Requirements
Solicitation
and
Analysis

An lterative Process

by: Robert N. Loomas, Jr.
CSCI 5828 — Spring 2012

Does the client know what they need?

 The customer starts by

explaining what they
think they need based on
their understanding of
the current domain.

e |sthis what the customer
is REALLY looking for?

How the customer explained it

Does the Project Manager understand
what he/she heard?

* The Project Manager
develops a “picture” of
what the customer
explained based on what
he/she knows about the
customer’s domain.

* Is THIS what the
customer is looking for?

How the Project Leader
understood it

Does the Analyst understand what the
Project Manager explained?

* The Analyst develops a
specification based on

how the Project Manager
explained it.

* Is THIS what the
customer is looking for?

How the Analyst designed it

Does the Programmer understand the
specification the Analyst wrote?

* The Programmer
develops the product
based on the
specification written by
the Analyst.

* Is THIS what the
customer is looking for?

How the Programmer wrote it

Did anyone bother to learn how the customer uses the
current system and what the customer actually needs?

e THIS is what the
customer needs!!

What the customer really

needed

The Agile Process

Stakeholders actively participate

Adopt inclusive models

Take a breadth-first approach

Model storm details just in time (JIT)

Treat requirements like a prioritized stack

Prefer executable requirements over static documentation
Your goal is to implement requirements, not document them
Recognize that you have a wide range of stakeholders
Create platform independent requirements to a point
Smaller is better

Question traceability

Explain the techniques

Adopt stakeholder terminology

Keep it fun

Obtain management support

Turn stakeholders into developers

What does it mean for a project stakeholder to actively participate?

There are two issues that need to be addressed to enable this practice — availability of

project stakeholders to provide requirements and their (and your) willingness to actively
model together.

4
Po"‘rr i :.u?

% s i T DO(M(,.‘\‘

Prave
L"LQ‘JG(

The figure above presents a high-level view of the requirements process, using the notation
for UML activity diagrams, indicating the tasks that developers and project stakeholders are
involved with.

The dashed line is used to separate the effort into swim lanes that indicate what role is
responsible for each process. In this case you see that both project stakeholders and
developers are involved with identifying ideas or suggestions, discussing a potential
requirement, and then modeling and potentially documenting it.

Project stakeholders are solely responsible for prioritizing requirements, the system is
being built for them, therefore, they are the ones that should set the priorities.

Likewise, developers are responsible for estimating the effort to implement a requirement
because they are the ones that will be doing the actual work — it isn’t fair, nor advisable, to
impose external estimates on developers. Although prioritization and estimation of
requirements is outside the scope of Agile Modeling (AM), however, it is within the scope
of the underlying process such as Extreme Programming (XP) or Unified Process (UP) that
you are applying AM within, it is important to understand that these tasks are critical
aspects of your overall requirements engineering effort.

Active Stakeholder Participation
On-Site Customer

Joint Application Design (JAD)

Focus Groups
Observation

Face-To-Face Interviews

Electronic Interviews

Effectiveness of Legacy Code Analysis
Requirements Reading
Gatheri ng Collaborative Restricted
. Interaction Interaction
Techniques

Copyright 2005 Scott W. Ambler

Copyright 2001-2005 Scott W. Ambler

Relative Effectiveness of User
Representatives

Actual Stakeholder

Product Manager

Effectiveness

Business Analyst as User

Personas

Copyright 2005 Scott W. Ambler

Copyright 2001-2005 Scott W. Ambler

Adopt Inclusive Models

To make it easier for project stakeholders to be actively involved with requirements
modeling and documentation, to reduce the barriers to entry in business parlance, you
want to follow the practice “Use the Simplest Tools.”

Many requirements artifacts can be modeled using either simple or complex tools —
- Post It Notes and Flip Chart Paper can be used to model the requirements for a
screen/page.

- Index Cards can be used for conceptual modeling.

Whenever you bring technology into the requirements modeling effort, such as a drawing
tool to create “clean” versions of use case diagrams or a full-fledged CASE tool, you make it
harder for your project stakeholders to participate because they now need to not only
learn the modeling techniques but also the modeling tools.

By keeping it simple you encourage participation and thus increase the chances of effective
collaboration.

