
Software Engineering Topics for Community Driven
Projects

Matthew Monaco

University of Colorado at Boulder
matthew.monaco@colorado.edu

Friday, March 23rd, 2012



Outline

1 Main Topics Overview

2 Development Models

3 Legal

4 Hosted Solutions

5 Notable Projects

6 Development Environments

7 Summary

8 References

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 2 / 59



Outline

1 Main Topics Overview

2 Development Models

3 Legal

4 Hosted Solutions

5 Notable Projects

6 Development Environments

7 Summary

8 References



Main Topics Overview

Overview

Community driven projects imply open source software

Because they are inherently transparent, there are projects which
exemplify almost any software engineering style conceivable

Therefore, they are a great learning tool

New projects can emulate ones the participants find interesting, or
have even taken part in before

Mistakes are also typically public, so they may be learned from

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 4 / 59



Main Topics Overview

Status

Community-driven projects have a wide range of characteristics

Status

Maintenance — Feature complete or a more modern alternative exists.
Fork — Some parties had a different idea about the direction of the
original project.
Immature — Testing new ideas or attempting to compete with an
(inferior) project
Stable — Widely used but still accruing new features
Dead — May still be used, may receive the occasional patch

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 5 / 59



Main Topics Overview

Focus

Focus and Motivation

Security — For some projects, security is the modus operandi. (Those
in the OpenBSD community, for example).
Improvements — New ways to look at problems with well-defined
solutions. For example, distributed version control systems over the
older, centralized paradigm.
Feature Rich — Some projects attempt to do a lot, and tend to accept
new features quite willingly. Office suites are a good example of this.
Singular Focus — On the other hand, some projects have a very
specific goal and most changes tend to be bug fixes, enhancements to
existing features, or changes required to stay relevant (new
authentication mechanisms).
Education — Many projects simply start as a desire to learn, one of the
most famous being the Linux kernel.
Developer Needs — A lot of projects start as tools to do a job for
which none exists.

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 6 / 59



Main Topics Overview

Organization

Pure democracy — Anyone may contribute, no real owner

Dictatorship — A single project owner who takes contributions at his
or her sole discretion (others may fork if the license permits)

Federated — A single owner or small group of owners who delegate
responsibility for subcomponents to others (the Linux kernel)

Mixed — Because many projects are distributed in nature, there are
typically isolated development groups. For example IBM, Oracle,
Apple, Intel, and individual users all have their own private
organization around X.Org development and their contributions are
then adopted by a single maintainer

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 7 / 59



Main Topics Overview

Testing

The testing requirements for a community project vary greatly

Even within the same project!

Often, projects which provide device drivers are highly dependant on
hardware for testing. But volunteers don’t have access to every
variation

In such situations, new versions are released publicly knowing that
even widely used hardware may not have been tested. Because of
this, short release cycles are becoming very popular

Individual corporations may have varying standards for the
contributions that they produce and contribute to a project

Some projects provide unit tests with a release but these often go
overlooked

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 8 / 59



Main Topics Overview

Release Cycles

As we’ll see soon, there is a very wide range of release cycles for
community projects

These range from permanent development status (must build from
VCS)

To highly stable projects with releases only needed to address bugs
and conform to changing technology

To rapidly released software

This last one is often the most effective for community projects
because it means developers quickly get feedback for their work

Additionally, rapid release cycles mean that features are released in
relative isolation so regressions are easier to track down

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 9 / 59



Outline

1 Main Topics Overview

2 Development Models

3 Legal

4 Hosted Solutions

5 Notable Projects

6 Development Environments

7 Summary

8 References



Development Models

Centralized VCS

The version control system a project uses has the potential to play a
large role in how the project organizes itself

RCS is one of the original revision control systems. It was primarily
meant for use on single files (no collaboration)

CVS is a structured extension of RCS which allows collaboration via a
CVS server. Users must check out files they want to work on.

