
Software Engineering in Game
Design

Anne Gatchell - 23 March 2012

What We Will Cover

•  What sets game development apart from
other forms of software development?

•  Briefly introduce game design and the
concept of fun in terms of Angry Birds

•  Look at a proposed model for the game
development process

Game Design: A Melting Pot of
Disciplines

•  In game design, people from a large variety of
backgrounds come together to create a cohesive,
compelling product

•  People from:
–  Art, music, graphics, human factors, psychology,

computer science, and engineering (Callele)
•  Issues can arise and individual goals can differ
–  Engineers may be too willing to compromise on the art in

order to get the game out on time
–  Artists may not understand the limits of Artificial

Intelligence (Callele)

The Elusive(?) Product

•  Games are supposed to be fun and entertaining
•  Finding the fun is not straightforward, and many

attempt to create fun games and fail
•  It is possible to get all the technical aspects

correct, but the game will not be fun
•  Likewise, the graphics can be amazing, but that

does not make the game addictive (Norneby,
Olsson)

Angry Birds: A Simple Game?

•  People love to be envious of Rovio for making a
fortune over “simple game” (Mauro)

•  Rovio was on the verge of bankruptcy in early
2009 (Cheshire)

•  Luckily, Mikael and Niklas Hed recognized the
potential for smartphone entertainment

•  Set out to methodically create an empire for
mobile phones to save the company and create
its own intellectual property

Angry Birds: A Simple Game?
(continued)

•  One March afternoon a game designer there
named Jaakko Iisalo showed them a screenshot
with a “cartoon flock of round birds, trudging
along the ground, moving toward a pile of
colorful blocks. They looked cross.”

•  “People saw this picture and it was just
magical,” said Niklas

•  But, Jaakko had pitched hundreds of ideas in
the two months prior to that

Angry Birds: A Simple Game?
(continued)

•  The team worked on the game for eight
months, making thousands of changes, and
nearly abandoned the project

•  But, then Niklas’ mother burned the
Christmas turkey because she was
distracted by the game

•  She doesn’t play any games
•  They realized that they had found the fun

What Can Angry Birds Teach Us?

1)  Many things about good game design,
which we will not explore in this
presentation

2)  Finding the fun is not as easy as the
product makes it look, much like ballet

3)  The team had to repeatedly adjust the
game until it was right

How Do We Do Game Development?

•  How do Games compare to other areas of
software engineering?

•  What is the best way to interface between
the designers and the programmers?

•  How can we meet ever increasing customer
expectation?

No Silver Bullet!

•  That sounds familiar!
•  Just as Fredrick Brooks, Jr. said of software

engineering in 1987, there appears to be no
game development process to rule them all
(Pashley)

•  It is good to keep in mind that different
processes may work for different people and
different team sizes

•  Looks like Agile/Extreme styles are beginning to
dominate

Well, What Can We Do, Then?

•  Johanned Norneby and Tobias Olsson, veteran
game engineers from Massive Entertainment:

•  Many of the problems in Game Engineering are
analogous to regular Software Engineering
problems

•  And, as has helped with Software Engineering,
Game Engineering can be helped by
implementing best practices

•  (Norneby, Olsson)

Norneby and Olsson Best Practices

1)  Iterative Development
2)  Manage Requirements
3)  Manage Change
4)  Verify Quality

(1) Iterative Development

•  As we saw in the Angry Birds example, even
a simple game will go through a lot of
changes on the way to market and on the
way to finding the fun

•  This lends itself well to Iterative
Development, which is a cornerstone of
Agile/Extreme programming

(1) Iterative Development (cont.)

•  Iterative Development:
– The game should be developed in short

iterations
– Each iteration will address some aspect of the

game to improve
– At the end of an iteration, there is a working

piece of software for delivery to the end user or
the focus group

(1) Iterative Development (cont.)

•  Why does this lend itself to games?
•  Saves time and money:
–  Finding the fun in a game is not as easy as writing

down a plan. To get a real answer about how the
game will play, we need a working prototype that we
can try

–  The sooner we find out that a game is
fundamentally not fun, we can kill the project

– We can get feedback from focus groups right away
to make corrections to our game to make it better

(1) Iterative Development (cont.)

•  Since the game design is necessarily evolving
as we give prototypes to the user and get
feedback, we know that the requirements will
be changing throughout the entire process

•  No need to spend a large portion of time on a
requirements document that cannot possibly
predict what the user will think and will
probably be obsolete within a few iterations

(2) Manage Requirements

•  Since our big game design document is now
obsolete, we realize that the design of the
game is now a process that lasts for the
entire production of the game

•  Everyone on the team is now responsible for
managing requirements

•  Instead of a large requirements document,
everyone should be familiar with the Vision
of the project

(2) Manage Requirements (cont.)
•  The Vision should be a very concise and informative

description of the essentials of the game
–  What is the game about
–  What the play does most of the time
–  Why is the player doing this
–  What is the surrounding environment
–  What feelings should the game evoke

•  Much like a company’s vision, the project vision is
something that everyone in the team can digest quickly

•  If you don’t have a concise, clear vision, the game is too
undefined and is too risky

(2) Manage Requirements (cont.)

