

Aulë is getting impatient!

�  Eru Ilúvatar has been
announcing his new release of
Elves and Humans for
centuries, but all we’ve seen
are delays, delays, delays. It’s
just vaporware! I want there
to be inhabitants of Arda
now!

Melkor Chimes In

I know, it’s lame, isn’t it?
I’ll bet that I could create
better inhabitants for Arda
than Eru could, and I’d be
able to do it faster and
under budget too!

I have an idea!

Let’s make inhabitants of
Arda of our own! If we do
that, then Eru Ilúvatar will
surely be super proud of us
and reward us with lots of
development contracts.

And So It Begins

�  A good application
begins with a good
framework. I know! I’ll
use Ruby on Rails!

Framework? Bah.

�  I’ll just do my own
thing. There’s no
way I’d be bound
up in something so
rigid, that’s stupid!
I can make a way
better application
on my own!

Are you sure?

�  Well, if you say so …
But I’m going to use
Rails, and I’ll bet Eru
will like my application
better.

Then May the Best Valar
Win!

About Ruby on Rails

�  Ruby on Rails, also
known as Rails, is a web
development framework
for the Ruby
programming language.

About Ruby on Rails

�  Wait, I thought
Ruby on Rails was
a programming
language.

About Ruby on Rails

�  Quite incorrect, Melkor.
Ruby is a general-
purpose object-oriented
programming language
developed by Yukihiro
Matsumoto in the
1990’s. Rails is a web
development framework
based on that language.

About Ruby on Rails

�  Oh, well, that’s
dumb. I think I’ll
just use CGI.

Ruby on Rails History

�  *Ahem* Anyway, Rails
was developed by David
Heinemeier Hansson in
2004, although it did not
really take off until 2007
when it was shipped with
the Mac OS X operating
system, which, as you
know, is what everyone
uses in the Undying Lands.

Ruby on Rails History

�  I prefer Windows
myself.

Ruby on Rails History

�  I’m sure that you do. Anyway,
Rails 2.3 was released in 2009,
and with it came many
improvements, pervasive Rack
integration, refreshed support for
Rails Engines, nested
transactions for Active Record,
dynamic and default scopes,
unified rendering, more efficient
routing, application templates,
and quiet backtraces.*

*source: http://guides.rubyonrails.org/
2_3_release_notes.html

Ruby on Rails History

�  2011 brought even more
exciting changes with the
release of Rails 3.0, which
emphasizes RESTful
practices, a chainable query
language for ActiveRecord,
and delightfully
unobtrusive JavaScript
helpers.

*source: http://guides.rubyonrails.org/
3_0_release_notes.html

Ruby on Rails History

�  Blah, blah, this is
boring … I think
I’ll set my monitor
on fire.

Getting Started

�  Well since you’re so
impatient, let’s get started.
Since everyone in the
Undying Lands uses Mac
OS X, I’m going to assume
you have Rails already. If
you don’t, then you can
find out how to get it at
http://rubyonrails.org/
download

Getting Started

�  To start a new Rails
project, fire up a console,
navigate to the folder
where you keep your
projects, and type “rails
new <<project name>>.”
Just hit enter, and Rails
generates everything you
need to get started. Simple,
neh?

Getting Started

Getting Started

Rails Principles

�  There are several
important principles of
Ruby on Rails which I
believe leads to better
code, and better web
development. And the
first one is …

Don’t Repeat Yourself

�  DRY. Don’t repeat
yourself.

Don’t Repeat Yourself

�  What?

Don’t Repeat Yourself

�  Don’t repeat your …
Heeeey!

Don’t Repeat Yourself

�  Sorry, mate, I
couldn’t resist.

Don’t Repeat Yourself

�  *grumble grumble*
Repetitive code causes a lot
of bugs, takes longer to
write, and is difficult to
read. If you decide to make
a change, then isn’t it much
easier to only make that
change once? Therefore,
good Rails developers
always extract repeated
code into methods or
utilize helper classes.

Don’t Repeat Yourself

�  There are also lots of
Rails libraries and Ruby
gems available that can
help create common
elements, like
pagination. No need to
re-invent the Song of the
Ainur!

Don’t Repeat Yourself

�  Well, I don’t really
expect to have to
change my code
much, since it will
be perfect to begin
with. Moving on…

Convention over
Configuration

�  As you saw from the
project generation, Rails
does a lot of stuff for
you, if you’re willing to
let it. However, it
requires following Rails
conventions in order to
do it.

Convention over
Configuration

�  That sounds like a
great way … to
stifle creativity.
Thanks, but I’ll do
things my way.

