
Tapestry
Code less, deliver more.

Rayland Jeans

What is Apache Tapestry?
• Apache Tapestry is an open-source framework designed to

create scalable web applications in Java.

• Tapestry allows developers to create web applications that
are a set of pages constructed from components.

• Tapestry is designed specifically to make creating new
components easy.

• Simplifies configuration by removing the need for XML and
promotes the use of Java annotations and naming
conventions.

What is Apache Tapestry?
• Written in Pure Java so pages and components can be

written in Java, Groovy or Scala.

• Provides the ability to add new modules using an IoC
container.

• Contains built-in support for Ajax and Javascript.

• Provides support for easily unit testing pages and
components.

Adaptive API
• A statement made on the Tapestry web site

• http://tapestry.apache.org

• “In traditional Java frameworks, including Tapestry 4, user
code is expected to conform to the framework.

• You create classes that extend from framework-provided base
classes, or implement framework-provided interfaces.

• This works well until you upgrade to the next release of the
framework

• Interfaces or base classes will have changed and your existing
code will need to be changed to match.

• In Tapestry 5, the framework adapts to your code.

• You have control over the names of the methods, the
parameters they take, and the value that is returned.

• This is driven by annotations, which tell Tapestry under what
circumstances your methods are to be invoked.”

http://www.tapestry/apache.org
http://www.tapestry/apache.org

Features of Tapestry
• Tapestry 5 has many features. These are the features that

will be covered in this presentation.

• Live class reloading.

• Convention over Configuration

• Pages and Components

• Advanced Exception Reporting

• Inversion of Control Container

• Ajax and JavaScript support

Live Class Reloading
• Most Java web application frameworks require you to

restart the web server when a change is made to a Java
class.

http://xkcd.com/303/

http://xkcd.com/303/
http://xkcd.com/303/

Live Class Reloading
• Tapestry provides automatic reloading of page classes and

templates.
• On a change of any class within a controlled package,

Tapestry will discard and reload all page instances and
the class loader.

• This does not affect data stored in the session.
• This allows developers to make changes while the

application is running.
• This also allows developers to focus more on the

application being developed and not the web server
hosting the application.

Convention over Configuration
• No XML config files

• Most older Java web frameworks require the use of XML
for configuration.

• Tapestry uses Java annotations for almost all of its
configuration.

• In addition to annotations, Tapestry makes use of naming
conventions for configuration, such as:

• Method names

• Class names

• Package names

Configuration
• So if there are no XML configuration files, how do you

configure Tapestry?

• Since Tapestry is designed to run in a servlet container like
Apache Tomcat or Jetty, you do need to configure the servlet
deployment descriptor (web.xml).

• Specific configurations required are:

• tapestry.app-package

• Tapestry filter

• Filter mapping

• This is sort of where configuration stops and convention
takes over.

http://web.xml
http://web.xml

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <display-name>My Tapestry Application</display-name>
 <context-param>
 <param-name>tapestry.app-package</param-name>
 <param-value>com.sample.app</param-value>
 </context-param>
 <filter>
 <filter-name>app</filter-name>
 <filter-class>org.apache.tapestry5.TapestryFilter</filter-
class>
 </filter>
 <filter-mapping>
 <filter-name>app</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
</web-app>

Configuring Tapestry
Application Deployment Descriptor (web.xml)

http://java.sun.com/dtd/web-app_2_3.dtd
http://java.sun.com/dtd/web-app_2_3.dtd

• tapestry.app-package defines the location of your
Page files and your Component files.

• Tapestry will use naming conventions to determine where
Pages and Components are placed within your application

• According to the tapestry.app-package setting above, Pages
can be found in com.sample.app.pages and
Components can be found in
com.sample.app.components

 <context-param>
 <param-name>tapestry.app-package</param-name>
 <param-value>com.sample.app</param-value>
 </context-param

Configuring Tapestry

• Application Module Class

• The application module class defines new services, provides
overrides of services or makes contributions to service
configurations.

• Using naming conventions, Tapestry looks for the
application module class under the root package of the
application. In this case, Tapestry will look in
com.sample.app.services for the AppModule
class.

 <filter>
 <filter-name>app</filter-name>
 <filter-class>org.apache.tapestry5.TapestryFilter</filter-class>
 </filter>

Configuring Tapestry

Pages and Components
• Pages and Components are used to generate the view portion of the

application. They replace Servlets and JSPs in traditional Java web apps.

• Pages and Components are Plain Old Java Objects.

• No super-class to inherit.

• Most older Java web frameworks require that you inherit from
some base super class.

• No Interfaces to implement.

• Components for Tapestry instead use annotations to eliminate the
need for inheritance, or interfaces.

• Naming conventions are also used to eliminate the need for any
XML configuration.

• Tapestry does not use servlets or require a base action class to handle
requests. Instead Tapestry uses instances of Page classes and assigns an
instance of a page to the thread handling the request.

• Pages and components are ordinary objects, complete with instances
variables.

• With traditional Java web apps that use Servlets, a single instance is
created to handle all incoming requests. This means that the Servlet will
usually have to be stateless, and instance variables are often of no use.

