
SYMFONY2 WEB FRAMEWORK

By
Mazin Hakeem
Khaled Alanezi

5828 – Foundations of Software Engineering
Spring 2012

1

Agenda
•  Introduction
•  What is a Framework?
•  Why Use a Framework?
•  What is Symfony2?
•  Symfony2 from Scratch
•  Symfony2 Overall Structure
•  In Depth Look at the Controller
•  Routing Component
•  Templating Component
•  The Model
•  Testing Component

•  Validation Component
•  Forms Component
•  Security Component
•  Conclusion
•  References
•  Executive Summary

2

Introduction
•  Symfony2 is an open source PHP-based web application

development framework
•  Based on the Model-View-Controller Design Pattern
•  It enhances reusability, productivity and maintainability by providing

solutions to common web application software problems
•  These solutions are based on years of accumulated experience when

dealing with web applications development
•  The beauty of Symfony2 comes from the fact that it is totally

customizable. Use what you need and throw out what you don’t need!

3

What is a Framework?
•  A collection of libraries (i.e. code or software) that are used to provide

generic (i.e. common) functionalities and activities via well defined
APIs

•  In other words, it works as a tool to make the development process
easier and more productive

•  Caters various types of specific applications such as “web
frameworks” for developing web applications and web services

•  Usually based on Object Oriented paradigms
•  Implements many kinds of design patterns like Model-View-Controller

(MVC) pattern presented often in web frameworks

4

Why Use a Framework? (1)
•  Promotes rapid development

•  Saves time
•  Reuse generic modules

•  Code and design reuse; not reinventing the wheel by working from
scratch
•  Less coding, more productivity

•  Helps focusing on your application features development instead of
working on basic mundane low-level details
•  Utilizing the framework to focus on the requirements needs

•  Few bugs to worry about since the framework is well tested and used
on many applications
•  Developers worry about the bugs form their codes only
•  Applying unit tests on the coded features

5

Why Use a Framework? (2)
•  Includes various components and libraries in one package, like

database connection, user interface forms, security, caching, and
many others
•  Easy to use and well defined API calls in a unified structure and

naming convention
•  Full compliance with business rules and market needs

(interoperability)
•  Structured code and environment
•  Easily maintainable and upgradable

6

What is Symfony2? (1)
•  Definition according to Fabien Potencier the lead developer of the

Symfony2 framework
•  There are two main points when defining Symfony2:

•  Components: Symfony2 provides set of reusable PHP components.
These components enables developers to solve web problems by
providing solutions that are built according to known standards of
high cohesion and low coupling

•  Being a full-stack web framework: Symfony2 provides an end-to-
end web solution. However, developers still given the flexibility to
make their solutions partially use Symfony2 components and
implement other parts on their own

7

What is Symfony2? (2)
•  Though Symfony2 basic structure is based on MVC, Fabien feels that

it is better not view Symfony2 as an MVC because it offers more than
that:

“Have a look at the documentation, and you will see that the MVC
pattern is only mentioned once or twice”

•  By the introduction of Symfony2, the framework departed from being
a monolithic solution. Now, components can be used as needed
which provides a better chance for Symfony2 to spread by coexisting
with other solutions

•  Therefore, Symfony2 must be viewed as a provider for PHP low-level
architecture
•  The solid components allow Symfony2 to play this role because

they evolved over years of dealing with web development common
problems

8

•  However, if you want to look at Symfony2 as MVC:
•  It provides the tools for the control part
•  It provides the view part
•  It doesn’t provide the model. You can implement your own and use

Doctrine to adopt it (more on Doctrine later)
•  But remember, being an MVC is not the target. Separation of

concerns is what matters by avoid mingling code that does different
actions. This enables:
•  Reusability
•  Maintainability
•  Productivity

9

What is Symfony2? (3)

Symfony2 From Scratch (1)
•  Let’s demonstrate how Symfony2 is organized by mapping a PHP

page code that does “everything” to the Symfony2 structure
•  Keep in mind that the overall goal of a web page is to simply receive a

URL request from the user and return an HTML page as a response
•  The PHP page we’ll use, receive a request from the user to display all

blog posts, retrieve the blog post from the database and displays
them using HTML (see code next page)

10

Symfony2 From Scratch (2)

Connect to DB
Query DB

Loop thru records Display as
links

Problems:
•  As code grows, forget about maintainability!
•  No reusability
•  Tied to specific implementation details

(MySQL in this example)

11

Symfony2 From Scratch (3)
• Step 1: Put the display method in a separate file “templates/list.php”

Input received in the posts
variable

Output returned as links in
an HTML page

Benefits:
•  We can render the output in different

formats (e.g. JSON) by only changing
this part.

•  Developer knows that output is handled
inside the view!