Take a Breadth-First Approach

It is better to paint a wide swath at first (to get a feel for the bigger picture) than it is to
narrowly focus on one small aspect of your system. By taking a breadth-first approach you

guickly gain an overall understanding of your system and can still dive into the details when
appropriate.

The point is that you can do a little bit of initial, high-level requirements envisioning up
front early in the project to understand the overall scope of your system without having to
invest in mounds of documentation.

Through initial, high-level modeling you gain the knowledge that you need to guide the
project but choose to wait to act on it.

Model Storm Details Just In Time (JIT)

Requirements are identified throughout most of your project. Although the majority of
your requirements efforts are performed at the beginning your project it is very likely that
you will still be working them just before your final code freeze before deployment.
Remember the principle “Embrace Change.” Agilists take an evolutionary, iterative and
incremental, approach to development. The implication is that you need to gather
requirements in exactly the same manner.

Luckily AM enable evolutionary modeling through the use of practical approaches such as:
Create Several Models in Parallel
Iterate To Another Artifact
Model In Small Increments

The shorter the feedback cycle between model storming a requirement and implementing
it, the less need there is for documenting the details.

Treat Requirements Like a Prioritized Stack

The figure to the right provides an High
overview of the agile approach to Priority
managing requirements, reflecting /
both Extreme Programming (XP)’s Modeled in

. greater detail
planning game and the Scrum
methodology. The software
development team has a stack of
prioritized and estimated Modeled in
requirements which needs to be lesser detail \
implemented (co-located agile

teams will often literally have a Low
stack of user stories written on Priority
index cards).

A

\J

p—

000DIOOOOMOONO0ONIB00M0

—

} Each iteration implement the highest-
priority work items

Each new work item is

- <> prioritized and added to

D

— —

Work Items

the stack

Work items may be
reprioritized at any time

Work items may be removed
at any time

Copyright 2004-2007 Scott W. Ambler

The team takes the highest priority requirements from the top of the stack which they
begin to implement in the current iteration. Scrum suggests that you freeze the
requirements for the current iteration to provide a level of stability for the developers. If
you do this, any change to a requirement you’re currently implementing should be treated

as just another new requirement.

Lean Work Management Process.

It's interesting to
note that lean teams
are starting to take a
requirements pool
approach to
managing
requirements
instead of a stack

| ——

—>

New work items
added continuously
and through
replenishment
modeling sessions

(7 \\
=
Standard)
c \
ixed Delivery Date/
-)
Expedite /
——
>
Intangible ~ /
& Options W,

—»—

Work items are
pulled when
capacity is available
to address them

Copyright 2010

Scott W. Ambler

Prefer Executable Requirements Over Static Documentation

During development it is quite common to model storm for several minutes and then code,
following common Agile practices (such as Test-First Design (TFD) and refactoring) for
several hours and even several days at a time to implement what you've just modeled.

This is where your team will spend the majority of its time.

Agile teams do the majority of their detailed modeling in the form of executable
specifications, often customer tests or development tests.

Why does this work?
Because your model storming efforts enable you to think through larger, cross-entity
issues and Test-Driven-Design (TDD) allows you to think through very focused issues

typically pertinent to a single entity at a time.

With refactoring you evolve your design via small steps to ensure that your work
remains of high quality.

TDD promotes confirmatory testing of your application code and detailed specification of
that code.

Customer tests (also called agile acceptance tests) can be thought of as a form of detailed
requirements and developer tests as detailed design. Having tests do “double duty” like
this is a perfect example of single sourcing information, a practice which enables
developers to travel light and reduce overall documentation.

Detailed specification is only part of the overall picture — high-level specification is also
critical to your success, when it’s done effectively.

This is why we need to go beyond TDD to consider Agile Model Driven Development
(AMDD).

Your End Goal is To Effectively Implement Requirements, Not Document Them

Too many projects are crushed by the overhead required to develop and maintain
comprehensive documentation and traceability between it.

Take an agile approach to documentation and keep it lean and effective.

The most effective documentation is just barely good enough for the job at hand.
By doing this, you can focus more of your energy on building working software.

The urge to write requirements documentation should be transformed into an urge to
collaborate closely with your stakeholders instead then create a consumable solution
based on what they tell you.

