
Software Architecture

A Model Driven View

Dong Chen

Email: zaknova@gmail.com

CSCI 5258 Foundations of Software Engineering

University of Colorado, Boulder

Outline

n  Software Architecture

n  Case Study: Model Driven Architecture

n  Application Case Study: ICDE

n  Reference

Software Architecture
n  Definition

n  Understanding

n  Nonfunctional requirements

n  Modeling of Architecture and Baseline

n  Software Architects

n  Different software architectures

Software Architecture Definition

Components and their interactions:
n Architecture is defined by the recommended practice as the
fundamental organization of a system, embodied in its components, their
relationships to each other and the environment, and the principles
governing its design and evolution.[ANSI/IEEE Std 1471-2000,
Recommended Practice for Architectural Description of Software-
Intensive Systems]

Abstraction:
n The software architecture of a program or computing system is the
structure or structures of the system, which comprise software elements,
the externally visible properties of those elements, and the relationships
among them. [L.Bass, P.Clements, R.Kazman, Software Architecture in
Practice (2nd edition), Addison-Wesley 2003]

Definition Cont…

Scalability, distribution, etc.
n [Software architecture goes] beyond the algorithms and data
structures of the computation; designing and specifying the overall
system structure emerges as a new kind of problem. Structural issues
include gross organization and global control structure; protocols for
communication, synchronization, and data access; assignment of
functionality to design elements; physical distribution; composition of
design elements; scaling and performance; and selection among
design alternatives. [D. Garlan, M. Shaw, An Introduction to Software
Architecture, Advances in Software Engineering and Knowledge
Engineering, Volume I, World Scientific, 1993]

Understanding Architecture

n  Defines structures
 a. Partitioning into components, modules, or any units.
 b. Minimizing dependencies and loosely coupled

n  Specifies components communication
 Pattern specifies certain component communications
 e.g. client-server pattern: providing mechanisms for

connection establishment, error handling, server
security, etc.

Nonfunctional Requirements
n  Three nonfunctional requirements:

a. Technical constraints: specifying technologies used
b. Business constraints: specifying business design options
c. Quality attributes: scalability, availability, portability, etc.

n  Abstraction:
a. Informal description of systems (marketecture)
b. Hierarchical decomposition

n  Architecture views
Logic view: expressing logic using class diagrams or others
Process view: describing concurrency and communications
Physical view: mapping to the application hardware
Development view: internal organization of software components

Modeling of Software Architecture
and Baseline
n  Modeling
 Using use case and class diagrams, dynamically using
 sequence , collaboration , state charts , and activity diagrams
n  Baseline
 Requirements: critical use cases, system level quality objectives,
 priority relationships among features and qualities.
 Design: names, attributes, structures, behavior, groupings, and
 relationships of various classes and components.
 Implementation: source component inventory and bill of materials
 of all primitive components.
 Deployment: executable components, risk associated with the
 system components.

Software architects
n  Multi-skilled in software engineering, technology, management

and communications
n  Mapping the abstract patterns to specific implementations to

meet the requirements
n  Philippe Krutchen: The life of a software architect is a long

(and sometimes painful) succession of sub-optimal decisions
made partly in the dark

Different software architectures

n  Middleware Architecture

n  Object-Oriented Architecture

n  Resource-Oriented Architecture

n  Service-Oriented Architecture

n  Aspect-Oriented Architecture

n  Model-Driven Architecture

n  …etc.

Case Study: Model Driven Architecture

n  MDA

n  Principles of MDA

n  Model Transformation

n  MOF in MDA

n  Why MDA?

n  MDA and SOA

Model Driven Architecture (MDA)

n  Abstraction levels in software industry in past five
decades: From machine code to assembly language to 3GLs
to object-oriented languages and now to models

n  MDA: “an approach to IT system specification that

separates the specification of functionality from the
specification of the implementation” defined by OMG

n  Simply a bunch of models and their transformations

n  State of art Tools using MDA: AndroMDA, ArcStyler,
Eclipse Modeling Framework

Principles of MDA
Four principles underlie the OMG's view of MDA:
n Models expressed in a well-defined notation are a cornerstone to
understanding systems for enterprise-scale solutions.
n The building of systems can be organized around a set of models
by imposing a series of transformations between models,
organized into an architectural framework of layers and
transformations.
n A formal underpinning for describing models in a set of meta-
models facilitates meaningful integration and transformation
among models, and is the basis for automation through tools.
n Acceptance and broad adoption of this model-based approach
requires industry standards to provide openness to consumers,
and foster competition among vendors.

Model transformations

n  Computation Independent Model (CIM)
 Hide computational and implementation details.
 System’s environment and requirement are emphasized
n  Platform Independent Model (PIM)
 Transformed from CIM without platform specific information.
 Possess computational information for the application.
n  Platform Specific Model (PSM)
 Transformed from PIM with details on specific platform
 implementation

Example
The following figure represents a Customer and Account. At this level of
abstraction, the model describes important characteristics of the domain
in terms of classes and their attributes, but does not describe any
platform-specific choices about which technologies will be used to
represent them. It also illustrates three specific mappings, or
transformations, defined to create the PSMs, together with the standards
used to express these mappings.

