
Software Architecture

Sneheet Mishra

April 26, 2012



Executive Summary

• This presentation is an introduction to the topic 
of software architecture.

• Significance of software architecture, key 
architectural principles, major design 
considerations, responsibilities of an architect 
and factors affecting choice of a particular 
architecture are described.

• Various common architectural styles – their key 
features, benefits and applications are presented.



Software Architecture – Definition (1)

• Architecture is the fundamental 
organization of a system embodied in 
its components, their relationships to each 
other, and to the environment, and the 
principles guiding its design and evolution.

• It consists of all the important design 
decisions about the software structures and 
the interactions between those structures that 
comprise the system.



Software Architecture – Definition (2)

• Software architecture is described as the 
organization or structure of a system.

• The system represents a collection of 
components that accomplish a specific 
function or set of functions. 

• Architecture is focused on organizing 
components to support specific functionality.



Why is architecture important?

• It involves a series of decisions based on a wide range 
of factors, and each of these decisions can have 
considerable impact on the quality, performance, 
maintainability, and overall success of the application.

• Failing to consider key scenarios, failing to design for 
common problems, or failing to appreciate the long 
term consequences of key decisions can put your 
application at risk.

• The risks exposed by poor architecture include 
software that is unstable, is unable to support existing 
or future business requirements, or is difficult to 
deploy or manage in a production environment.



Some high level concerns related to 
architecture

• How will the users be using the application?
• How will the application be deployed into 

production and managed?
• What are the quality attribute requirements for 

the application, such as security, performance, 
concurrency, and configuration?

• How can the application be designed to be 
flexible and maintainable over time?

• What are the architectural trends that might 
impact your application now or after it has been 
deployed?



Key Architecture Principles (1)

• Build to change instead of building to last
o Consider how the application may change over time to 

address new requirements and challenges, and build in the 
flexibility to support this.

• Model to analyze and reduce risks
o Use design tools, modeling systems such as Unified 

Modeling Language (UML), and visualizations to help 
capture requirements and architectural and design 
decisions, and to analyze their impact.

• Identify key engineering decisions



Key Architecture Principles (2)

• Use an incremental and iterative approach to refining 
the architecture.

• Start with a baseline architecture to get the big 
picture right.

• Iteratively add details to the design over multiple 
passes

o Common pitfall is to dive into the details too 
quickly and get the big decisions wrong by making 
incorrect assumptions, or by failing to evaluate 
the architecture effectively.



Key Architecture Principles (3)

• Separation of concerns

– Divide your application into distinct features with as little 
overlap in functionality as possible. 

– The important factor is minimization of interaction points 
to achieve high cohesion and low coupling.

• Single Responsibility Principle

– Each component or module should be responsible for only 
a specific feature or functionality.

• Principle of Least Knowledge

– A component or object should not know about internal 
details of other components or objects.



Key Architecture Principles (4)

• Specify intent in only one place
– Specific functionality should be implemented in only one 

component; the functionality should not be duplicated in any 
other component.

• The goal of a software architect is to minimize the complexity by 
separating the design into different areas of concern. 

– For example, the user interface (UI), business processing, and 
data access all represent different areas of concern. 

– Within each area, the components should focus on that specific 
area and should not mix code from other areas of concern. 

– For example, UI processing components should not include code 
that directly accesses a data source, but instead should use 
either business components or data access components to 
retrieve data.



Important Design Pointers

• Keep design patterns consistent within each 
layer of the architecture

• Prefer composition to inheritance when 
reusing functionality 

• Establish a coding style and naming 
convention for development

• Maintain system quality using automated QA 
techniques during development

• Define a clear contract for components



Key Architecture Decisions (1)

• Determine the Application Type
– Choice is governed by specific requirements and 

infrastructure limitations

• Some common types:
– Applications designed for mobile devices.
– Rich client applications designed to run primarily on a 

client PC.
– Rich Internet applications designed to be deployed from 

the Internet, which support rich UI and media scenarios.
– Service applications designed to support communication 

between loosely coupled components.
– Web applications designed to run primarily on the server 

in fully connected scenarios.



Key Architecture Decisions (2)

• Determine the Deployment Strategy
– Application may be deployed in a variety of environments, 

each with its own specific set of constraints such as 
physical separation of components across different 
servers, a limitation on networking protocols, firewall and 
router configurations, and more.

• Several common deployment patterns exist, which 
describe the benefits and considerations for a range of 
distributed and non-distributed scenarios. 

• Requirements of the application should be balanced 
with the appropriate patterns that the hardware can 
support, and the constraints that the environment 
exerts on the deployment options.



