
CUDA
PARALLEL PROCESSING

 By Bill Foland

Friday, March 23, 12

WHAT IS CUDA
• CUDA stands for Compute Unified Device Architecture.

• It’s a hardware and software architecture created by NVidia.

• CUDA C gives developers access to the virtual instruction set
and memory of Graphics Processing Units (GPUs).

• The approach of solving general purpose problems on GPUs
is known as GPGPU.

• GPUs can have hundreds of cores, allowing massively parallel
program execution, similar to supercomputing, on the desktop.

•OpenCL and DirectCompute are the competing standards,
and NVidia seems to be gradually adding support for OpenCL
too.

Friday, March 23, 12

SUPERCOMPUTING
•NVidia packages their high end GPU’s for use as a

supercomputing module.

•Desktop machines including these modules are sold as
desktop supercomputers.

• Clusters of these modules are now included with 35 of the
top 500 supercomputing systems

• For example, the Mole-8.5 GPU-accelerated supercomputer,
which includes more than 2,200 NVIDIA Tesla GPUs was used
recently to simulate and study the whole H1N1 influenza
virus. (NVidia Press Release)

Friday, March 23, 12

http://www.top500.org/
http://www.top500.org/
http://pressroom.nvidia.com/easyir/customrel.do?easyirid=A0D622CE9F579F09&version=live&prid=820173&releasejsp=release_157&xhtml=true
http://pressroom.nvidia.com/easyir/customrel.do?easyirid=A0D622CE9F579F09&version=live&prid=820173&releasejsp=release_157&xhtml=true

SEISMIC ANALYSIS
• The search for oil and gas uses algorithms to analyze seismic

data which are computationally intensive.

•Massive numbers of array and FFT calculations, for example.

• A company called GeoStar uses Tesla GPU’s, and claims a
speedup of 600x over the previously used cluster of 66,
3.4GHz CPU’s.

•

Friday, March 23, 12

NEURAL CIRCUIT SIMULATION
• Evolved Machines simulates neurobiologically realistic neural

circuits which requires gigaflops per neuron.

• A neural array requires thousands of neurons, and so the
detailed simulation of neural systems in real time requires >10
teraflops of computing power.

• They claim a 130x performance improvement over a CPU
cluster.

Friday, March 23, 12

RAY TRACING
• Ray tracing is an algorithm used to calculate synthetic images

from mathematical descriptions.
• An example of using CUDA to create a

simple raytracer spawns one thread per
pixel, something never done on a CPU
because of the huge overhead. But on a
GPU this is practical, since overhead is
very low.

•Weta Digital, in New Zealand, used
CUDA to speed up computations for
ray tracing by a factor of 25 to create
complex scenes for Avatar.

CUDA by Example, Chapter 6

Friday, March 23, 12

MATLAB PARALLEL TOOLBOX
•Matlab’s Parallel Computing Toolbox provides a

straightforward way to speed up MATLAB code by executing
it on a GPU.

• You simply change the data type of a function's input to take
advantage of the many MATLAB commands that have been
overloaded for GPUArrays.

• A factor of 10x for some algorithms is claimed.

• A list of accelerated functions supported is here.

Friday, March 23, 12

http://www.mathworks.com/help/toolbox/distcomp/bsic4fr-1.html#bsloua3-1
http://www.mathworks.com/help/toolbox/distcomp/bsic4fr-1.html#bsloua3-1

WILL CUDA SPEED UP MY APP?

• It must be capable of being broken down into thousands of
similar, but independent, units of work for massive parallelism.

• It must be computationally intensive. I/O intensive algorithms
won’t benefit, for example.

• The intense data parallelism provided by a GPU is tough to
take advantage of without some understanding of the
hardware. It’s a different intuition from CPU multi-core
threads.

•More on this later.

Friday, March 23, 12

EARLY HISTORY
• Early 2000‘s Microsoft DirectX standard pushed GPU

manufacturers to create a more programmable device.

• 2001 GPU’s were designed to produce to produce a color for
every pixel on the screen using pixel shaders.

• The massive array of ALUs was too hard to resist, so
researchers explored general purpose computation through a
convoluted process:

• The GPU was tricked into performing non-rendering tasks
by making those tasks appear as if they were a standard
rendering.

• The GPU pixel color computation was manipulated to be
any data of interest.

Friday, March 23, 12

EARLY HISTORY CONTINUED
• Billions of Floating point operations per second were

accomplished, but problems with early usage GPGPU
included:

• Using OpenGL and DirectX was clumsy.