SVN is another centralized revision control system which is quite
popular. Like CVS, users rely on a centralized server

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 11 / 59



Development Models

Distributed VCS

Distributed version control systems allow a lot more flexibility for
most projects, especially community-based projects

Developers can be much more independent

They may share code in small (even private) groups while working on
tasks, without permanently creating revision history

There is no single point of failure (unless there is only a single copy of
a repository)

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 12 / 59



Development Models

Git

Git [27] is a distributed revision control system initially

Developed by Linus Torvalds in 2005

Motivation — Free use of BitKeeper was withdrawn by the product’s
owner

Goals — Speed. The Linux kernel is very large so day-to-day
operations would be tedious if too slow

Later Goals — Ease of use. Since git has become so refined and
polished, it has seen an enormous adoption rate [20]

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 13 / 59



Development Models

Git continued

Git clearly does a lot right

It has lead to much faster code development because it cuts down on
collaboration overhead

Through Git, it is very easy to isolate and test individual feature
changes

Bugs can be found quickly with git bisect

Projects can easily fork one another if different philosophies emerge

While certainly not a “silver bullet,” Git (and some other distributed
VCSs) have done wonders for software engineering

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 14 / 59



Development Models

Git continued

One reason for such a high adoption rate for git is that it doesn’t
require a project to change its organizational structure

It can emulate the workflow used by any other VCS

Centralized — a master repository can act like an SVN or CVS server
Individual — git is useful even for personal work because no server
setup is required
Hierarchical — (see the Linux discussion below)

Once project groups are more comfortable with git, they can begin to
ease their way into more efficient workflows

Git proves that inertia is a major component of a software engineering
project

It began as a difficult to use tool, but as interest grew, enthusiasm
has led to a very polished VCS interface

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 15 / 59



Outline

1 Main Topics Overview

2 Development Models

3 Legal

4 Hosted Solutions

5 Notable Projects

6 Development Environments

7 Summary

8 References



Legal

A project’s contributors, life-cycle, and proliferation can be greatly affected
by the license chosen. Let’s take a look at the common ones and what
they mean for a project.

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 17 / 59



Legal

Glossary

There are a few terms in the software world which are misunderstood
or used interchangeably when they shouldn’t

Open Source — The source code of a project is publicly available

No indication of license
No indication of cost

Gratis — Free to use, often referred to as “free as in beer” or
freeware. Gratis software may be installed by individuals but not
redistributed or modified

Libre — Free of restrictions, often referred to as “free as in speech.”
These projects are often released under fairly permissive licenses and
are free to be redistributed, modified, etc

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 18 / 59



Legal

Glossary continued

Copyleft — Redistribution and modification allowed, but must
continue to be released under the same (or compatible) licenses.
(This is a play on ‘copyright’)

Copyfree — Very permissive, may be modified and redistributed under
a new license

GPL — A copyleft license

LGPL — Similar to GPL, but allows projects to be linked with
incompatible licenses

MIT — A copyfree license

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 19 / 59



Legal

GPL

Written by the Free Software Foundation [14]

GPLv1 published in 1989 [14]

Copyleft
Redistributed software may be released under the same or even more
permissive licenses

GPLv2 published in 1991 [15]

If for some reason a project is not allowed to distribute under the GPL,
then they may not redistribute GPL components at all.
Accompanied by the LGPLv2 (see below)

GPLv3 published in 2007 [17]

Revised definition of source code
Disallowed hardware restrictions to override software restrictions
Nullifies DRM (digital rights management)

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 20 / 59



Legal

LGPL

The Lesser GPL licenses LGPLv2 [16] and LGPLv3 [18] are
companions to the GPLv2 [15] and GPLv3 [17] licenses.

The GPL licenses stipulate that

A GPL’d work may be modified in private
If released, a derived project must be under a compatible license

But “derived” is somewhat ambiguous

The FSF holds that even dynamically linking to a GPL’d shared
library is a derived work.

