NON-BLOCKING IO : CONCEPT AND

VANV ADDIFErNr\ /1 aAa

FRAMEWORKS

1L V/NJIAITAANVIVT™

Outline

* The Problem: Thousands of Clients.

= Solution: Non-Blocking 10.

= The Reactor Pattern: Down to the roots of NBIO.
= NBIO is hard, just like multithreading.

* Frameworks are a bliss! ... Apache MINA included.

= Example servers using Apache MINA and some of
the benefits we get out of it:

Performance.

Separating low-level IO handling from the protocol from
the business logic.

= More on MINA features.

» Client/Server modelis widely

used computation model. Server Clent
= WWW, FTP, E-Mail, socket() socket()
= Servers nowadays need to Lo
serve thousands of users 1isten()
simultaneously. accept() |+ connect()
= The majorissue here is the oL s SER30)
) time it takes a server to read send0) o reO
data from the client and the close() [« o close0)
time it takes the servertosend 1 icalsteps in client/server
the response back to the client. communication

o Tens of milliseconds.

» Typically the thread reading from a network
socket blocks until all the data is received or a
timeout is reached. Thus, the term blocking I10.

= Asimple single-thread server using blocking IO
can handle very few hundreds of client requests
In one second

= Not good enough!
: = Solution Approaches:
o Multi-threading.

= Non-blocking IO (Referred to as NBIO hereafter).

 There are variations that fall under this category, but
they are OS/Programming languages specific.

Recall Homework Three.
Several threads handling client requests.

Once a connection between a client and a
server is established a thread can read the
request process it and send the response back
to the client.

o One-thread-per-client scheme.

The number of threads created per-core is

determined by the blocking coefficient.
= Number of Threads = Number of Cores / (1 - Blocking Coefficient)

In this approach a large number of threads (possibly
hundreds of them) are created when the blocking
coefficient is very close to 1.

= Large files are sent over a network or high network latency.
Operating systems may not do a good job when
handling large number of threads.

o Scheduling overhead and wasted CPU cycles in context
switches.

Significant amount of memory is invested in the
threads’ stack frames (2MB is a common default).

This approach has many advocates (e.g. Eric Brewer
creator of Inktomi [3]).

Soelution Approaches—NBIO

* |nthis approach, as the name suggests, a thread is not
blocked while it is performing an IO operation. Instead, ...

it registers its interest in an 10 operation and the operating system (OS)
will handle performing that operation.

The OS will notify the thread of any events that occurred in that
operation through a call back function supplied by the thread.

= As with threads, the support of the software stack
between the user code and hardware (i.e. OS, JVM ...

etc) is necessary.

Supported in: windows NT v3.5 and later, Linux v2.6.x and later, Solaris
10...etc. And in Java 1.4 (code name Merlin) and later.

» We'll see an example server (Echo Server) written in Java
using NBIO.

* The Reactor Design
Pattern [7] :

= Used to decouple
the threads from
the IO operations

o Listens to events
on sockets, files, ...
etc. and sends
those events to
interested threads.

Handle

notifies
oOWns

Demultiplexer

Operations
public select()

< <interface> >
EventHandler

public handleEvent()

Operations

N
uses
/

Dispatcher

Operations
public handleEvent()

public registerHandler()
public unregisterHandler()

D
\
\

ConcreteEventHandler

e
Operations redefined from ‘EventHandler

public handleEvent()

» The Reactor Design Pattern Actors and
Dynamics:

= Handle: a resource (file, socket, ..etc.)

o Demultiplexer: Listens to events on Handles (data
written, data arrived, timeouts, ..etc.). Exposes the
select() method.

o Dispatcher: uses the select() method from the
demultiplexer to get events that happened on all
handles and delivers each event to its appropriate
Handler.

= EventHandler: reacts to an event (e.g. defines a
network protocol for data arrived on a network
socket).

.

