
Distributed Configuration
Management:
Mercurial
CSCI 5828 Spring 2012
Mark Grebe

Configuration Management
� Configuration Management (CM) systems

are used to store code and other artifacts
in Software Engineering projects.

�  Since the early 70’s, there has been a
progression of CM systems used for
Software CM, starting with SCCS, and
continuing through RCS, CVS, and
Subversion.

� All of these systems used a single,
centralized repository structure.

Distributed Configuration
Management
� As opposed to traditional CM systems,

Distributed Configuration Management
Systems are ones where there does not
have to be a central repository.

� Each developer has a copy of the entire
repository and history.

� A central repository may be optionally
used, but it is equal to all of the other
developer repositories.

Advantages of Distributed
Configuration Management
� Distributed tools are faster than centralized

ones since metadata is stored locally.
� Can use tool to manage changes locally

while not connected to the network where
server resides.

�  Scales more easily, since all of the load is not
on a central server.

� Allows private work that is controlled, but
not released to the larger community.

� Distributed systems are normally designed
to make merges easy, since they are done
more often.

Mercurial Introduction
� Mercurial is a cross-platform, distributed

configuration management application.
�  In runs on most modern OS platforms,

including Windows, Linux, Solaris, FreeBSD,
and Mac OSX.

� Mercurial is written 95% in Python, with the
remainder written in C for speed.

� Mercurial is available as a command line tool
on all of the platforms, and with GUI
support programs on many of the platforms.

� Mercurial is customizable with extensions,
hooks, and output templates.

History of Mercurial
�  Development of Mercurial began in 1985.
�  It grew out of the need to replace Bitkeeper for

maintaining the Linux kernel.
�  Matt Mackal started development of Mercurial as

a Bitkeeper replacement a few days after Linus
Torvalds started the development of git for the
same purpose.

�  Git was chosen by the Linux kernel team, but
Mercurial is used on many open source and
commercial development efforts.

�  Mercurial is used by many large projects, including
Mozilla, OpenJDK, OpenSolaris, Xen and Python.

Getting Started with Mercurial (I)

� Mercurial may be downloaded for most
platforms at the web site
http://mercurial.selenic.com/downloads/ .

� A Windows version with built in Windows
Explorer integration is TortiseHg.

�  There are several Mac OSX GUI clients,
among them MacHg and SourceTree.

�  There are also cross platforms GUI clients
such as EasyMecurial.

�  In addition, many IDE’s support the use of
Mercurial, including Eclipse, Visual Studio, and
NetBeans.

Getting Started with Mercurial (II)

�  The one required step you need to do after
install is set your username for Mercurial. This is
the default username used for committing
changes to the repository. The username is set in
the .hgrc file in your home directory:

�  [ui]
username=Mercurial User<Mercurial.User@colorado.edu>

�  The command for all Mercurial activities is hg.
(The atomic symbol for mercury – cute huh? J)

�  To get help on any Mercurial topic just issue the
command:
◦  > hg help

Mercurial Repositories (I)

� Mercurial Repositories are simple
directory trees in the file system.

� Mercurial keeps it’s metadata in a .hg
subdirectory at the root directory of the
repository.

�  Since the repository is simply a directory,
it may be renamed using normal file
renaming techniques.

Mercurial Repositories (II)
� Creating a Mercurial Repository:
◦  By giving a directory name (which will be created

if it does not exist)
◦  > hg init ~/test_repository
◦  If no name, is given, the current directory will

used.
� Cloning a Mercurial Repository
◦  Since it is a directory, it could simply be copied

using file tools to copy. However, to make sure
that the history of what repository it was cloned
from, always clone it with Mercurial:
◦  > hg clone ~/test_repository ~/clone
repository

Mercurial Repositories (III)

� Cloning a remote Mercurial Repository
◦ A repository can be accessed over http:
◦  > hg clone http://www.mycompany.com/
test_repository ~/local_repository

◦ A repository can also be accessed over ssh:
◦  > hg clone ssh:me@you.com/
test_repository ~/local_repository

◦ More on sharing repositories later…

Mercurial Working Directories (I)

� A Mercurial working directory is the rest of
the repository outside of the .hg
subdirectory.