The FSF released the LGPL licenses to allow a project with a non-free
license to link to one under the LGPL

However, the FSF still strongly encourages the use of the GPL

Also referred to as the Library GPL

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 21 / 59



Legal

GPL continued

The FSF is focused on the widespread use and development for free
and open source software

This sometimes makes it difficult for interaction with proprietary
project

The Linux Kernel

Released under the GPLv2 [15]
A monolithic software project — a (deliberately [9]) unstable internal
API and ABI
Much easier to keep code in the main kernel tree because the person
responsible for an API change is also responsible for fixes to all of its
uses
But in-tree modules must be licensed under the GPL (or similar)
To get around this some companies release...

Small in-tree kernel module to do the bare minimum
The rest of the driver sits in userspace (typically at a performance loss)

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 22 / 59



Legal

GPL continued

Alternatively, some projects provide an out of tree kernel module

This means the driver doesn’t come with Linux out-of-the-box, but
does reside in the kernel once installed

Nvidia, for example

Graphics driver is out-of-tree
Support for old hardware gets dropped frequently because of the
maintenance overhead

Additionally, out-of-tree and non-GPL kernel modules have a limited
in-kernel API. Some of the most useful features of the kernel require a
module to be released under the GPL

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 23 / 59



Legal

Apache

The Apache license [13] is a GPL-compatible license used by projects
under the Apache Software Foundation

Most notably, the Apache HTTP server

Unlike the GPL, this license is not copyleft

If a project is released with GPL and Apache components, the project
as a whole must be released under the GPL (becase it is stricter
about freedom)

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 24 / 59



Legal

MIT

The MIT license [21] is a GPL-compatible license

Originally published by The Massachusetts Institute of Technology

Copyfree

Very short (relieving!)

Simply states that the software is released without warranty, outlines
what a user may do with the software, and stipulates that
redistributing MIT-licensed software must include the license itself

(But derived works do not have to be MIT themselves)

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 25 / 59



Legal

BSD

The final widespread license we’ll discuss is the BSD license [23]

Originally published by The Regents of the University of California

There are actually a few variations

The most important and common restriction is that redistributing
BSD licensed software must contain the original copyright notice

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 26 / 59



Legal

Organizations

Releasing software under a free license isn’t just a philosophy, it
affects how software projects are actually developed

Because many community driven projects aren’t owned by any one
person, and are developed by volunteers, a number of organizations
have emerged to help protect the rights of developers

The Free Software Foundation (FSF) [25] was started by Richard
Stallman in 1985.

Primary purpose is to promote the use a free software
Gives endorsement to licenses which are intended to be “free”

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 27 / 59



Legal

Organizations continued

The Open Source Initiative is similar to the FSF

Formed in 1998 by Bruce Perens and Eric Raymond
Approves licenses (does not provide its own)
Basically the FSF with a more palatable image to some

These, and other organizations, maintain funding to help defend small
projects against legal pressure by large, well-funded, organizations

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 28 / 59



Legal

Licencing continued

Another interesting example is AMD (formerly ATI)

AMD provides a proprietary driver for their graphics cards known as
Catalyst [11]

Very good performance
Bad interoperability with common desktop technologies
Support for updated software lags behind releases (such as X.Org)

AMD also contributes to and fully supports an open source driver for
their graphics hardware known as xf86-video-ati [12]

Decent performance
Works very well on most Linux computers
Support for new hardware and updated dependencies is bleeding edge

Companies need to figure out what is best for their customers.
Sometimes this means providing alternatives

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 29 / 59



Outline

1 Main Topics Overview

2 Development Models

3 Legal

4 Hosted Solutions

5 Notable Projects

6 Development Environments

7 Summary

8 References



Hosted Solutions

Online Platforms

There are quite a few online platforms which combine essential
features of any product into easy-to-use packages

Features — Bug tracker, mailing list, public source code repository,
public release archives, wikis, web pages, question and answer services,
and build services
Examples — Sourceforge, Launchpad, GNU Savannah, Github,
BerliOS, BitBucket

The most flexible of these allow for the use of most revision control
systems

They are at the heart of many projects because the foster very easy
and rapid communication with quick feedback from users and testers