12

Symfony2 From Scratch (4)
• Now, our index.php (the super page that does everything)

looks like:

Connect to DB

Query DB

Store results in posts variable
We would like to:
•  Separate application logic to be subject

to reusability
•  Write connect & close code only once

and reuse them
•  Write SQL statements only once and

reuse them

13

Symfony2 From Scratch (5):
• Step (2) : Introduce the model and move all application logic & data

access to it
1, 2 & 3 are functions that
contain app logic.

(1)

(2)

(3)

Benefits:
•  We can reuse written app

logic
•  Developer knows that app

logic is handled inside the
model!

14

Symfony2 From Scratch (6):
•  Since we have developed the model and the view, we’ll let index.php

act as the controller
•  The controller is responsible for receiving user input and returning a

response
•  This what the controller exactly does in the code that is left!

Get data from the model

Call view to display output

But:
•  A web application usually

consists of dozens of pages
•  So, let’s test our new structure

flexibility towards adding new
pages

15

Symfony2 From Scratch (7)
•  The customer would like to add a new web page that takes an ID as

input and output the corresponding blog entry
•  With our new architecture, we know exactly where to put the new

code:
•  Add a new method in the model that takes blog ID, query DB and

return a variable containing the blog
•  Create a new view template to render a single blog entry
•  Create a new controller method for handling the URL of single blog

show feature
•  The code for the new controller show.php:

16

Symfony2 From Scratch (8)
•  Great, we can see the benefit of our new organized structure.

•  No need to rewrite the code to open and close DB
•  More importantly, we have a convention of where to add our code

(Maintainability and Extensibility)
•  But, now we have two controllers handling two different possible

URLs. There are two problems with our controllers structure:
•  No error handling: for example if the user supplies invalid user ID

the page will crash. A more logical response is to reply with 404
(page not found)

•  No flexibility: for each controller we have to include the model.php,
If we have dozen of controllers we will need to add the statement
require_once ‘model.php’; dozen times. The same goes for every
global functionality to be added to the features.

17

Symfony2 From Scratch (9)
• Step(3): create front controller to handle all incoming URL requests.

Our controllers now will only have the methods to be invoked for
handling these requests.

•  Now, controllers are simple and can be merged in a single file
controllers.php:

Benefit:
•  Any method call for handling

new feature will be included in
the controller

Routing method is needed to
divert incoming requests to
corresponding method calls

18

Symfony2 From Scratch (10)
•  We can let the front controller perform the control logic as follows:

•  Instead, Symfony2 routing uses a configuration file where user can
define URL patterns and their corresponding method invocations

Problem: User concerned about the
architecture and handling different requests

URL pattern

URL pattern

Call methods
list_action()
show_action()
in controllers.php

19

Symfony2 Overall Structure (1)
•  To summarize let’s look at the below diagram illustrating the flow

control of a typical Symfony2 web app:

1)  URL requests
received by front
controller

2)  Then, sent to kernel

3)  Symfony2 kernel forward request
to routing

4)  Routing uses config file to match
url pattern to controller method

5)  Kernel calls
corresponding method

6)  Method returns a
response

2

1

3

4

5 6

20

Symfony2 Overall Structure (2)
•  Symfony2 application consists of bundles where each bundle

implements set of features. Symfony2 application’s folder looks like:
•  app/

•  Contains the application configuration
•  Map a bundle to it’s corresponding routing config file

•  src/
•  Contains the source code of your project
•  Controller code, view template and routing config file

•  vendor/
•  Hosts library files provided by third parties

•  web/
•  Contains the front controller of the application which calls the

kernel to bootstrap the application
•  Also, contains your static files (images, style sheets…etc)

21

In Depth Look at the Controller
•  So far we have seen that the controller has the method calls to be

invoked upon the arrival of a URL request. These calls will return the
required response

•  The controller can extend the base controller class which provides
basic controller tasks. Here are some examples with explanation:

The render method takes the template and output to
be displayed as argument and return the rendered
output. More on templates in the templates section Redirect method

Display flash messages

22

Routing Component (1)
•  As described in the introduction section, Sumfony2 uses routing to

map a URL pattern to a method inside the controller
•  Router provides two benefits:

•  Writing nice URLs rather than ugly ones:
•  Index.php?article_id=1 à Bad
•  /read/intro-to-symfony à Good

•  Flexibility when changing the URL name
•  No need to traverse all pages to search for links related to the

updated page
•  Routing is written in a separate routing file and can be specified in

three different languages namely YAML, XML and PHP
•  The application routing file is located at:

•  App/config/routing.yml

23

Routing Component (2)
•  An example using YAML:

•  Pretty simple, however, web apps need more than this!
•  For example, we would like to support pagination:

•  /blog/2 à will display the second page
•  Requirements come into play. They are specified using regular

expressions. The pagination requirement can be written as follows:

URL pattern

Variable slug will be available
inside the controller method

Method to call from
the controller

Regular expression specifying that the value of
page variable should be one or more digits

Default value for {page}, If
nothing supplied use page=1

24

Routing Component (3)
•  The use of regular expressions in routes provides great deal of

flexibility when defining requirements
•  Here is another example where a website have two versions for two

different languages

•  Also, we can use the type of the coming Http request and do routing
based on it as in the following example:

{culture} is either “en” or “fr”

Use “en” if nothing
specified in URL

Use same URL for GET and POST and
yet trigger different controller methods!