Key Architecture Decisions (3)

• Determine the Appropriate Technologies

– Compare the capabilities of the technologies 
chosen against application requirements, taking 
into account following factors before making 
decisions:

• Type of application being developed

• Preferred options for application deployment 
technology

• Organization policies, infrastructure limitations and 
resource skills



Key Architecture Decisions (4)

• Determine the quality attributes
– Quality attributes are system properties that are separate 

from the functionality of the system

• Attributes like security, performance, and usability can 
be used to focus on the critical problems that the 
design should solve

• Understand the requirements and deployment 
scenarios first to determine which quality attributes 
are important. 

• Quality attributes may conflict; for example, security 
often requires a trade-off against performance or 
usability.



Key Architecture Decisions (5)

• Determine the crosscutting concerns
– Crosscutting concerns represent key areas of design that are not 

related to a specific layer in the application

• Some of the key concerns are:
– Instrumentation and logging - Instrument all of the business-critical 

and system-critical events, and log sufficient details to recreate events 
in the system without including sensitive information

– Authorization - Ensure proper authorization with appropriate 
granularity within each layer, and across trust boundaries

– Exception management - Catch exceptions at functional, logical, and 
physical boundaries; and avoid revealing sensitive information to end 
users

– Caching - Identify what should be cached, and where to cache, to 
improve application’s performance and responsiveness



Architectural Styles - Definition

• An architectural style is a set of principles that shapes an 
application

• It is a coarse grained pattern that provides an abstract framework 
for a family of systems.

• An architectural style improves partitioning and promotes design 
reuse by providing solutions to frequently recurring problems 

• The architecture of a software system is almost never limited to a 
single architectural style, but is often a combination of architectural 
styles that make up the complete system

• Key factors that influence the choice of a particular style are the 
capacity of the organization for design and implementation, the 
capabilities and experience of the developers, and the 
infrastructure and organizational constraints.



Key Architectural Styles (1)

• Client / Server Architecture
– Segregates the system into two applications, where the client 

makes requests to the server

• Service-Oriented Architecture (SOA)
– Refers to applications that expose and consume functionality as 

a service using contracts and messages

• Object-Oriented Architecture
– A design paradigm based on division of responsibilities for an 

application or system into individual reusable and self-sufficient 
objects, each containing the data and the behaviour relevant to 
the object

• Layered architecture
– Partitions the concerns of the application into stacked groups 

(layers)



Key Architectural Styles (2)

• Component-Based Architecture
– Decomposes application design into reusable functional or logical components 

that expose well-defined communication interfaces

• Domain Driven Design
– An object-oriented architectural style focused on modeling a business domain 

and defining business objects based on entities within the business domain

• Message Bus Architecture
– An architecture style that prescribes use of a software system that can receive 

and send messages using one or more communication channels, so that 
applications can interact without needing to know specific details about each 
other

• N-Tier / 3-Tier Architecture
– Segregates functionality into separate segments in much the same way as the 

layered style, but with each segment being a tier located on a physically 
separate computer



Client / Server Architecture

• It describes distributed systems that involve a separate client and server 
system, and a connecting network. 

• The simplest form of client/server system involves a server application 
that is accessed directly by multiple clients, referred to as a 2-Tier 
architectural style

• The client/server architectural style describes the relationship between a 
client and one or more servers as:
– The client initiates one or more requests, waits for replies, and processes the 

replies on receipt
– The server typically authorizes the user and then carries out the processing 

required to generate the result. The server may send responses using a range 
of protocols and data formats to communicate information to the client

• Examples include Web browser-based programs running on the Internet; 
applications that access remote data stores (e-mail readers, FTP clients, 
and database query tools); and tools and utilities that manipulate remote 
systems (such as system management tools and network monitoring 
tools).



Benefits of Client / Server Architecture

• Higher security - All data is stored on the server, which 
generally offers a greater control of security than client 
machines.

• Centralized data access - Because data is stored only 
on the server, access and updates to the data are far 
easier to administer than in other architectural styles.

• Ease of maintenance - Roles and responsibilities of a 
computing system are distributed among several 
servers that are known to each other through a 
network. This ensures that a client remains unaware 
and unaffected by a server repair, upgrade, or 
relocation.