�  It is a editable snapshot of some revision of
the files stored in the repository.

�  Files can be edited using any system tools,
and do not require Mercurial commands to
edit.

� Any changes made to the files are saved to
the repository when you commit (more on
that in a bit…)

Mercurial Working Directories (II)

�  Files and may be added to the repository
with the add command:
◦  > hg add newfile

� Note, if you add a directory, every file
underneath it will be added.

�  Files that are not to be controlled (such as
derived binaries) can be ignored using:
◦ > hg ignore binaryfile

�  You can check the status of your working
directory at any time with the command:
◦ > hg status

Mercurial Working Directories (III)

�  The output of the status command shows
files that have been modified(M), added(A),
removed(R), and not tracked in
repository(?).
◦  > hg status
A newfile
? outside_file

�  Files the are not changed(C) or ignored(I)
are not normally shown in the status, but
may be by adding –A to the status command.

Mercurial Changesets (I)
�  Mercurial identifies the revision “snapshot” of the

working directory as a changeset.
�  Each changeset is created by making changes to

files and then issuing the commit command:
◦  > hg commit –m “Reason for change”

�  The reason for the change may be added to the
command line as above, or if left off, the default
editor will be started to add the comment.

�  If no filenames are specified, ALL changed files will
be committed as part of the changeset. To only
commit certain files, they must be specified.
Note, this may be a surprise for Subversion users.

Mercurial Changesets (II)
�  Mercurial tracks changesets with two

identifiers, printed as a decimal
number:hex number.

�  The decimal number is a local identifier.
The same version in two different
repository clones may have different
local ids.

�  A 40 digit hex number which is globally
unique (only the first 12 digits are
normally printed). The same version in
different repository clones with have
the same hex ID.

�  Each changeset has at least one parent
changeset (except for the first). A
changeset that does not have any
childrean is called a “head”.

0:8fbe3c964653

1:e2f540907d89

2:9047a2741247

Mercurial Changesets (III)
�  Information about the changesets in a repository may be

displayed with the log command:
◦  > hg log
◦  changeset: 1:e2f540907d89
◦  tag: tip
◦  user: Mercurial User <Mercurial.User@colorado.edu>
◦  date: Mon Mar 12 20:48:50 2012 -0500
◦  summary: The second revision

◦  changeset: 0:8fbe3c964653
◦  user: Mercurial User <Mercurial.User@colorado.edu>
◦  date: Mon Mar 12 17:51:32 2012 -0500
◦  summary: Initial version!

�  Note that the user who made the change is tracked.
�  If –v is added to the command, the files which changed in

each changeset will also be displayed. Also if you want the
history of only a specific file, it should be listed on the
command line.

Remembering a Changeset
� Changesets may be labeled with a tag, which

is useful for marking releases, etc.
�  Tags in Mercurial work somewhat differently

than other CM systems.
�  Tags are stored in a file in the working

directory called .hgtags. Because of this,
tagging a changeset will actually create a new
changeset to commit the changes to .hgtags.

�  There is a special tag called ‘tip’ which always
refers to the newest changeset in the
repository.

Examining a Historical Changeset
�  You can compare a file from two changesets with the

diff command, which will output in standard Unix diff
format (or with a Mercurial extension, you can use
your favorite external diff tool). The following
compares test.txt from revisions 2 and 5:
◦  > hg diff –r 2 –r 5 test.txt

�  Also, at any time you can move your working
directories parent to an older changeset and explore
the files directly with native tools:
◦  > hg update 3

�  The above command makes the working directories
parnent to local changeset id 3, but you can also use a
tag or a hex id as a parameter.

Mercurial Branches
�  What happens if you make

changes while your working
directory has a parent other
than the tip, and then do a
commit?

