qt Designer stores all UI information in *.uic files.
» XML description of the UI.
* XML matches nearly 1:1 with C++ classes.

 (Convention has Ul stored in a u1_<class name>.h file.
* Declares all the UI elements needed
- All signals and slots created in Qt Designer

* By convention the best practice is to subclass this ui file.
» GUI changes don’t effect logic.

Advanced Qt UI (2)

° Qt ul example <?xml version="1.0" encoding="UTF-8"7>

<ui version="4.0">
<class>ModelView</class>
<widget class="(MainWindow" name="ModelView">
<property name="geometry">
<rect>
<X>0</x>
<y>0</y>
<width>922</width>
<height>858</height>
</rect>
</property>
<property name="windowTitle">
<string>ModelView</string>
</property>
<widget class="QWidget" name="centralWidget">
<layout class="QGridLayout" name="gridLayout_
<item row="@" column="0">
<layout class="QGridLayout"” name="GLLayout"
</item>
</layout>
</widget>
<widget class="QMenuBar" name="menuBar">
<property name="geometry">
<rect>
<0</ x>
<y>0</y>
<width>922</width>
<height>22</height>

Advanced Qt UI (3)

Qt has a lot of functionality to create very dynamic
Ul

» Widgets can be windows and windows can be widgets

Allows for very user configurable interfaces.
* Qframes allow for detachable windows and widgets

Most Ul elements can be “skinned” using regular
CSS

OML can be mixed with C++ to create custom
widget animations

Advanced Qt UI (4)

Qt provides translation support.

 If you app 1s distributed in multiple countries then you can
encode all strings in a resource file and tag them with a locale
string.

* Qt automatically determines what the default language 1s and
attempts to load strings in that languages if possible.

If you don’t like the default UI widgets you can subclass
and extend any widget

Qt designer allows you to integrate your own widgets by
inserting basic QObjects and then promoting them to
your new subclass.

Building a Qt Application

* With the extensions to the C++ language and other
special features Qt apps can’t be compiled normally.

e This 1s where QMake comes 1n.
* QMake is a makefile / project file generator.

* Qt can be built against
- GCC
* Clang — either using gcc-clang or XCode
* MinGW
+ MSVC

Building a Qt Application

Qt projects are defined by
a .pro file.

.Pro files are a meta makefile

* QT: sets Qt options like which
modules are included

Sources / Headers: The source
code

Forms: All .ui files

Resources: any resource files
to be be compiled

Libraries can be added with
LIBS option

+= core gui += opengl

TARGET = ModelViewer

SOURCES += main.cpp\
modelview.cpp \
glwidget.cpp \
model.cpp

HEADERS += modelview.h \
glwidget.h \
object.h \
model.h

FORMS += modelview.ui

RESOURCES += \
res.qrc

Building a Qt Application (2)

Building a Qt application goes through multiple steps

Qmake *.pro -> builds a system specific makefile. Make is
invoked

Uic (User Interface compiler) -> converts .ui files into .h
and .cpp files

Moc (meta object compiler) -> expands all the signal and slots
macros and adds extra code to glue together a project.

Compilation
Linking

Final executable

Qt Concurrency Framework

Introduced in Qt 4.4

Developed as a extension to Qt’s existing threading
model

» Threads
Thread specific storage
Thread Pools
Locks

Semaphores

Qt Concurrency Framework

(2)

 QThread similar to Java threads

e To make a new thread inherit from Qthread and add
implementation to virtual run method

* Very similar to java
* Start method
 Can set thread priority

Qt Concurrency Framework

(3)

Qt also provides QThreadStorage class which
provides storage for individual threads in a thread
safe way

Template class to store pointers to any object

Synchronization is done at a high level

- Similar to tagging all getter and setter functions with
Synchronized key word in java

Qt Concurrency Framework

(4)

Qt provides basic thread pool class.

Functions as a collection of threads

Not as evolved as java concurrent thread pools

Submit a Qrunnable to the start method of the
thread pool

» If the number of running threads 1s < maxThreads then
a new thread starts.

Qt Concurrency Framework

()

Qt concurrency frame work still young

Exports basic functions for concurrent operations.

* Map

- mapReduce

* blockingMap

* BlockingMapReduce

Qt Concurrency
Framework(6)

All functions in the concurrency framework follow
similar conventions

Pass in a list of futures and a function to apply
Blocking variants will block until all functions complete

Threads are allocated from the global thread pool

* When including the concurrency module 1s global thread
pool 1s created automatically.

Non blocking ones depend on the blocking functionality
of the Futures.

Qt Concurrency Examples

« Example using mapped to rescale images:

struct Scaled

{

Scaled(int size)
: m_size(size) { }

typedef QImage result type;

QImage operator()(const QImage &image)

{
}

return image.scaled(m_size, m_size);
int m _size;
}i

QList<QImage> images = ...;
QFuture<QImage> thumbnails = QtConcurrent::mapped(images, Scaled(100));

Qt Concurrency Examples

Previous example makes use of a “function object”

+ Allows you to quickly develop parallel code without the
need to subclass runnables or threads

* Overloaded () operator means that when the object 1s
called by the mapped function the operator is invoked.

Qt Concurrency Examples

* Using map reduce
» Takes function pointers similar to map.
* Must follow certain interface

e Map functions must have the form
* U function(T &t)

 Reduce function must have the form
» U function(T &result, const V intermediate)

Qt Concurrency Examples

» Extend the previous example by creating a collage of
images

void addToCollage(QImage &collage, const QImage &thumbnail)
{
QPainter p(&collage);
static QPoint offset = QPoint(0, 0);
p.drawlmage(offset, thumbnail);
offset += ...;

}

QList<QImage> images = ...;
QFuture<QImage> collage = QtConcurrent::mappedReduced(images, scaled, addToCollage);

Summary

Qt 1s a full cross platform application development
framework

Handy for internal tool development

Good alternative for many problem domains that
don’t need a web app

+ Often times simpler and easier to write.

Tons of support and large community and user base.

Summary

Qt empowers developer to quickly create rich
applications with a min of effort

Create more code less.
Highly tested and stable

Check out the short screencast on creating a quick
Qt based tool!

Resources

Ot main webpage

Ot language bindings

Documentation for Ot 4.8

Qt’s tutorial site

