P ;‘/

Software Disasters

Brian Hallesy

e

Introduction

What makes a project fail? How often do project
failures happen? And, how can they be avoided?

This presentation will begin by discussing the first
two questions, with a coverage of project failure
statistics and an analysis of some examples of high-
profile software disasters.

[t will then proceed to the root causes of software
failure, and discuss what might be done to address

the critical third question.

P —

Outline

Software project statistics and discussion
High-profile software disasters

Common causes of failures

Possible solutions

Conclusions

py

Software Project Statistics

The Standish reports find that 15-30% of projects
ultimately fail, with as many as 50% becoming
challenged and only about a quarter finishing in time
and within their budgets.

Costs of software project failures can be massive.
About $70 billion per year is wasted on failed IT
projects.

Why does this happen?

/

P — =

What causes project failure?

Just as there are countless examples of failed projects,
there are countless potential causes for project failure.

Following are a number of high-profile project failures
and the reasons they failed.

After this, the common causes for failure will be
analyzed and potential solutions will be discussed.

/

- /

P — =

McDonalds” “Innovate” Project

Project goals:

e Create a real-time global network linking over 30,000
stores 1n 121 countries.

e Enable executives to effectively and consistently
manage and operate stores moment by moment.

Project budget:

e Innovate’s budget was $1 billion

e Innovate began in 1999 and was cancelled in 2002,
having used $170 million of the budget.

P —

Innovate: What went wrong?

Not enough scope management

e A real-time global network was impossible at the time due to
countries having differing IT infrastructures.

Lack of customer involvement

e The store managers who would use the system were not
asked for sufficient feedback, which would have allowed
project team to reevaluate the scope.

Unrealistic expectations and lack of expertise

e Project was conceived by executives who had a good vision,
but who lacked understanding of IT.

e There was no project lead with sufficient technical expertise
to realize that the goals could not be reasonably met.

P —

FBI’s Virtual Case File

VCF was contracted by the FBI to Science
Applications International Corp.
Project goals:

e Modernize the FBI’s suite of investigative software
applications.

e VCF was intended to replace the FBI's Automated Case
Support system.

Project budget:

e VCF was worked on for 5 years between 2000 and 2005,
and ultimately cost the government nearly $170 million.

.

VCF: What went wrong?

Changes in requirements and specifications

e Even as the project was falling behind schedule,
requirements were added and specifications were changed;
this was aggravated by the high turnover rate of managers.

Lack of skills

e Many FBI personnel with little experience with computer
science were included as managers or even engineers.

Lack of planning and testing

e The FBI initially adopted a faulty “trial and error” approach
to development.

e They also neglected testing in the system, leading to a
horribly buggy and ultimately unusable finished product.

.

Cigna’s CRM system

A Customer Relationship Management system upgrade
planned by the Cigna health insurance corporation.
Project goals:

e Consolidate and upgrade Cigna’s antiquated IT systems.

e Provide a better CRM system to save costs on customer
service.

Project budget:

e The initiative cost $1 billion. While the new system did not
get scrapped, it had huge problems with glitches and lack of
customer support, leading to a 6% decrease in membership
and a 40% decrease in stock value for Cigna.

P — =

Cigna: What went wrong?

Hurried execution

e Due to legal issues and promises that had been made,
Cigna rushed the development schedule and sacrificed
quality.

Lack of testing

e Due to the hurried schedule, testing was also neglected
and the new system had a number of issues which had
not been noticed during development.

/

. =

Cigna: What went wrong? (2)

Poor personnel management

e In anticipation of the new system cutting costs, Cigna
cut off a number of customer service reps, while hiring
some newer ones at lower pay.

e When customers called about issues with the system,
they were put on hold for long periods of time, and
many of the reps were not helpful as they had little
experience with the system.

12

py

Advanced Aviation System

An IBM project, commissioned by the Federal
Aviation Authority
Project goals:
e Modernize the system used by the FAA to keep track of
what planes are in the air
Project budget:

e The AAS project began in 1981 and ended in 1994,
spending 14 years and $3.7 billion without a single piece
of software to show for it

e At its peak, the project employed over 2,000 people

13

.

AAS: What went wrong?

Too much conceptual development

e Far too much time was spent in the first two areas of
traditional life cycles, Requirements and Design.

e This can give the false impression that more progress is
being made than is actually happening.

Changing requirements

e The project’s budget and fear of failure led to a great deal of
watchfulness by management, endless meetings and
constantly going back to the requirements phase to fine-tune
things.

e Ironically, the drive to get everything right caused previous
work to be thrown out and was a large part of the reason
that there was nothing to show after over a decade.

14

'/ N I

FoxMevyer’s Delta Il Project

An ERP (Enterprise Resource Planning) project
worked on by FoxMeyer Drugs.

Project goals:

e The goal was simply to use technology to increase
efficiency.

Project budget:

e The Delta III project ran from 1993 to 1995 at an
expected budget of $35 million.

e It ended up costing over $100 million and driving the
company to declare bankruptcy.

P — =

Delta Ill: What went wrong?

Reliance on consultants

e When there is a lack of skills, outside consultants can
be useful to bring necessary knowledge to the team.
However, FoxMeyer did not have the consultants train
their existing employees.

e When the consultants left, there was not enough
knowledge remaining to maintain the system.

16

/

. =

Delta lll: What went wrong? (2)

Hurried execution

e Foxmeyer had a goal of implementing the system in 18
months, which was unrealistic for the size of the project.

e As goes without saying, rushed development hurts quality.
User involvement issues

e Possibly an unavoidable consequence of the project; since
the users of the system would be warehouse employees

whose jobs were threatened by it, there were serious morale
problems.

e Disgruntled employees would make mistakes or damage
inventory.