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 31 / 59



Hosted Solutions

Bug Trackers

The most widely used is Bugzilla [2]

Bug trackers are a flexible way for projects to

Track planned features
Build dependency lists and prioritize changes
Communicate with users about regressions
Communicate with users about feature requests

There are hosted Bugzilla services which even allow projects to place
bug dependencies on other projects

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 32 / 59



Hosted Solutions

OpenSUSE Build System

Some community projects employ automatic build systems

However, they typically have some sort of corporate backing to
sponsor the infrastructure

A good example of this is the OpenSUSE Build System [7]

Packages are built automatically for all specified architectures as they
are updated

Package owners get feedback about failures as a result of changes
very quickly

Users can track where the distribution is headed and prepare their
own projects ahead of releases

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 33 / 59



Outline

1 Main Topics Overview

2 Development Models

3 Legal

4 Hosted Solutions

5 Notable Projects

6 Development Environments

7 Summary

8 References



Notable Projects

Linux

Initial Motivation — Education, A free UNIX-like alternative [26]

License — GPLv2 [15]

Contributors — Thousands, from independent hobbyists to large
corporations

Organizational Structure — Federated [6], Linus Torvalds provides
the main repository. He receives changes from the maintainers of the
major subsystems, who in turn correspond with multiple
sub-maintainers (and so on).

Release Cycle

A release candidate around once per week
A full release every two to three months (depending on the number of
release candidates — subject to Linus’ discretion)
Bug fixes to stable versions for a few months
Every few releases are tagged “long-term” and will be supported for a
few years

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 35 / 59



Notable Projects

*BSD

A number of modern variations (FreeBSD, OpenBSD, NetBSD,...)

Motivation — Necessity. BSD dates back to the 1970’s when modern
UNIX systems were just emerging

License — BSD

Contributors — Many, FreeBSD, for example [4]

Release Schedule — Slow. Free and OpenBSD are meant to be
extremely stable. New features and new hardware support takes a
long time as everything must be thoroughly tested

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 36 / 59



Notable Projects

Firefox

Developed by the Mozilla Corporation

Motivation — Originally to provide a light-weight,
standards-compliant, open source web browser

License — MPL (a GPL-like license customized by Mozilla)

Contributors — Many, but mostly under the umbrella of the Mozilla
Corporation

Organization — A number of “steering” committees and elected
board members

Release Schedule — Monthly [24]. In 2011 Firefox made a somewhat
inauspicious switch to a rapid release cycle. Many claim this was a
move to compete with Google Chrome’s version number.

However, from a software engineering standpoint, short release cycles
allow Mozilla to get feedback and fix bugs on new features more easily

Otherwise, it may not be obvious which new work actually caused the
bug

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 37 / 59



Notable Projects

Linux Distributions

A Linux distribution can be an enormous software engineering
undertaking in-and-of itself!

Most distributions need to coordinate compatible versions of
thousands of independent projects

Some also provide rolling releases in which the system is meant to be
updated frequently

Let’s look at one fixed release cycle distribution and one rolling
release distribution...

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 38 / 59



Notable Projects

Ubuntu

Ubuntu is a fork of Debain by Canonical, owned by Mark Shuttleworth

Motivation — Provide a free, open source Linux distribution for
desktops with the goal of easy-of-use and predictable release schedules

License (for distribution-specific projects) — Mostly GPL

Contributors — Employees of Canonical

Business Model — Free product, paid support

Release Schedule — Six Months, but users may upgrade some
components on their own

Ubuntu is somewhat “introverted.” It has been criticized for not
trying to push contributions back to upstream projects

However from an SE standpoint, this may not always be practical as
Ubuntu’s end goal is its own users

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 39 / 59



Notable Projects

Arch Linux

A rolling release distribution [1]

Users are expected to have the latest of everything

Attempting to hold on to a particular version of a project my require
a lot of manual intervention

Highly transparent, avoids making customizations to upstream
projects

A lot of work is required to release widely used shared libraries

So as a software engineering project, Arch is mainly responsible for
package management and system initialization

I feel compelled to note: my personal favorite

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 40 / 59



Notable Projects

X.Org

The X.Org server is an implementation of the X11 protocol, which
has its roots back to the 70’s

The X.Org project itself began in 1984

The codebase is quite large and most changes are done with
backward compatibility in mind (an enormous accidental difficulty)

X.Org is managed by an elected board of directors.