Variations of client/server style

• Client-Queue-Client systems
– Allows clients to communicate with other clients through a server-based queue

– Clients can read data from and send data to a server that acts simply as a queue to store 
the data

– This allows clients to distribute and synchronize files and information

• Peer-to-Peer (P2P) applications
– Developed from the Client-Queue-Client style, the P2P style allows the client and server 

to swap their roles in order to distribute and synchronize files and information across 
multiple clients

– It extends the client/server style through multiple responses to requests, shared data, 
resource discovery, and resilience to removal of peers

• Application servers
– A specialized architectural style where the server hosts and executes applications and 

services that a thin client accesses through a browser or specialized client installed 
software

– An example is a client executing an application that runs on the server through a 
framework such as Terminal Services



Component-Based Architecture

• It focuses on the decomposition of the design into individual functional or logical 
components that expose well-defined communication interfaces containing 
methods, events, and properties. 

• This provides a higher level of abstraction than object-oriented design principles, 
and does not focus on issues such as communication protocols and shared state.

• The key principle of the component-based style is the use of components that are:
– Reusable - Components are usually designed to be reused in different 

scenarios in different applications. 
– Replaceable - Components may be readily substituted with other similar 

components.
– Extensible - A component can be extended from existing components to 

provide new behaviour.
– Encapsulated - Components expose interfaces that allow the caller to use its 

functionality, and do not reveal details of the internal processes or any 
internal variables or state.

– Independent - Components are designed to have minimal dependencies on 
other components. Therefore components can be deployed into any 
appropriate environment without affecting other components or systems.



More on Components

• Common types of components used in applications include user 
interface components such as grids and buttons, and helper and 
utility components that expose a specific subset of functions used 
in other components.

• Components depend upon a mechanism within the platform that 
provides an environment in which they can execute, often referred 
to as component architecture. 

• Examples are the Component Object Model (COM), Distributed 
Component Object Model (DCOM), Common Object Request Broker 
Architecture (CORBA) and Enterprise JavaBeans (EJB). 

• Component architectures manage the mechanics of locating 
components and their interfaces, passing messages or commands 
between components, and in some cases maintaining state.



Benefits of Component-Based style

• Ease of deployment
– As new compatible versions become available, existing versions can be 

replaced with no impact on the other components or the system as a whole

• Reduced cost
– The use of third-party components allows to spread the cost of development 

and maintenance

• Ease of development
– Components implement well-known interfaces to provide defined 

functionality, allowing development without impacting other parts of the 
system

• Reusable
– The use of reusable components means that they can be used to spread the 

development and maintenance cost across several applications or systems

• Mitigation of technical complexity
– Components mitigate complexity through the use of a component container 

and its services. Example component services include component activation, 
lifetime management, method queuing, and transactions



Domain Driven Design Architectural 
Style

• An object-oriented approach to designing software based on the business 
domain, its elements and behaviours, and the relationships between 
them. 

• It aims to enable software systems that are a realization of the underlying 
business domain by defining a domain model expressed in the language of 
business domain experts. 

• The domain model can be viewed as a framework from which solutions 
can then be rationalized.

• To apply Domain Driven Design, a good understanding of the business 
domain to be modelled is essential.

• Used in complex domains to improve communication and understanding 
within the development team, or to express the design of an application in 
a common language that all stakeholders can understand. 

• An ideal approach for large and complex enterprise data scenarios that are 
difficult to manage using other techniques.



Key Benefits of Domain Driven Design

• Communication
– All parties within a development team can use the domain 

model and the entities it defines to communicate business 
knowledge and requirements using a common business 
domain language, without requiring technical jargon.

• Extensible
– The domain model is often modular and flexible, making it 

easy to update and extend as conditions and requirements 
change.

• Testable
– The domain model objects are loosely coupled and 

cohesive, allowing them to be more easily tested.



Layered Architectural Style

• It focuses on the grouping of related functionality within an application 
into distinct layers that are stacked vertically on top of each other. 

• Functionality within each layer is related by a common role or 
responsibility. 

• Communication between layers is explicit and loosely coupled. 
• Layering an application appropriately helps to support a strong separation 

of concerns that, in turn, supports flexibility and maintainability.
• It has been described as an inverted pyramid of reuse where each layer 

aggregates the responsibilities and abstractions of the layer directly 
beneath it.

• Examples include line-of-business (LOB) applications such as accounting 
and customer-management systems; enterprise Web-based applications 
and Web sites, and enterprise desktop or smart clients with centralized 
application servers for business logic.



Common design principles of Layered 
Architecture

• Abstraction
– Layered architecture abstracts the view of the system as whole while providing enough 

detail to understand the roles and responsibilities of individual layers and the 
relationship between them.

• Encapsulation
– No assumptions need to be made about data types, methods and properties, or 

implementation during design, as these features are not exposed at layer boundaries.
• Clearly defined functional layers

– The separation between functionality in each layer is clear. 
• High cohesion.