• ALU’s were not fully functional.

•Memory accesses were awkward.

• Intense understanding of the inner workings of the hardware
was required.

Friday, March 23, 12

CUDA HARDWARE CHANGES
• CUDA hardware architecture includes new components

designed strictly for GPU computing.

• ALUs improved to IEEE single precision arithmetic support
• (and double precision later)

• General computation instruction set

• Execution units modified to allow arbitrary r/w access to
memory.

• Added a software managed cache for shared memory.

Friday, March 23, 12

DIFFERENT ARCHITECTURES

• It takes a lot of hardware to implement flexible CPU cores.

• A much larger fraction of the die is used for ALUs in a GPU.

NVidia Fermi Intel Quad Core i7

Friday, March 23, 12

AND THE TREND CONTINUES
• Recently, NVidia released details about their new GPU, Kepler.

• Lower Clock speed,

• Triple the cores to 1536

• 170 Watts Max (Board)

• Twice the performance per Watt vs. Fermi.

•Nvidia Shows Off First ‘Kepler’ GPUs – PCs first, Server GPU
coprocessors in Q3 | insideHPC.com

Friday, March 23, 12

http://insidehpc.com/2012/03/22/nvidia-shows-off-first-kepler-gpus-pcs-first-server-gpu-coprocessors-in-q3/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+InsideHPC+%28insideHPC.com%29
http://insidehpc.com/2012/03/22/nvidia-shows-off-first-kepler-gpus-pcs-first-server-gpu-coprocessors-in-q3/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+InsideHPC+%28insideHPC.com%29
http://insidehpc.com/2012/03/22/nvidia-shows-off-first-kepler-gpus-pcs-first-server-gpu-coprocessors-in-q3/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+InsideHPC+%28insideHPC.com%29
http://insidehpc.com/2012/03/22/nvidia-shows-off-first-kepler-gpus-pcs-first-server-gpu-coprocessors-in-q3/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+InsideHPC+%28insideHPC.com%29

CUDA C
• CUDA C adds custom extensions to regular C to provide a much

friendlier development environment compared to backdoor DirectX
programming.

• Requirements

• A CUDA-enabled graphics processor
• Any NVIDIA GPU since 2006, starting with GeForce 8800 GTX

• Free Downloads from NVIDIA for PC, Linux, or Mac
• NVIDIA device driver

• CUDA development toolkit

• Standard C compiler

• CUDA C provides support for GPU programming and memory
transfers with the nvcc compiler.

• A standard C compiler such as gcc does the rest.

Friday, March 23, 12

THREADS
• A Kernel is the sequence of instructions to be executed by

each thread.

• From a programming point of view, a thread is just an
execution of a kernel with a given index. Each thread has
access to a one, two or three dimensional index which
distinguishes it from other threads.

• The index can be used to access unique elements in an array,
for example.

• Threads are parallel programs which can be thought of as
executing the same code on different data.

Friday, March 23, 12

BLOCKS AND MULTIPROCESSORS
• The GPU hardware is organized as

a collection of Multiprocessors.

• Each Multiprocessor handles one
or more Blocks.

• A Multiprocessor is further divided
into Stream Processors (also called
Cores), with each Stream
Processor handling one or more
threads in a Block.

• Instruction execution flow is much
more tightly coupled than with
conventional CPU threads.

SP

Double

Shared
Memory

SP

SP SP

SP SP

SP SP

Friday, March 23, 12

CUDA C SYNTAX

• The additional syntax added to the C language is easy to
learn, see here for some good examples and tutorial.

• the allocate, free and copy device memory:

• cudaMalloc, cudaFree, cudaMemcpy

• define a device function (kernel) called “add” that operates on
two integer arrays:

• __global__ void add(int *a, int *b);

Friday, March 23, 12

CUDA C SYNTAX CONTINUED
• To execute 16 blocks, each of which runs the add function

kernel, on elements of two integer arrays:

• add<<< 16, 1 >>>(dev_a, dev_b)

• The second parameter inside the triple chevron specifies the
number of threads to run per block.

• add<<< 16, 32 >>>(...) runs 16*32 = 512 threads.

• Start and stop event recorders to profile your device code:

• cudaEventRecord

• cudaEventSynchronize

• cudaEventElapsedTime

Friday, March 23, 12

MEMORY

• A GPU has different types of memory that can be used to
optimize performance.

•Device memory is the memory on the same board as the
GPU, usually a few GB. It is accessed with a very wide bus to
support fast streaming.