Most contributions come from Intel, Apple, Red Hat, Oracle, etc

Recently began a much quicker release cycle

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 41 / 59



Notable Projects

X.Org continued

Another recent development for X.Org was the move to a modular
architecture [10].

This was done to help updates to individual components

Previously, to test a new feature for a video card or input device, one
would need to recompile the entire X.Org stack

This has allowed for a faster release cycle in part because average
users can more easily test new features and provide feedback

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 42 / 59



Notable Projects

Openbox

Openbox [19] is a window manager which works on its own or as a
replacement inside common desktop environments

Motivation — A rewrite and improvement of Blackbox

License — GPLv2 [15]

Release Cycle — Slow. Openbox is primarily developed by a single
developer, in his spare time. So releases occur sporadically

Conformity — Openbox needs to conform to many standards, the
largest of these are X libraries, and Freedesktop.org specifications so
that it will work well in other desktop environments

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 43 / 59



Outline

1 Main Topics Overview

2 Development Models

3 Legal

4 Hosted Solutions

5 Notable Projects

6 Development Environments

7 Summary

8 References



Development Environments

Development environments are an import aspect to software
development

Well designed ones should have no bearing on how a project is
actually managed

A group member should be able to choose whatever he or she is
comfortable with

We’ll briefly look at the most popular ones

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 45 / 59



Development Environments

Vim

Vim [22] is an improved version of the ancient vi

It aids software development most by staying out of the user’s way

Provides very efficient mechanisms for editing and managing text files

Extensible [8] — Vim can be extended in many ways, which has
greatly contributed to its staying power

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 46 / 59



Development Environments

Emacs

Like Vim, Emacs [5] is widely used

It offers its users a little bit of a different approach...

Emacs is quite heavy-weight but is highly extensible

It can be used as a simple text editor, or a full-blown IDE

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 47 / 59



Development Environments

Eclipse

Eclipse [3] is a complete integrated development environment

Primarily geared toward Java

Eclipse tries to do it all for the user (rather than the do one thing and
do it right approach)

Like Vim and Emacs it is also highly extensible

It provides features such as

API reference
Built-in build systems
VCS integration
Debugging capabilities

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 48 / 59



Outline

1 Main Topics Overview

2 Development Models

3 Legal

4 Hosted Solutions

5 Notable Projects

6 Development Environments

7 Summary

8 References



Summary

Summary

Following community and open source projects is a great learning tool

When beginning a new project, chances are there is an existing
project out there with a model that makes sense to adopt

This includes learning from others’ mistakes

The information required to learn from a community project is almost
always readily available through mailing list archives, bug trackers,
and VCS history

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 50 / 59



Outline

1 Main Topics Overview

2 Development Models

3 Legal

4 Hosted Solutions

5 Notable Projects

6 Development Environments

7 Summary

8 References



References

References I

Arch linux.
http://www.archlinux.org.

Bugzilla.
http://www.bugzilla.org.

Eclipse.
http://www.eclipse.org/.

Freebsd.
http://www.freebsd.org.

Gnu emacs.
http://www.gnu.org/software/emacs.

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 52 / 59

http://www.archlinux.org
http://www.bugzilla.org
http://www.eclipse.org/
http://www.freebsd.org
http://www.gnu.org/software/emacs


References

References II

Linux maintainers.
http://git.kernel.org/?p=linux/kernel/git/torvalds/

linux.git;a=blob;f=MAINTAINERS;hb=master.

Opensuse build service.
https://build.opensuse.org.

Vim scripts.
http://www.vim.org/scripts/index.php.

Can we move device drivers into user-space?
https://lkml.org/lkml/2012/2/22/569, February 2012.