Recognize That You Have a Wide Range of Stakeholders

A a .M

End Users External
Team Members Domain System

&
Experts
<):\> H <):\'> v Auditors 162MS [R
Product ﬂ Senior
t
Team Lead % Owner Operations Managemen

SUpport Staff

Staff Architects

Copyright 2005-2010 Scott W. Ambler

Architecture Owner

End users, either direct or indirect, aren't your only stakeholders. Other stakeholders
include :

managers of users senior managers & auditors
operations staff members the "gold owner" who funds the project
support (help desk) staff members your program/portfolio manager

developers working on other systems that integrate or interact with the one under
development

maintenance professionals potentially affected by the development and/or
deployment of a software project

These people aren't going to agree with one another, they're going to have different
opinions, priorities, understandings of what they do, understandings of what others do,
and visions for what the system should (or shouldn't) do.

The implication is that you're going to need to recognize that you're in this situation and
act accordingly. The figure above shows how agile teams typically have someone in a
stakeholder representative role (called product owner in Scrum) whom they go to as the
official source of information and prioritization decisions. This works well for the
development team, but essentially places the burden on the shoulders of this person.

Anyone in this role will need to:

1. Have solid business analysis skills, particularly in negotiation, diplomacy, and
requirements elicitation.

2. Educate the team in the complexity of their role.

3. Be prepared to work with other product owners who are representing the stakeholder
community on other development teams. (This is particularly true at scale with large
agile teams.)

4. Recognize that they are not an expert in all aspects of the domain. Therefore, they will
need to have good contacts within the stakeholder community and be prepared to put

the development team in touch with the appropriate domain experts on an as-needed
basis so that they can share their domain expertise with the team.

Platform Independent Requirements to a Point

Requirements should be technology independent. The terms OO, structured, and
component-based are all categories of implementation technologies, and although you
may choose to constrain yourself to technology that falls within one of those categories the
bottom line is that you should just be concerned about requirements. That’s it, just
requirements.

All of the techniques described below can be used to model the requirements for a system
using any one (or more) of these categories.

Sometimes you must go away from the ideal of identifying technology-independent
requirements. For example, a common constraint for most projects is to take advantage of
the existing technical infrastructure wherever possible.

At this level the requirement is still technology independent, but if you drill down into it to
start listing the components of the existing infrastructure (such as your Sybase vX.Y.Z
database or the need to integrate with a given module of SAP R/3) then you've crossed the
line.

This is okay as long as you know that you are doing so and don't do it very often.

Smaller is Better

Remember to think small.

Smaller requirements, such as features and user stories, are much easier to estimate
and to build to than are larger requirements, such as use cases.

An average use case describes greater functionality than the average user story and is
thus considered “larger”.

They are also easier to prioritize and therefore manage.

Question Traceability

Think very carefully before investing in a requirements traceability matrix, or in full
lifecycle traceability in general, where the traceability information is manually
maintained.

Traceability is the ability to relate aspects of project artifacts to one another, and a
requirements traceability matrix is the artifact that is often created to record these
relations — it starts with your individual requirements and traces them through any
analysis models, architecture models, design models, source code, or test cases that
you maintain.

Organizations with traceability cultures will often choose to update artifacts regularly,
ignoring the practice “Update Only When it Hurts,” so as to achieve consistency between
the artifacts (including the matrix) that they maintain. They also have a tendency to
capture the same information in several places, often because they employ overly
specialized people who "hand off" artifacts to other specialists in a well-defined process.

This is not traveling light. Often a better approach is to single source information and to
build teams of generalizing specialists.

The benefits of having such a matrix is that it makes it easier to perform an impact analysis
pertaining to a changed requirement because you know what aspects of your system will
be potentially affected by the change.

In simple situations (e.g. small co-located teams addressing a fairly straightforward
situation) when you have one or more people familiar with the system, it is much easier
and cheaper to simply ask them to estimate the change.

If a continuous integration strategy is in place it may be simple enough to make the
change and see what, if anything, you broke by rebuilding the system.

In simple situations (in which many agile teams find themselves) traceability matrices are
highly overrated because the total cost of ownership (TCO) to maintain such matrices,
even if you have specific tools to do so, far outweigh the benefits.