•  Other requirements to consider in the
development are:
– Quality Requirements of the Game (fun factor,

feelings of player)
– Business and Organizational Goals of the Company

(Rovio: save company, make game that will
dominate the iOS store, portable to other platforms
after iOS store is dominated, become Disney 2)
(Cheshire)

– User Personas (who is using this game? Rovio: Who
uses the iPhone? Everyone. Game must appeal to
everyone) (Cheshire)

(3) Manage Change

•  Change in software is inevitable
•  This is why it is SOFTware and not HARDware
•  Therefore, you can’t quite treat it like other

engineering disciplines
–  Especially in Game Development, which has the fun

factor to contend with
•  Norneby and Olsson would try to create code

that was resilient to change, but the changes
the game designers would request always
trumped their best efforts

(3) Manage Change (cont.)

•  They one day realized that they cannot fight the
change. So…

•  It is Okay to throw out code
•  It is Okay to change an interface that has been

around for a long time
•  In their attempts to be pro-change with Object-

Oriented Programming and flexible code, they
were actually being inflexible

•  Because, Gamers and Game Designers will
always want something out of the ordinary

(3) Manage Change (cont.)

•  They found that they should just focus on the
functionality at hand

•  The problem was that they were trying to predict
change and they were considering code reuse

•  But, when a programmer thinks about code
reuse, they are no longer considering the
functionality at hand. They are trying to predict
the future
–  As we now know, this is impossible in games

(3) Manage Change (cont.)

•  The conclusion about code reuse:
–  “Truly re-usable software elements are discovered,

not designed”
•  Never design for reuse. It is speculative, and

therefore looking outside the scope for the
project

•  This, happily, made coding fun again at Massive
Entertainment

•  They saw positive changes in their whole
process within a few days, and people were
writing better code

(3) Manage Change (cont.)

•  Don’t forget to document change, though
•  Otherwise, a game could go in circles

(4) Verify Quality

•  Find problems as early as possible
•  Keep entire system testable as easily as

possible
•  Treat user testing professionally

This All Makes Sense

•  Best practices of Norneby and Olsson seem very
logical

•  Tried and true methods by seasoned veterans
•  But, some argue that more time should be spent in

preproduction phase
–  More preproduction should be done
–  More requirements engineering
–  “I would like to see the day that 25 to 40% of… overall

prerelease time [is spent in] preproduction” – Game
Designer and Producer Eric Bethke (Callele)

More Time in Preproduction?

•  Given that it is inarguable that the game design
cannot possibly be final before the game is actually
complete

•  The desire of developers like Bethke appears to be
wishful thinking and fear of change, much like
Norneby and Olsson had prior to their epiphany

•  It would be fantastic if a game could be fully defined
before it ever reached a programmer

•  That would mean that software engineering is
actually quite simple and straightforward, which is
not the case

Conclusion: Agile in Game
Programming

•  Game Development is an enormous topic
•  We have not even touched upon game design

theories
•  Given that games are a particular piece of software

in which the fun factor can really only be tested using
executable code

•  Game programming appears to be best suited to
Agile-like environments

•  Games are a special area of software engineering,
but despite its special nature, it can still apply many
of the lessons of software engineering

People Trying Agile

•  Many resources to learn about people’s
game design techniques

•  Experiential learning is great!
•  Eg. Jeremy Keller describes his small team’s

experience with trying Scrum and their
eventual migration to Lean development and
the Kanban board

•  http://technitai.wordpress.com/
2011/03/14/the-skinny-on-agile-game-
design-part-1/

Game Design Tools

•  From my searching, there are a multitude of
resources available regarding Game Design,
which was not the topic of this presentation,
but may be of interest

•  Game Design Methods:
http://gamedesigntools.blogspot.com/p/
game-design-methods.html -- A large
collection of links all about facets of Game
Design

Sources
•  Cheshire, Tom. In depth: How Rovio made Angry Birds a winner

(and what's next). Wired UK. 07 March 11.
http://www.wired.co.uk/magazine/archive/2011/04/features/
how-rovio-made-angry-birds-a-winner?page=all

•  Pashley, Simeon. Myth of the Silver Bullet Game Production
Process. 3 June 2010.
http://game-linchpin.com/2010/06/myth-of-silver-bullet-
process.html

•  Norneby, Johannes and Olsson, Tobias. A New Attitude To Game
Engineering: Embrace Change, Re-Use, Fun. 6 August 2009.
Gamasutra: The Art & Business of Making Games.
http://www.gamasutra.com/view/feature/132491/
a_new_attitude_to_game_.php

•  Callele, Neufeld, Schneider. Requirements Engineering and the
Creative Process in the Video Game Industry. 2005 13th IEEE
International Conference on Requirements Engineering.

Software Engineering in Game
Design

•  Game design is a melting pot of many different disciplines which
brings together people who might otherwise never work together.
Art, music, graphics, computer science, psychology, etc.

•  In addition, game design requires the team to create something
fun, which is a requirement that is more elusive than most
ordinary requirements

•  With these differences in mind, one may wonder if software
engineering practices like Agile have a place in game design.

•  Taking lessons from some experts in the field, we explore how
iterative development is essential and how many approaches in
Extreme/Agile programming are even more valid in Game
Programming, because fun is such an elusive quality