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 53 / 59

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=blob;f=MAINTAINERS;hb=master
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=blob;f=MAINTAINERS;hb=master
https://build.opensuse.org
http://www.vim.org/scripts/index.php
https://lkml.org/lkml/2012/2/22/569


References

References III

Paul Anderson, Alan Coopersmith, Egber Eich, Adam Jackson, Kevin
Martin, and Keith Packard.
X.org modularization proposal.
http://www.x.org/wiki/ModularizationProposal.

Advanced Micro Devices.
Catalyst display driver.
http://www.amd.com/us/products/technologies/

amd-catalyst/pages/catalyst.aspx.

Advanced Micro Devices and Community.
xf86-input-ati.
http://cgit.freedesktop.org/xorg/driver/xf86-video-ati/.

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 54 / 59

http://www.x.org/wiki/ModularizationProposal
http://www.amd.com/us/products/technologies/amd-catalyst/pages/catalyst.aspx
http://www.amd.com/us/products/technologies/amd-catalyst/pages/catalyst.aspx
http://cgit.freedesktop.org/xorg/driver/xf86-video-ati/


References

References IV

Apache Software Foundation.
Apache license v2.0.
http://apache.org/licenses/LICENSE-2.0, January 2004.

The Free Software Foundation.
Gnu general public license v1.0.
http://www.gnu.org/licenses/gpl-1.0.html, February 1989.

The Free Software Foundation.
Gnu general public license v2.0.
http://www.gnu.org/licenses/gpl-2.0.html, June 1991.

The Free Software Foundation.
Gnu lesser general public license v2.1.
http://www.gnu.org/licenses/lgpl-2.1.html, February 1999.

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 55 / 59

http://apache.org/licenses/LICENSE-2.0
http://www.gnu.org/licenses/gpl-1.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/lgpl-2.1.html


References

References V

The Free Software Foundation.
Gnu general public license v3.0.
http://www.gnu.org/licenses/gpl-3.0.html, June 2007.

The Free Software Foundation.
Gnu lesser general public license v3.0.
http://www.gnu.org/licenses/lgpl-3.0.html, June 2007.

Dana Jansens.
Openbox.
urlhttp://www.openbox.org.

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 56 / 59

http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/lgpl-3.0.html


References

References VI

Paul Krill.
Torvald’s git: The ’it’ technology for software version control.
urlhttp://www.infoworld.com/d/application-development/torvaldss-
git-the-it-technology-software-version-control-167799, July
2011.

MIT.
The mit license (mit).
http://www.opensource.org/licenses/MIT, 1988.

Bram Moolenaar.
Vim.
http://www.vim.org.

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 57 / 59

http://www.opensource.org/licenses/MIT
http://www.vim.org


References

References VII

Regents of the University of California.
Bsd license.
http://www.opensource.org/licenses/BSD-2-Clause.

The Mozilla Project.
New channels for firefox rapid releases.
http://blog.mozilla.com/blog/2011/04/13/

new-channels-for-firefox-rapid-releases/, April 2011.

Richard Stallman.
The free software foundation.
http://www.fsf.org, 1985.

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 58 / 59

http://www.opensource.org/licenses/BSD-2-Clause
http://blog.mozilla.com/blog/2011/04/13/new-channels-for-firefox-rapid-releases/
http://blog.mozilla.com/blog/2011/04/13/new-channels-for-firefox-rapid-releases/
http://www.fsf.org


References

References VIII

Linus Torvalds.
What would you like to see most in minix?
http://groups.google.com/group/comp.os.minix/msg/

b813d52cbc5a044b, August 1991.

Linus Torvalds, Junio Hamano, and et al.
Git - fast version control system.
http://git-scm.com, April 2005.

Monaco (CU-Boulder) CSCI 5828 Mar. 23, 2012 59 / 59

http://groups.google.com/group/comp.os.minix/msg/b813d52cbc5a044b
http://groups.google.com/group/comp.os.minix/msg/b813d52cbc5a044b
http://git-scm.com