Make your project stakeholders aware of the real costs and benefits and let them decide.
A traceability matrix is effectively a document and is therefore a business decision to be
made by them.

If you accept the Agile Method principle Maximize Stakeholder ROI, if you're honest about
the TCO of traceability matrices, then they often prove to be superfluous.

When does maintaining traceability information make sense? The quick answer is “in some

agility at scale situations and when you have proper tooling support”

1. Automated tooling support exists. Some development tools, such as those based on the
Jazz platform, will automatically provide most of your traceability needs as a side
effect of normal development activities. You may still need to do a bit of extra work
here and there to achieve full traceability, but a lot of the traceability work can, and
should, be automated. With automated tooling the TCO of traceability drops
increasing the chance that it will provide real value to your effort.

2. Complex domains. When you find yourself in a complex situation, perhaps you're
developing a financial processing system for a retail bank or a logistics system for a
manufacturer, then the need for traceability is much greater to help deal with that
complexity.

3. Large teams or geographically distributed teams. Although team size is typically
motivated by greater complexity -- domain complexity, technical complexity, or
organizational complexity -- the fact is that there is often a greater need for
traceability when a large team is involved because it will be difficult for a even the
most experienced of team members to comprehend the detailed nuances of the
solution. The implication is that you will need the type of insight provided by
traceability information to effectively assess the impact of proposed changes. Note
that large team size and geographic distribution have a tendency to go hand-in-hand.

4. Regulatory compliance. Sometimes you have actual regulatory compliance needs, for
example the Food and Drug Administration's CFR 21 Part 11 regulations requires it,
then clearly you need to conform to those regulations.

In short, the question of manually maintained traceability which is solely motivated by:

* "it's areally good idea”
* "we need to justify the existence of people on the CCB“

(it's rarely worded like that, but that's the gist of it)
 "CMMI's Requirements Management process area requires it”

In reality there's lots of really good ideas out there with much better ROI, surely the CCB
members could find something more useful to do, and there aren't any CMMI police so

don't worry about it.

In short, just like any other type of work product, you should have to justify the creation of
a traceability matrix.

It's requirements analysis, not retentive analysis.

)

Explain the Techniques

Everyone should have a basic understanding of a modeling technique, including your
project stakeholders. They’ve never seen CRC cards before? Take a few minutes to explain
what they are, why you are using them, and how to create them. You cannot have Active
Stakeholder Participation if your stakeholders are unable to work with the appropriate
modeling techniques.

Adopt Stakeholder Terminology

Do not force artificial, technical jargon onto your project stakeholders. They are the ones
that the system is being built for, therefore, it is their terminology that you should use to
model the system. Avoid “geek-speak.” An important artifact on many projects is a
concise glossary of business terms.

Keep it Fun

Modeling doesn’t have to be an arduous task. In fact, you can always have fun doing it.
Tell a few jokes, and keep your modeling efforts light. People will have a better time and

will be more productive in a “fun” environment.

Obtain Management Support

Investing the effort to model requirements and, in particular, applying agile usage-centered
design techniques, are new concepts to many organizations.

An important issue is that your project stakeholders are actively involved in the modeling
effort, a fundamental culture change for most organizations.

As with any culture change, without the support of senior management, you likely will not
be successful.

You will need support from both the managers within your IS (Information Systems)
department and within the user area.

Turn Stakeholders Into Developers

An implication of this approach is that your project stakeholders are learning fundamental
development skills when they are actively involved with a software project.

It is quite common to see users make the jump from the business world to the technical

world by first becoming a business analyst and then learning further development skills to
eventually become a full-fledged developer.

Because agile software development efforts have a greater emphasis on stakeholder
involvement than previous software development philosophies we will see this phenomena
occur more often (keep a look out for people wishing to make this transition and help to
nurture their budding development skills).

You never know, maybe some day someone will help nurture your business skills and help
you to make the jump out of the technical world.

References

 http://www.agilemodeling.com/essays/agileRequirementsBestPractices.htm

 http://www.agilemodeling.com/essays/amdd.htm

* Notes and presentation material from CSCI 5548 / Fall 2011 by Professor Dameron