�  As usual, a new changeset
will be created, however it’s
parent will be the changeset
your working directory had
as a parent.

�  In other words, it will create
a branch, and there will now
be two heads.

�  There are two methods of
labeling branches, temporary
bookmarks and permanent
branch names

0:8fbe3c964653

1:e2f540907d89

2:9047a2741247 3:5c873910b591

Sharing Changes - Pull
�  You may get changes from another repository

by doing a “pull” of the changes. The other
repository may be local, remote via http(s), or
remote via ssh.
◦  > hg pull ~/other_repository

�  Note, that by default the pull operation does
not update the working directory. To do this
you must issue an update command, or add –u
to the pull command.

�  If you would like to see what changes you
would get from the other repository, but not
actually retrieve them, then instead do:
◦  > hg incoming ~/other_repository

Sharing Changes - Push
�  You may send changes to another repository by doing

a “push” of the changes. The other repository may be
local, remote via http(s), or remote via ssh.
◦  > hg push ~/other_repository

�  Note, again that the push operation does not update
the working directory in the repository you are
pushing to. An update command must be issued
there. There is no –u option to the push, which
makes sense, since you are modifying some other
repository.

�  If you would like to see what changes you would send
to the other repository, but not actually send them,
then instead do:
◦  > hg outgoing ~/other_repository

Sharing Changes – Web Server
� Mercurial provides convenient repository

web publish. To start a temporary web
server
◦  >hg serve

�  This basic server does not provide
authentication. Options allow you to specify
if pushes are allowed (they aren’t by default).
For a more secure and permanent solution,
the Mercurial distribution provides a CGI
script to use with other web servers.

Mercurial Merges(I)

� Two users start from a common
repository that they both clone, and then
proceed to make changes:

 User A User B

0:8fbe3c964653

1:e2f540907d89

2:9047a2741247

0:8fbe3c964653

1:5c873910b591

Mercurial Merges (II)

� User A “pulls” the changes from user B’s
repository:
◦ > hg pull /home/userB/myRepo

0:8fbe3c964653

1:e2f540907d89

2:9047a2741247 3:5c873910b591

Mercurial Merges (III)
�  User A merges the changes:
◦  > hg merge

�  Mercurial will merge the changes automatically, or
if it is not able to, will invoke a external merge
tool to allow user intervention, and save the
changes in the working directory.

0:8fbe3c964653

1:e2f540907d89

2:9047a2741247 3:5c873910b591

Working Dir

Mercurial Merges (IV)
�  User A commits the changes:
◦  > hg commit

�  This creates a new changeset which has both
branches as parents. The merged changes could
be pushed to User B, or User B could pull the
changes from User A.

0:8fbe3c964653

1:e2f540907d89

2:9047a2741247 3:5c873910b591

4:0381ab0321ef9

Moving Data Between Mercurial and
Other CM’s
� Mercurial comes with an extension,

convert, that allows you to import history
from other CM systems, including
Subversion, CVS, Git and Bazaar.

�  In addition, with Subversion, you can
move history in both directions to enable
Subversions users to try Mercurial before
they “commit” to it.

Mercurial vs Git
� As of this writing, Git is likely the most used

Distributed CM system, with Mercurial being
second.

�  There are many resources on the web
providing comparisons of these two systems
(many of them, however, verge on being
religious diatribes).

� Mercurial will feel more comfortable to
longtime CVS and Subversion users.

� At the end of the day it comes down to
what someone likes. I would recommend
you try both.

References

� This presentation has given an overview
of Mercurial usage. The following are
excellent options for further investigation:
◦ O’Sullivan, Bryan. Mercurial: The Definitive

Guide, 2009. (Available online at http://
hgbook.red-bean.com/)
◦  http://mercurial.selenic.com/wiki/Tutorial
◦  http://mercurial.selenic.com/wiki/

UnderstandingMercurial

Example Usage

� Accompanying this slide presentation is a
screencast which demonstrates using
Mercurial.