25

Routing Component (4)
•  This last example, shows how advanced your routing requirements

can be:

•  In this example:
•  {year} is mandatory and is a digit or more
•  {culture} is optional where if not provided the used value is “en”
•  {_format} is optional, it can be either html or rss. The method can

use it to decide upon the format of the response it is going to return
•  Following URLs will match:

•  /articles/en/2010/my-post
•  /articles/en/2010/my-post.rss

26

Templating Component (1)
•  The Controller delegates the work to the templates engine when

visual representation is needed like HTML and CSS files
•  A template is a text based file that can provide the visual

representation by generating text files like HTML, LaTeX, CSV, XML,
and many more.

•  Symfony2 uses “Twig” (PHP can be used which is up to the
developer), a powerful and readable templating language

•  Used to template and provide visual presentation.
•  No code logic is written inside it
•  With Twig, readable and concise code is easily written

27

Templating Component (2)

{{ ... }}: "Says something":
prints a variable or the result
of an expression to the
template

{% ... %}: "Does
something": a tag
that controls the logic
of the template; it is
used to execute
statements such as
for-loops for example

28

Templating Component (3)
•  With Twig, a base layout can be built that includes common aspects

of a webpage like headers and footers, and then a child page can
inherit this layout and override its own fields and bocks.

The child “extends” the
base page

Base layout

29

Templating Component (4)
•  As mentioned, the controller delegates to the template to render the

view page.
•  We add the following in the controller class:

30

The Model (1)
•  Any dynamic website requires communicating with a database for

fetching data
•  Therefore, the Model layer makes that part easier
•  It is an abstraction layer of communicating with databases, which is

isolated from the rest of the web application for reusability and
maintainability

•  Symfony2 does not have its own Model layer
•  Instead, a popular Object Relational Mapping (ORM) technology is

used (or “reused”) called “Doctrine”
•  Doctrine allows to “map objects to a relational database” like MySQL,

MS SQL Server, and many others

31

The Model (2)
•  To connect to the database, all database information is listed inside

the “parameters.ini” file instead of copying those info inside the code
files; hence, more secure web application.

Here, MySQL driver is used

32

The Model (3)
•  The Doctrine ORM fetches and saves entire objects to and from the

database instead of dealing with each rows
•  The idea is to map PHP class files to columns in the table

•  This is done by including a metadata to guide Doctrine how to map
PHP class properties to the database fields using PHP Annotations,
YAML, or XML (see next slide)

Instantiated
object from
a PHP
class

Relational
DB table

33

The Model (4)

A PHP class w/ annotations to guide Doctrine
(getters and setters must be defined in this class)

Writing
the object
data to
DB after
being
managed

Fetching data
from DB

Managing
the object

34

Testing Component (1)
•  Symfony2 integrates with the PHPUnit testing framework which is a

unit testing framework for PHP projects
•  It provides the following benefits:

•  Makes writing tests easy
•  If learning to write the tests is difficult or the process of writing a

test is difficult, the team will likely run away from testing
•  Makes running tests easy and quick

•  This will encourage the team to run test hundreds and
sometimes thousands of times

•  Prevent dependency between tests:
•  Tests can run independently. Also, any order of running tests will

generate similar results. This reduces the complexity of testing

35

Testing Component (2)
•  All tests must be placed in the Tests/ directory of your project
•  The test directory will replicate the structure of your bundle’s directory
•  Following is an example. The code of the tested controller method:

•  The test code:

Similar folder name Utility/ in
bundle and Tests folders

Extend to use PHPUnit methods

Simple PHPUnit assertion method

36

Testing Component (3)
•  The last example was trivial as it tests only the addition of two

numbers. The question is how to test web pages with complex
structures (e.g. links, forms…etc.)?
•  No worries, PHPUnit provides the client and the crawler objects to

help you out
•  The client simulates a browser by allowing the developer to make

requests
•  The crawler is returned from a client request and allows traversal of

the content of the reply
•  e.g. traverse HTML tags, select nodes, links and forms

•  Below is an example:
Creating client object

Submit HTTP GET request
which returns the crawler
object

Look for “Go elsewhere…”
link and click on it!