• The statelessness requires the use of HttpServletRequest objects to
store data per-request and HttpSession objects to store data between
requests.

• Instead of servlets, Tapestry uses a page pool, reserving page instances
to particular threads.

• Pages instance variables are purged and returned back to their default
value at the end of the request.

Pages and Components

• Pages are stored in a page pool based on keys.

• Keys are a combination of the page name and the locale used for that
page. For example, the start page used for the “en” would be keyed off
of “start” and “en”.

• The number of instances of a page is configurable.

• Configurations include defining a soft limit and a hard limit of pages
to be instantiated.

• When a pages is accessed, Tapestry will check to see of the soft limit
has been reached. If it has, then Tapestry will wait for a short period for
a page instance to become available before trying to instantiate a new
instance.

• If the hard limit is reached, then Tapestry will throw an exception,
rather than create a new instance.

• Limits are per-page per-locale. So there could be 20 instances of page
“start” for locale “en” and 20 instances for locale “fr”.

Pages and Components

• Component classes are the classes associated with a Page. Even though
a Page is also a Component, a Page will usually contain one or more
Components.

• Each component class will usually have a corresponding component
template.

• Component templates contain markup to a page.

• However, components do not require a component template to
generate markup. In this case, the class would be required to
generate the required markup for the request.

• There are a few constraints on component classes:

• The classes must be public.

• The classes must be in the correct package.

• The class must have a default no-argument constructor.

Pages and Components

• What’s the difference between a page and a component?

• A page is simply a component that acts as the root component for a
page’s component tree.

• A page usually consists of a Java class, a page template and a
sometimes a collection of components.

• A component consists of just a Java class and a component
template.

• A component can also consist of several other components.

• A page must exist in the pages package:

• com.example.pages.Index.java

• A component must exist in the components package

• com.example.components.IndexComponent.java

Pages and Components

Pages and Components

package com.example.pages;

import org.apache.tapestry5.annotations.InjectComponent;
import org.apache.tapestry5.annotations.Persist;
import org.apache.tapestry5.annotations.Property;
import org.apache.tapestry5.corelib.components.Zone;

public class Index {
 @Property
 @Persist
 private int clickCount;

 @InjectComponent
 private Zone counterZone;

 Object onActionFromClicker() {
 clickCount++;

 return counterZone.getBody();
 }
}

<div>
 <t:zone t:id=”counterZone” id=”counterZone”>
 <p>You have clicked the link

${clickCount} times.</p>

 </t:zone>

 <p>
 <t:actionlink t:id=”clicker” zone=”counterZone”>
 increment the count
 </t:actionlink>
 </p>
</div>

A basic Page example

Page Class

Page Template

• So what is the benefit of Pages and Components vs. using Servlets?

• No configuration files required. Tapestry uses naming conventions to
determine where your pages and components are and when to
instantiate them.

• Pages are just Java objects. No need to inherit a base class or
override any super class methods.

• Easy access to many of Tapestry’s built-in features

• Ajax support

• IoC container

• Data persistence

• Live class reloading

Pages and Components

Advanced Exception Reporting
• With Tapestry there are no cryptic exceptions to interpret.

• Tapestry provides as much information about an exception that was
found at runtime.

• The information given about an exception is more than just a stack
trace.

• Exception messages include:

• What was Tapestry doing?
• Why it was doing it?
• What went wrong?
• Where was the problem found?

• Tapestry also tries to suggests available alternatives.

Advanced Exception Reporting
• What went wrong and what was Tapestry doing?

• Exception messages give plenty of information to be used for
debugging.

Advanced Exception Reporting
• Where was the problem found?

• Exception messages include the code and line number were the
error was found.

Advanced Exception Reporting
• Suggests available alternatives.

• Exception messages include suggestions of values that could be used
to fix the exception.

• In this case, the expression used was headingLevel but the exception
lists headerLevel as a possible alternative.

Tapestry Inversion of Control Container

• Tapestry contains an IoC package created with the
developer in mind.

• Designed to be easy to use and understand.

• Does not require verbose XML configuration files.

• This can be a bit confusing if you’re used to IoC containers
such as older versions of Spring.

• Exists specifically to address the need to add functionality while
balancing the need to test and maintain existing code.

• The IoC container provides a way to add new services to the
application and make those services easier to test.

• Provides a way to convert large, complicated blocks into small
testable pieces.

Tapestry Inversion of Control Container

• Tapestry IoC Container is made up of a Registry that
provides services to modules within a Tapestry application.

• The Registry contains services from the built-in IoC
modules and services from the web framework module.

IoC Registry

Class Factory

Property Access

Type Coercer

Symbol Sources

Application Globals

Request

Cookies

Application State Manager

Tapestry IoC Module Tapestry Module

Tapestry Inversion of Control Container

• Tapestry services are lazy.

• They are not fully instantiated until they are needed.

• A service is actually a proxy. The first time a method on
the proxy is invoked, the service is instantiated.

• Tapestry refers to this as the service being realized.

• The IoC container is also how developers would add new
services to a Tapestry application.

• All that is needed is the application define the new
service to Tapestry to make it available using the
AppModule class.