17

P —

Causes of Software Disasters

Lack of planning/Unrealistic estimates
e Insufficient planning can lead to a number of problems; if
the problem is not researched enough, the scope is likely to
be underestimated.

e Without a realistic appraisal of a project’s scope, the project
is likely to run past deadlines and over budget.

Unskilled or inappropriately skilled team members

e Team members are not familiar with the tools or the
environment of the project. This slows the project down and
can cause it to be developed in the wrong direction
(resulting in a product which does not fulfill the client’s
needs).

18

/

Causes of Software Disasters

(2)

Communication within team

e If team members work on different areas of code and
make different assumptions, things will break during
integration testing. If integration testing was not
performed, the assumptions can cause the product to
fail spectacularly.

e Furthermore, ‘code ownership’ makes it difficult for
team members to help each other and can cause
confrontations, both slowing down development.

19

/

Causes of Software Disasters
(3)

Communication with customer

e Cause of numerous problems. As mentioned before,
lack of communication at the planning phase could lead
to wrong ideas about scope.

e Lack of communication during development can lead to
the completely wrong product being developed if the
wrong assumptions were made about the customer’s
needs.

20

Causes of Software Disast‘e?§/
(4)

Lack of testing

e Self-evident. If the project is not tested
comprehensively, the released software will be buggy
and likely to fail.

Changing objectives
e As time passes, the environment and the customer’s

needs will change. Changes and additions to the team’s
objectives can set development back significantly.

21

/

Causes of Software Disasters
(5)

High turnover rate

e Projects going through many different team members will be

slowed down significantly as new members will need to be trained
before they can help on the project.

Running out of time/budget

 Failed projects are always those which have run past deadlines and
went over budget.

e When deadlines are approaching, it is easy to dig yourself deeper
into the hole by:
- Working overtime
« Throwing more team members at the problem

e Working overtime exhausts the team and impacts performance.

Adding manpower sounds like a good idea, but will actually slow
down the project for the same reason high turnover rate is an
issue.

22

g

Possible Solutions

Lack of planning/Unrealistic estimates

e Spend time at the beginning of a project meeting with
the customer and collecting user stories. Make sure that
the time and budget given will be sufficient for the
scope of the project.

Unskilled or inappropriately skilled team members

e Evaluate your team beforehand with a method like the
inception deck. Make sure that the team contains
members with the skills necessary to make the project
succeed. A customer team member would also help to
bring expertise to the project.

23

py

Possible Solutions (2)

Communication within team

e The agile principles of shared ownership and an open
workspace can both help with this.

e An open workspace encourages communication among
the development team.

e Shared ownership reduces fights among developers
(your code broke my code), and increases overall
knowledge among the team.

24

P —

Possible Solutions (3)

Communication with customers

e Careful collection of user stories during the planning
phase will help create reasonable estimates of deadlines
later on.

e A short iteration development cycle will allow the team
to present customers with working code.

e The customers can offer feedback on the features which
have been implemented, redirecting the team if
incorrect assumptions had been made.

25

.

Possible Solutions (4)

Lack of testing

e Develop a comprehensive test suite, with both customers
and developers contributing.

e System tests to determine you are building the thing right,
acceptance tests to determine you are building the right
thing.

Changing objectives

° ﬁ flexible, agile approach to development helps considerably

ere.

e As opposed to a traditional life cycle which would have to
deal with overhead updating documentation and re-
evaluating, an agile team already works with short cycles
that each tackle small decomposed objectives and will thus
be much less impacted by changing objectives.

26

P —

Possible Solutions (5)

High turnover rate

* The obvious solution is to keep turnover rate low.
Assemble all of the team members you are going to
need before the work begins, and maintain good
working conditions.

Running out of time/budget

e Agile methodology suggests that at this point it is best
to compromise on scope.

e Meet with the customer and determine which
functionality is most important and what could be
expendable.

27

/

- /

P — =

Conclusions/Avoiding disasters

As mentioned before, there are countless different
ways for projects to fail.

The most common causes of failure are probably
these:

e Lack of communication

e Incorrect estimates (budget/time)

e Inflexibility
Any one of these issues can cause a software disaster
by themselves, depending on the circumstances.

28

g

Conclusions (2)

These problems are all endemic of traditional life
cycles.

Indeed, almost every high profile software failure I
researched was a project which had employed
traditional development.

As well, most of the possible solutions I brought up to
potential causes of failure are policies present in agile
methodology.

[s agile the solution then?

g

Conclusions (3)

Agile development is not a shield which will make your
project immune to failure.

e Many agile projects also fail, especially when the agile
principles are not followed correctly.

Agile life cycles do not prevent software failure altogether,
but they do prevent software disasters!

e In particular, the agile method of delivering working code
immediately lets us detect troubled projects very early on.

e The projects can then be reevaluated or scrapped.

An agile project will fail at the beginning, not at the end.
This crucial difference will help us avoid those high-profile
budget consuming disasters that have plagued companies.

30

g

Executive Summary

Software failures occur frequently, and there have
been many cases of extremely expensive high-profile
disasters.

There are countless possible causes, a number of
these rooted in problems found in traditional life

cycles.

Agile methodology cannot absolutely prevent failure,
but it can reduce failure rates by addressing many of
the possible causes of failure.

Also, agile development can prevent occurrence of
high-profile software disasters by providing early
detection of software failures.