•DMA can be used to transfer Device memory to the main
Host memory.

• “Pinning” can be used to prevent disk caching of memory
blocks by the host, but virtual memory performance will suffer.

• Constant Memory is a section of internal GPU memory which
is read-only by the GPU. It can be used to store data that will
not change during thread execution.

Friday, March 23, 12

MEMORY CONTINUED
• Shared Memory is fast memory that shared between threads

within the same block, limited to around 64K or so.

• Texture Memory is fast read only memory that is optimized to
take advantage of two dimensional access patterns. Designed
for the graphics pipeline, it is still claimed to be useful for many
practical general purpose algorithms.

Friday, March 23, 12

ATOMICS
• Atomics are provided to coordinate memory accesses among

threads and prevent race conditions.

• For the fast, shared memory in a CUDA GPU, this means
threads within the same block.

• Atomics can also be used to protect global memory accesses,
which will be relatively slow.

• Atomic types include Add, Sub, Exch, Min, Max, Inc, Dec, CAS,
And, Or, Xor.

• Example:

• unsigned int atomicInc(unsigned int* address, unsigned int
val);

Friday, March 23, 12

SYNCHRONIZATION
• Threads within a block can be synchronized, so all will pause

execution until all are finished.

• Synchronization is only possible between threads in the same
Block.

• Synchronization is accomplished with the single line:
__syncthreads();

• If __syncthreads() is executed in a kernel within a conditional
construct, like if or while, the GPU could freeze.

• This is because all threads are running from the same program
control unit, and progress will halt until all threads execute the
__syncthreads() line.

• But because some threads may not pass the condition, they will
never get there, and this results in a nasty halt condition.

Friday, March 23, 12

STREAMS
• Streams make it possible to define sequences of operations which run

asynchronously on the GPU.

• Allows the host to operate concurrently with the GPU.

• Fairly intuitive for programmers.

• Multiple streams can be run concurrently on the GPU to allow memory
copy to occur in parallel with computation for multiple buffers.

• Streaming requires some deeper understanding about the GPU
hardware to get it right.

• Some GPUs don’t allow parallelizing memory operations and kernel
programs.

• Some allow one block read only, one block write only and one kernel
to be simultaneous.

• High end GPU’s allow multiple Kernels, too.

Friday, March 23, 12

OTHER CUDA CAPABILITIES
• CUDA allows multiple GPUs to be used within the same

system.

• It also allows the GPU to be used as a graphics device in
parallel with using the device for general computation.

• This capability is used by some game programmers to
accelerate the physics engines while rendering the graphics of
the game.

Friday, March 23, 12

DEBUGGER

• Parallel NSight is a visual debugger for Windows developers.

• CUDA gdb is the command line debugger for mac and linux.
• Both offer remote debugging and standard functions like

breakpoints, single step, etc.

• Adds information about devices, warps, lanes, kernels, blocks
SM’s and threads.

• Single stepping GPU code is at the “Warp” level, and advances
all threads together..

• Keeping track of kernels, grids, blocks,stream multiprocessors,
threads, etc. with a command line debugger doesn’t sound easy
but I haven’t tried it yet.

Friday, March 23, 12

VISUAL PROFILER
• Release for Mac, Linux and Windows in Jan 2012.

• Automated Performance Analysis

• Unified CPU/GPU Timeline

• CUDA and OpenCL API trace

Friday, March 23, 12

PROGRAMMING LIBRARIES
• CUDA Parallel FFT Library (CUFFT)

• 7-18x performance claimed

• CUDA Basic Linear Algebra Subprograms (CUBLAS)

• CUDA LAPACK aka Magma development co-sponsored by
CU Denver.

•math.h for CUDA

• CUDA Random Library

•NVidia Performance Primitives (NPP)

• 350 image processing functions

• 100 signal processing functions

Friday, March 23, 12

MORE INFO

• CUDA Training | NVIDIA Developer Zone

• CUDA by Example, Jason Sanders and Edward Kandrot, 2011

• stanford-cs193g-sp2010 - Programming Massively Parallel
Processors with CUDA - Google Project Hosting