MOF in MDA
n  Meta-Object Facility (MOF): Create MODF representation of

existing modeling languages (such as UML) to make them
MDA compatible

Why MDA?

n  Portability:
 a. High level models are decoupled with low level platform
 details.
 b. Do not need remodeling but transformation when
 underlying platform changes
 c. MOF makes models movable across different
 environments

n  Reusability
 e.g. PIM is mapped to different PSMs for different platforms

Why MDA? Cont…

n  Interoperability
 a. horizontal model mapping and interactions.
 e.g. two sets of CIM/PIM/PSM for the two systems.
 First explicit vertical transformation between high level
 models CIMs and PSMs can be analyzed. The cross platform
 model mappings can be mapped to detailed communication
 protocols or shared databases.

 b. mapping a single high level model into multiple models
 across two or more platforms.

MDA and SOA
n  Difficulty of architecture design
 Systematically check whether the architecture models fulfill the
 requirements

n  SOA (service-oriented architecture)
 a. Different perspective:
 SOA: communication protocols and architecture style perspective
 MDA: general semantic modeling perspective
 b. SOA uses communication protocols, pervasive services, etc, to
 bridge different systems.
 MDA applies transformation rules for the high level down to low
 level

Application Case Study: ICDE

n  ICDE System

n  Extended Capacity Planning

n  Reasons for choosing MDA

n  MDA based Test Generator

n  Test Results and Practical Merits

Case Study on ICDE

n  ICDE (Information Capture and Dissemination Environment) Initial
objective: capture user actions use cases and offer intelligent helps

 a. Data Collection: capture users’ activities
 b. Data Store: database storage of event information
 c. Data analysis: analysis for the data store

ICDE capacity planning

Promote the initial ICDE with network capability
n Different domains and user installations use ICDE in different
ways
n Different installations of ICDE on different hardware platforms
n Different application servers have different performance
characteristics

n Capacity planning is to execute a test load on specific platforms:
then how to make test as efficient and painless as possible?
n Ans: applying MDA

Reasons for choosing MDA

n  MDA provides a generic application model and model
mapping mechanism. MDA possesses portability,
interoperability and reusability

n  The reuse of code generation cartridges which are

maintained by a large active user community with high
quality is attractive

n  Use MDA code generation cartridge could achieve site-
specific features

ICDE MDA-based Test Generator

n  A UML profile and a tool are designed to automatically
ICDE test suites from that specific description.

n  The tool is built on top of an open source framework

AndroMDA

n  Input: UML based diagrams. Output: benchmark
application including monitoring, profiling, and reporting
utilities.

Test Model

Test Model Cont…

n  ICDEAPIService : load entry point for test model

n  ICDEAPIClient: consisting of a number of test
cases

n  TrxnData: test data used for calling ICDE APIs
randomly generated to simulates the real work
load of the ICDE installation

n  TranDEck: configure transaction mix for a test

Test results

n  Following figure shows the response time distribution for
two different application servers. The workload is 150
concurrent users.

Practical merits
n  A large amount of time is save through automatically

repetitive and error prone code generation for different
platforms

n  MDA raises the abstraction levels that make it easy to
extend and be represented

n  Seamless integration with other architectures not far
away: e.g. high level semantic system integration and
systems models transformation into low level SOA
facilities

References
n  Essential Software Architecture 2nd, Ian Gorton, 2011 chapter 1-4

and chapter 14

n  Software Architecture in Practice 2nd Len Bass Paul Clements,

Rick Kazman, 2003
n  L. Zhu, J. Liu, I. Gorton, N. B. Bui. Customized Benchmark

Generation Using MDA. in Proceedings of the 5th Working IEEE /
IFIP Conference on Software Architecture, Pittsburgh, November
2005

n  Object Management Group: http://www.omg.org

n  seminar on model-based software architecture.ppt

n  An introduction to Model Driven Architecture.

http://www.ibm.com/developerworks/rational/library/3100.html

For further reading

n  OMG, MDA Guide Version 1.0.1
http://www.omg.org/mda/

n  Thomas Stahl, Markus Voelter, Model-Driven Software
Development: Technology, Engineering, Management,
Wiley 2006

Summary
n  In this lecture, definitions of software architecture are first

introduced in three different perspectives. Then modeling
procedures and nonfunctional requirements compared with
traditional functional designs are given out.

n  A specific software architecture: Model driven architecture,
is analyzed in terms of its model transformation nature,
unifying modeling language and three great features
(portability, Interoperability, Reusability). Also a brief
comparison between SOA and MDA shows a higher level
abstraction feature of MDA.

n  Finally, capacity planning and test on ICDE system is
shown as a case study to take MDA into practice for
meeting different platform requirements and environment
constraints.

 Have a Nice Spring Break