– Well-defined responsibility boundaries for each layer, and ensuring that each layer 
contains functionality directly related to the tasks of that layer, will help to maximize 
cohesion within the layer.

• Reusable
– Lower layers have no dependencies on higher layers, potentially allowing them to be 

reusable in other scenarios.
• Loose coupling

– Communication between layers is based on abstraction and events to provide loose 
coupling between layers.



Key Benefits of Layered Architectural 
Style

• Abstraction
– Layers allow changes to be made at the abstract level. 

• Isolation
– Allows isolation of technology upgrades to individual layers in order to reduce risk and 

minimize impact on the overall system.
• Manageability

– Separation of core concerns helps to identify dependencies, and organizes the code into 
more manageable sections.

• Performance
– Distributing the layers over multiple physical tiers can improve scalability, fault 

tolerance, and performance.
• Reusability

– Roles promote reusability. For example, in MVC, the Controller can often be reused with 
other compatible Views in order to provide a role specific or a user-customized view on 
to the same data and functionality.

• Testability
– Increased testability arises from having well-defined layer interfaces, as well as the 

ability to switch between different implementations of the layer interfaces. 



Message Bus Architectural Style

• It describes the principle of using a software system that can send 
and receive messages using one or more communication channels, 
so that applications can interact without needing to know specific 
details about each other.

• It is a style for designing applications where interaction between 
applications is accomplished by passing messages over a common 
bus.

• The most common implementations of message bus architecture 
use either a messaging router or a Publish/Subscribe pattern, and 
are often implemented using a messaging system such as Message 
Queuing.

• Many implementations consist of individual applications that 
communicate using common schemas and a shared infrastructure 
for sending and receiving messages.



Role of Message Bus

• Message-oriented communications
– All communication between applications is based on messages 

that use known schemas

• Complex processing logic
– Complex operations can be executed by combining a set of 

smaller operations, each of which supports specific tasks

• Modifications to processing logic
– Because interaction with the bus is based on common schemas 

and commands, applications can be inserted or removed on the 
bus to change the logic that is used to process messages

• Integration with different environments
– By using a message-based communication model based on 

common standards, you can interact with applications 
developed for different environments



Key Benefits of Message Bus 
Architecture

• Extensibility

– Applications can be added to or removed from the bus without having an impact on the 
existing applications.

• Low complexity

– Application complexity is reduced because each application only needs to know how to 
communicate with the bus.

• Flexibility

– The set of applications that make up a complex process can be changed easily to match 
changes in business or user requirements.

• Loose coupling

– As long as applications expose a suitable interface for communication with the message 
bus, there is no dependency on the application itself, allowing changes, updates, and 
replacements that expose the same interface.

• Scalability

– Multiple instances of the same application can be attached to the bus in order to handle 
multiple requests at the same time.



N-Tier Architectural Style

• It describes the separation of functionality into segments in much the same way as the 
layered style, but with each segment being a tier that can be located on a physically separate 
computer.

• It evolved through the component-oriented approach, generally using platform specific 
methods for communication instead of a message-based approach.

• N-tier application architecture is characterized by the functional decomposition of 
applications, service components, and their distributed deployment, providing improved 
scalability, availability, manageability, and resource utilization.

• The nth tier only has to know how to handle a request from the n+1th tier, how to forward 
that request on to the n-1th, and how to handle the results of the request.

• Examples include:

– a typical financial Web application where security is important. The business layer must 
be deployed behind a firewall, which forces the deployment of the presentation layer on 
a separate tier in the perimeter network. 

– a typical rich client connected application, where the presentation layer is deployed on 
client machines and the business layer and data access layer are deployed on one or 
more server tiers.



Key Benefits of N-Tier Architecture

• Maintainability
– Because each tier is independent of the other tiers, updates or 

changes can be carried out without affecting the application as a 
whole.

• Scalability
– Because tiers are based on the deployment of layers, scaling out 

an application is reasonably straightforward.

• Flexibility
– Because each tier can be managed or scaled independently, 

flexibility is increased.

• Availability
– Applications can exploit the modular architecture of enabling 

systems using easily scalable components, which increases 
availability.



Object-Oriented Architectural Style

• It is a design paradigm based on the division of responsibilities for 
an application into individual reusable and self-sufficient objects, 
each containing the data and the behavior relevant to the object. 

• An object-oriented design views a system as a series of cooperating 
objects, instead of a set of routines or procedural instructions. 

• Objects are discrete, independent, and loosely coupled; they 
communicate through interfaces, by calling methods or accessing 
properties in other objects, and by sending and receiving messages.