• CUDA, Supercomputing for the Masses | Dr Dobb's

• Triers CUDA ray tracing tutorial « Computer Graphics Lab

Friday, March 23, 12

http://developer.nvidia.com/cuda-training
http://developer.nvidia.com/cuda-training
http://www.amazon.com/CUDA-Example-Introduction-General-Purpose-Programming/dp/0131387685/ref=sr_1_1?s=books&ie=UTF8&qid=1332565864&sr=1-1
http://www.amazon.com/CUDA-Example-Introduction-General-Purpose-Programming/dp/0131387685/ref=sr_1_1?s=books&ie=UTF8&qid=1332565864&sr=1-1
http://code.google.com/p/stanford-cs193g-sp2010/
http://code.google.com/p/stanford-cs193g-sp2010/
http://code.google.com/p/stanford-cs193g-sp2010/
http://code.google.com/p/stanford-cs193g-sp2010/
http://www.ddj.com/architect/207200659
http://www.ddj.com/architect/207200659
http://cg.alexandra.dk/2009/08/10/triers-cuda-ray-tracing-tutorial/
http://cg.alexandra.dk/2009/08/10/triers-cuda-ray-tracing-tutorial/

REFERENCES
• GPU Programming in MATLAB - MathWorks Newsletter

• “Understanding performance bottlenecks in numerical kernels
on GPUs” by Vasily Volkov, May 21, 2010,.

• http://www.pcmag.com/article2/0,2817,2374890,00.asp

• http://drdobbs.com/architecture-and-design/207200659

• Hot-Rodding Windows and Linux App Performance with
CUDA-Based Plugins | Dr Dobb's

• http://www.pgroup.com/lit/articles/insider/v2n1a5.htm

• http://www.mothdesigns.co.uk/content/nvidia-fermi-fail/

Friday, March 23, 12

http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.math.ntu.edu.tw/~wwang/mtxcomp2010/download/volkov2010-NTU1.pdf
http://www.math.ntu.edu.tw/~wwang/mtxcomp2010/download/volkov2010-NTU1.pdf
http://www.math.ntu.edu.tw/~wwang/mtxcomp2010/download/volkov2010-NTU1.pdf
http://www.math.ntu.edu.tw/~wwang/mtxcomp2010/download/volkov2010-NTU1.pdf
http://www.pcmag.com/article2/0,2817,2374890,00.asp
http://www.pcmag.com/article2/0,2817,2374890,00.asp
http://drdobbs.com/architecture-and-design/207200659
http://drdobbs.com/architecture-and-design/207200659
http://drdobbs.com/parallel/232601605
http://drdobbs.com/parallel/232601605
http://drdobbs.com/parallel/232601605
http://drdobbs.com/parallel/232601605
http://drdobbs.com/parallel/232601605
http://drdobbs.com/parallel/232601605
http://drdobbs.com/parallel/232601605
http://drdobbs.com/parallel/232601605

REFERENCES
• GPU AI for Board Games | NVIDIA Developer Zone

• Imaging and Computer Vision

•NVIDIA Tesla Success Stories

• http://www.nvidia.com/object/
evolved_machines_neural_circuit.html

• http://www.mathworks.com/company/newsletters/articles/gpu-
programming-in-matlab.html

• Psychlone Personal Supercomputer

• A Neural Network on GPU - CodeProject®

• Kyle Niemeyer » GPU programming with CUDA on MacBook
Pro

Friday, March 23, 12

http://developer.nvidia.com/gpu-ai-board-games
http://developer.nvidia.com/gpu-ai-board-games
http://www.nvidia.com/object/imaging_comp_vision.html
http://www.nvidia.com/object/imaging_comp_vision.html
http://www.nvidia.com/object/tesla_testimonials.html
http://www.nvidia.com/object/tesla_testimonials.html
http://www.nvidia.com/object/evolved_machines_neural_circuit.html
http://www.nvidia.com/object/evolved_machines_neural_circuit.html
http://www.nvidia.com/object/evolved_machines_neural_circuit.html
http://www.nvidia.com/object/evolved_machines_neural_circuit.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.psychsoftpc.com/psychlone_tesla_page.htm
http://www.psychsoftpc.com/psychlone_tesla_page.htm
http://www.codeproject.com/Articles/24361/A-Neural-Network-on-GPU
http://www.codeproject.com/Articles/24361/A-Neural-Network-on-GPU
http://kyleniemeyer.com/2011/04/gpu-programming-with-cuda-on-macbook-pro/
http://kyleniemeyer.com/2011/04/gpu-programming-with-cuda-on-macbook-pro/
http://kyleniemeyer.com/2011/04/gpu-programming-with-cuda-on-macbook-pro/
http://kyleniemeyer.com/2011/04/gpu-programming-with-cuda-on-macbook-pro/