Convention over
Configuration

�  There’s still plenty of
things you can control! But
if you keep to convention,
Rails will automatically
know what to do with
certain files. For instance,
for my Dwarves project,
the MiningController is
called mining_controller.rb
and is located in the app/
controllers directory.
Which brings us to…

Model, View, Controller

�  Rails comes with extensive
support for the Model View
Controller architecture,
which helps to keep code
neat and well-organized.
MVC architecture separates
the “business logic” of the
controller from the
application data and the
front-end GUI.

Model, View, Controller

�  The code in Rails you’ll
spend the most time editing
is located in the app/
folder. There are many
folders in the app folder,
but the most important
ones are model/, view/,
and controller/. The code
for each type of file is
automatically placed in its
respective folder when it is
generated.

Model

�  The model holds the raw
data of the object. Any
actions that operate on
the data and work with
the database are
contained in the model.
The model contains the
name, gender, and age of
my Dwarves, among
other things.

Model

Model

The Model and Rails

�  Models work closely
with ActiveRecord, the
Rails tool for interacting
with databases.
ActiveRecord works with
almost any kind of
database, and greatly
simplifies complicated
SQL queries.

View

�  The view is the front-end
GUI for the application –
basically, everything the
user sees, everything that
makes it look pretty. The
short, stocky, bearded
figure of the dwarf is the
view for my application.

View

View

View

The View and Rails

�  The Rails View is handled
by the ActionView class.
The most common use of
ActionView is to use ERB,
which allows coders to
embed ruby code in HTML
or XML files. It’s
important to only embed
Ruby that helps with the
view, however – the
business logic should go in
the model or controller.

Controller

�  The controller is the
where the “brain” of the
object – in this case,
dwarves. The controller
is what should hold the
actions the object
contains, such as
drink_beer and
mine_for_treasure.

Controller

�  The controller was generated when the view was. It already has a “show”
method from the view generation, but we can edit that and add some new
methods as well.

The Controller and Rails

�  Rails uses something called
ActionController to
facilitate communication
between the controller,
model, and view. It’s not
really something you need
to worry about, just make
sure everything is in the
right file. Convention over
configuration, remember?

That Sounds Hard!

�  Bah, this is all way
too complicated. I
put my entire web
app in one giant
Perl file! That’s
better, right?

Testing in Rails

�  … Yeah, Melky, you
have fun with that. But
MVC is not the only
advantage of Rails. Ruby
on Rails also offers a
plethora of testing
platforms to ensure that
your code is as free from
bugs as possible!

Testing in Rails

�  The built-in Rails unit test
framework is quite good,
but you can also use tools
like Rspec and Cucumber
to create acceptance,
integration, and functional
tests. The rails community
encourages test-driven
design, and the Rails
framework makes it easy!

Testing in Rails

Testing in Rails

�  But Aulë, I don’t
need to test my
code, my code is
perfect already.

Testing in Rails

�  You may scoff at testing,
but you may one day
have an apprentice who
embraces it*.

*Shameless plug:
http://csel.cs.colorado.edu/~mcnultym/oo/tdd/tdd.pdf

Testing in Rails

�  Bah, some apprentice.
If he tests his code,
he’ll never be as evil as
me!

Conclusion

�  Well, all of my tests pass
at least --my Rails
application development
is complete, let’s have a
look at the results!

Dwarves!

�  Model: Name, Age,
Beard, Gender

�  View: This stylish
picture of a dwarf!

�  Controller: Swing
axe, drink beer, hunt
for treasure

Conclusion

�  Sure, no code is
completely bug-free, but
those are some pretty
sweet dwarves if I do say
so myself.

Conclusion

�  Ha! Sucker! I finished my
code hours ago while you
were wasting time with
“MVC” and “Testing.”

Orcs!

�  RRRAAAAAWWWR!!!!!

Conclusion

�  Eh… close enough. Let’s
approach Ilúvatar and see
who won!

Conclusion

�  You should not have gone
behind my back! Waiting
until the end to talk to the
product owner is not very
Agile L

Conclusion

�  I’m sorry, Eru L

Conclusion

�  Oh, I can’t stay mad at you,
Aulë. I appreciate your use
of Rails MVC architecture
in creating the dwarves. For
that, I shall gift them with
sentience. But I urge you use
more iterative design in the
future.

Conclusion

�  What about my orcs? Aren’t
they way more awesome than
some stupid dwarves?

Conclusion

�  As for you, Melkor, for
this abomination I will
give you the worst
punishment I can think
of.

Conclusion

�  You must maintain this
code you wrote until the
end of time!

Conclusion

�  NOOOOOOOO!!!!!!!

Conclusion

�  In other news, my own
software project is
complete and well-tested!

Humans and Elves!

Conclusion

�  Wow, good job, Eru! I’ll
bet you used Rails to
develop those, didn’t
you?

Conclusion

�  No, I used Django.

The End!

Sources

�  For more information, check out these books:

�  Image Sources: http://tolkiengateway.net/wiki/Main_Page