37

Testing Component (4)
•  The last example was for a link, how about submitting a form?
•  Here is an example:

Find the needed
button

Select the corresponding form for the
button

Fill the form with data

Submit!

38

Validation Component (1)
•  Being able to test the results of the form as provided by PHPUnit test

is good. However, best practice is to ensure correctness of the input
before submitting your request whether to a form, web service or a
database.

•  This is exactly what the validation component does for you!
•  Validation rules of an object (called constraints) are first defined using

YAML, XML or PHP. This is an example with YAML

•  Then constraints used inside the code of the controller as follows:
Call validate and pass
the object name as a
reference which will
return number of errors
by matching against the
constraints

Author.firstName shouldn’t be blank and should be
minimum three chars

39

Validation Component (2)
•  Since an object might violate several rules, you can loop thru the

resultant error messages:

•  So far, we have seem minimum length and not blank constraints.
Validation component provides others such as:
•  Max Length (for string)
•  Min and Max (for numbers)
•  Choice (e.g. male or female for gender attribute)
•  …and many others!

40

Forms Component (1)
•  Forms are an essential part of any dynamic web pages in which a

user can interact
•  It is known that PHP does not offer its own HTML based forms like

ASP .NET
•  Hence, it uses the regular HTML forms
•  PHP has powerful functionalities to interact with HTML forms
•  However, the process can sometimes get difficult, cluttered, and

mundane
•  Symfony2 provides an integrated built-in forms component to make

the task easier

41

Forms Component (2)
•  The steps to create forms:

1.  Create a separate class to make it generic and to store data
into it if needed to interact with databases

2.  Call that class inside the Controller class (or define another
class for reusability and then call it inside the Controller class)
to build the form and to render it to HTML

3.  Defining the object in a Twig to help rendering the forms
(see examples in next slides)

42

Forms Component (3)
A generic class to handle
the forms (To render a text
box, data picker, and a
“Submit” button, for
example here)

A Twig template to
specify the forms
properties instead of
defining inside the
PHP file

43

Forms Component (4)
A Controller class where
it calls the class that
handles the forms and
then renders the Twig
template

This function
creates the
built-in forms
easily

The end result

44

Security Component (1)
•  Almost any dynamic website has user security; not any unregistered

user can access the website
•  Providing user roles and privileges is usually a hassle and complex

•  Therefore, Symfony2
addresses that issue and
provides a security
component that is based on
2 steps: Authentication and
Authorization

45

Security Component (2)
•  Security configuration is done inside the “security.yml” file (XML and

PHP files can be used instead as well)
•  Lets see a simple example:

A regular expression means
“match every incoming request”

Allow only /admin/[any name]
users with the Admin role

The authenticated
users

Password encoding
type (text in this
example)

Default value

46

Security Component (3)
•  It is pretty strait forward; any user passes the firewall goes through an

authorization process to access the website

A diagram reflecting the flow for a user
without admin privileges gets denied

A diagram reflecting the flow for a user
with admin privileges gets accepted to
use the web app

47

Conclusion
•  Though Symfony2 is an MVC based framework, it allows for a great

deal of reusability by means of its components
•  Symfony2 integrates with external components to provide common

services. Examples include:
•  Twig for templating
•  PHPUnit for testing
•  Doctrine for database integrating

•  Symfony2 is a full stack web framework, however, developers have
the flexibility to use components and leave other as suitable for their
projects

48

References
•  http://symfony.com/why-use-a-framework
•  http://en.wikipedia.org/wiki/Software_framework
•  http://docforge.com/wiki/Framework
•  http://symfony.com/doc/current/book/index.html
•  http://fabien.potencier.org/article/49/what-is-symfony2
•  http://www.phpunit.de
•  http://en.wikipedia.org/wiki/Symfony

49

Executive Summary (1)
•  Though Symfony2 is an MVC based framework, it provides much

more than this via its large range of components
•  Symfony2 can be best viewed as a provider for PHP low-level

architecture
•  This is achieved by reusing the components provided by Symfony2
•  Examples of such components that were discussed in the

presentation:
•  Routing Component:

Provides mechanisms for routing a URL request to corresponding
method inside the controller

•  Templating Component:
Allows for defining templates for returning visual representations.
These can be used by multiple features in the website

50

Mazin Hakeem & Khaled Alanezi

Executive Summary (2)
•  Testing Component:

Provides the developer with tools that makes the process of
writing test and conducting them easy and quick

•  Validation Component:
Allows the user to define all the validations for objects in a single
configuration file and call them as necessary inside the code

•  Forms Component:
Collaborates with the templating component in order to generate
hassle free dynamic forms

•  Security Component:
Unifies the processes of authentication and authorization

51

Mazin Hakeem & Khaled Alanezi