• Common uses of the object-oriented style include defining an 
object model that supports complex scientific or financial 
operations, and defining objects that represent real world artifacts 
within a business domain.



Key principles of Object-Oriented Style

• Abstraction
– This allows to reduce a complex operation into a generalization that retains the base 

characteristics of the operation. 

• Composition
– Objects can be assembled from other objects, and can choose to hide these internal objects 

from other classes or expose them as simple interfaces.

• Inheritance
– Objects can inherit from other objects, and use functionality in the base object or override it 

to implement new behavior. 

• Encapsulation
– Objects expose functionality only through methods, properties, and events, and hide the 

internal details such as state and variables from other objects. 

• Polymorphism
– This allows to override the behavior of a base type that supports operations in an application 

by implementing new types that are interchangeable with the existing object.

• Decoupling
– Objects can be decoupled from the consumer by defining an abstract interface that the object 

implements and the consumer can understand. This allows to provide alternative 
implementations without affecting consumers of the interface.



Key Benefits of Object Oriented Style

• Understandable
– maps the application more closely to the real world objects, making it more 

understandable.

• Reusable
– provides for reusability through polymorphism and abstraction.

• Testable
– provides for improved testability through encapsulation.

• Extensible
– encapsulation, polymorphism, and abstraction ensure that a change in the 

representation of data does not affect the interfaces that the object exposes, 
which would limit the capability to communicate and interact with other 
objects.

• Highly Cohesive
– by locating only related methods and features in an object, and using different 

objects for different sets of features a high level of cohesion can be achieved.



Service-Oriented Architectural Style

• It enables application functionality to be provided as a set of services, and 
the creation of applications that make use of software services. 

• Services are loosely coupled because they use standards-based interfaces 
that can be invoked, published, and discovered. 

• Services in SOA are focused on providing a schema and message-based 
interaction with an application through interfaces that are application 
scoped, and not component or object-based. 

• The SOA style can package business processes into interoperable services, 
using a range of protocols and data formats to communicate information. 

• Clients and other services can access local services running on the same 
tier, or access remote services over a connecting network.

• Common examples include sharing information, handling multistep 
processes such as reservation systems and online stores, exposing industry 
specific data or services over an extranet, and creating mash-ups that 
combine information from multiple sources.



Key Principles of SOA Style

• Services are autonomous
– Each service is maintained, developed, deployed, and versioned 

independently.

• Services are distributable
– Services can be located anywhere on a network, locally or remotely, as long as 

the network supports the required communication protocols.

• Services are loosely coupled
– Each service is independent of others, and can be replaced or updated 

without breaking applications that use it as long as the interface is still 
compatible.

• Services share schema and contract, not class
– Services share contracts and schemas when they communicate, not internal 

classes.

• Compatibility is based on policy
– Policy in this case means definition of features such as transport, protocol, and 

security.



Key Benefits of SOA style

• Domain alignment
– Reuse of common services with standard interfaces increases business and 

technology opportunities and reduces cost.

• Abstraction
– Services are autonomous and accessed through a formal contract, which 

provides loose coupling and abstraction.

• Discoverability
– Services can expose descriptions that allow other applications and services to 

locate them and automatically determine the interface.

• Interoperability
– Because the protocols and data formats are based on industry standards, the 

provider and consumer of the service can be built and deployed on different 
platforms.

• Rationalization
– Services can be granular in order to provide specific functionality, rather than 

duplicating the functionality in number of applications, which removes 
duplication.



Conclusion
•Identify Architecture Objective - Clear objectives 
help you to focus on your architecture and on 
solving the right problems in your design. Precise 
objectives help you to determine when you have 
completed the current phase, and when you are 
ready to move to the next phase.

•Key Scenarios - Use key scenarios to focus your 
design on what matters most, and to evaluate 
your candidate architectures when they are ready.

•Application Overview - Identify your application 
type, deployment architecture, architecture 
styles, and technologies in order to connect your 
design to the real world in which the application 
will operate.

•Key Issues - Identify key issues based on quality 
attributes and crosscutting concerns..

•Candidate Solutions - Create an architecture 
spike or prototype that evolves and improves the 
solution and evaluate it against your key 
scenarios, issues, and deployment constraints 
before beginning the next iteration of your 
architecture.



References

• Len Bass, Paul Clements, Rick Kazman: Software 
Architecture in Practice, Second Edition. Addison-
Wesley, 2003.

• Fowler, Martin: Patterns of Enterprise Application 
Architecture. Addison-Wesley, 2002.

• Microsoft Patterns and Practices. Microsoft Press, 
2009.

• David Garlan, Mary Shaw: An Introduction to 
Software Architecture. CMU, 1994