Tapestry Inversion of Control Container

• Example Application Module class.

Tapestry Inversion of Control Container

• Tapestry IoC promotes coding to an interface over coding to an
implementation.

• Tapestry promotes IoC techniques that lead to applications that are:

• More testable

• More robust

• More scalable

• Easier to maintain

• Easier to extend

• The separation between interface and implementation allows
developers to work on the same code base, lowering the risk of
interference and conflict.

Ajax and JavaScript support

• In Tapestry, JavaScript is referred to as a first-class concept where
sophisticated support is provided right out of the box.

• In production mode, Tapestry will take advantage of browser caching
and automatically minify JavaScript libraries.

• Tapestry comes with Prototype and Scriptaculous. Another version
of tapestry, hosted on Github comes with JQuery and JQueryUI.

• Provides an @Import annotation to add additional JavaScript
libraries from within your Java code.

• CSS can also be imported using this annotation.

• You can still use the <script> tags, but Tapestry prefers using the
annotations.

• Tapestry also provides support for Ajax using built-in components and
component mixins.

• A Component mixin is a way to add additional functionality to a
built-in component.

Ajax and JavaScript support

• Tapestry provides Ajax support through an approach known as Zones.

• A Zone allows a way for Tapestry to perform partial page updates.

• A Zone typically is used to update a <div> element with a page.

• In most cases, a Zone is a wrapper for dynamic content.

• A server side event handler is responsible for returning the content
to be rendered.

• A Zone update is usually triggered by an ActionLink, an EventLink or
by a Form.

• A Zone allows developers a way to implement Ajax updates without
being required to write any JavaScript.

• This speeds up development of simple page updates.

Ajax and JavaScript support

A Zone example

package com.example.pages;

import org.apache.tapestry5.annotations.InjectComponent;
import org.apache.tapestry5.annotations.Persist;
import org.apache.tapestry5.annotations.Property;
import org.apache.tapestry5.corelib.components.Zone;

public class Index {
 @Property
 @Persist
 private int clickCount;

 @InjectComponent
 private Zone counterZone;

 Object onActionFromClicker() {
 clickCount++;

 return counterZone.getBody();
 }
}

<div>
 <t:zone t:id=”counterZone” id=”counterZone”>
 <p>You have clicked the link

${clickCount} times.</p>

 </t:zone>

 <p>
 <t:actionlink t:id=”clicker” zone=”counterZone”>
 increment the count
 </t:actionlink>
 </p>
</div>

Action Link

Zone

Event Handler method

The disadvantages of using Tapestry

• So after a basic introduction to Tapestry, what are the drawbacks?

• As mentioned on the Tapestry website, there is not a lot of learning
to work with Tapestry, instead there is a lot of unlearning.

• You would have to try to put aside everything you’ve learned
about writing Java web applications using Servlets and JSP’s.

• If you are migrating from an existing framework, such as Struts,
there may need to be some redesign in the code to migrate
existing code to work in Tapestry.

• The current version of Tapestry ships with the Prototype Javascript
library. This could make it difficult to work with other libraries such
as JQuery.

• If your URL’s require a specific format, Tapestry may get in the way
and make it difficult to generate the URL content required.

The advantages of using Tapestry

• Tapestry does a lot of the heavy lifting when it comes to developing a
Java web application.

• Tapestry was created with developer in mind.

• Easy integration of Spring and Hibernate.

• Tapestry comes with built-in modules that make integrating Spring
and Hibernate easy.

• Tapestry supports developing web applications across a team of
developers by allowing developers to write clean Java code for pages
and components

• No need to write Servlets and large XML configuration files.

• Tapestry templates are easily viewable using WYSIWYG editor.

Improved Developer Productivity

• Java web developers that do not spend most of their time
developing web GUIs often spend most of their GUI
development time trying to figure out or re-learn how the
framework works.

• This can be challenging, especially when several weeks or months
have passed since the last web development task.

• Configuration is usually what makes most web development tasks
difficult and time consuming.

• With annotations and naming conventions, most of the time
consumed by configuration is removed, which leaves more time to
write code.

• Tapestry allows developers to focus on the tasks required for the
business and not get distracted by the framework.

Overview of Tapestry

• Tapestry emphasizes convention over configuration.

• Designed with the developer in mind.

• Focusing on improved productivity.

• Takes a different approach to creating Java web
applications than other Java web frameworks.

• Provides the capability to create scalable applications using
the built-in Inversion of Control container.

• Contains built-in support for Ajax and JavaScript.

More information on Tapestry

• There are plenty of features not discussed in
this presentation such as:

• Forms and Beans

• Internationalization

• Logging, Debugging and Testing

• Module loading and more

• Descriptions of these features can be found on the
Tapestry 5 website.

More information on Tapestry

http://tapestry.apache.org

http://tapestry.apache.org
http://tapestry.apache.org
http://tapestry.apache.org
http://tapestry.apache.org
http://tapestry.apache.org
http://tapestry.apache.org

More information on Tapestry

http://tapestry5-jquery.com/

http://tapestry5-jquery.com
http://tapestry5-jquery.com
http://tapestry5-jquery.com/
http://tapestry5-jquery.com/