Hll .
s N N | -

Handle EventHandler

< <interface> >
Runnable

Operations
public void run()

3

< <interface> >

public Object attach(Object o)
public Object attachment()

public InputQueue getinputQueue()

public OutputQueue getOutputQueue()

public void handlelnput()

public void inputClosed()

public void channelException(Exception exception)

ChannelHandler
v . { From framework }
SelectionKey Thread
Operations -
Operations public void channelRegistered(HandlerAdapter handlerAdapter) Operations

From

Operations R
public void run()

A

ConcreteEventHandler

5

1
HandlerAdapter
Selector { From framework }
u -
o Operations Operations
[| public int select() public void cacheOps()
public Set<SelectionKey> selectedKeys()
Operations Redefined From Thread
public void run()

Dispatcher
{ From framework }

Operations

D |t 1 | public void registerChannel(SelectableChannel channel, ChannelH
el I I U I p exe r public void setExecutor(Executor executor)

andler channelHandler)

Operations Redefined From Thread
public void run()

Used when
dispatching
events to a
thread pool

< <interface> >
Executor

package void execute(Runnable runnable)

Dispatcher

Dispatcher Loop

The main thread of the reactor performs the following:

1.
2.
3.
4.

5.

A

Create a new thread pool (an executor).
Create a new ServerSocketChannel, and bind it to a port.
Create a new Selector.

Register the ServerSocketChannel in the Selector, asking
for accept readiness.

While(true)
wait for notifications from the selector. For each notification
arrived check:

Accept notification: the server socket is ready to accept
new connection so call accept. Now a new socket was
created so register this socket in the Selector.

Write notification: For each socket which is ready for

a

writing, check if the protocol asked to write some bytes.

If so, try to write some bytes to the socket.

Read notification: For each socket which is ready for
reading, read some bytes and pass them down to the
protocof handler. The actual work done by the protocol
will be achieved with the use of the thread pool; e.g.,
protocol processing is assigned as a task for the pool.

uoneladQ Joloeady

—

A First NBIO Server ... (1)

public class EchoServer {

private InetAddress addr;

private int port;

private Selector selector;

private Map<SocketChannel,List<byte[]>> dataMap;

public EchoServer(InetAddress addr, int port) throws |OException {
this.addr = addr;
this.port = port;
dataMap = new HashMap<SocketChannel,List<byte[]>>();

this.selector = Selector.open();
ServerSocketChannel serverChannel = ServerSocketChannel.open();
serverChannel.configureBlocking(false);

InetSocketAddress listenAddr = new InetSocketAddress(this.addr, this.port);
serverChannel.socket().bind(listenAddr);
serverChannel.register(this.selector, SelectionKey.OP_ACCEPT);

runServerLoop(); < —— Dispatcher Loop

uoneladQ Joloeady

I APFirst NBIO Server... (Il)

private void runServerLoop() throws IOException {
while (true) {

thisselectorselect)y < @aetEvents from Multiplexer

Iterator keys = this.selector.selectedKeys().iterator();
while (keys.hasNext()) {

SelectionKey key = (SelectionKey) keys.next();) Q
w0
o g
e 2
e e
-
keys.remove(); 9- ()
—
Tl —
—
if (1 key.isValid()) > o
- continue; a'_ _8
[| if (key.isAcceptable()) { — 2
this.accept(key); o
} T
else if (key.isReadable()) { 8_
this.read(key); o
} v
else if (key.isWritable()) {
this.write(key);
}

}
}
}

I APFirst NBIO Server... (lll)

private void accept(SelectionKey key) throws |IOException {
ServerSocketChannel serverChannel = (ServerSocketChannel) key.channel();
SocketChannel channel = serverChannel.accept();
channel.configureBlocking(false);

Socket socket = channel.socket();
SocketAddress remoteAddr = socket.getRemoteSocketAddress();
log("Connected to: " + remoteAddr);

dataMap.put(channel, new ArrayList<byte[]>());
channel.register(this.selector, SelectionKey.OP_READ);

}

* Only Handler for accept event is shown here, other handlers will be in the source
code distributed along side the presentation.

Writing AlO Servers May Be Hard (1)

= As with multithreading, there are many intimate
details about NBIO that when overlooked can
lead to loss of performance.
Marking a channel as writeable too early results in the
selecting thread spinning because 9g9% of the time a
socket channel is ready for writing. And on win32, can

produce disastrous performance problem, like
freezing the OS by eating all the CPU.

= |faclient sends data that won't fit into the buffer
with the channel. Then multiple read events will
be dispatched. Likewise, with writes.

That means we need to track the state of each read/
write over multiple dispatched events.

Writing NBIO Servers May Be Hard (Il)

» The story of Rob Van Behren, adopted from [4]:

Set out to write a high-performance asynchronous
server system

Found that when switching between clients, the code
for saving and restoring values/state was difficult

Took a step back and wrote a finely-tuned, organized
system for saving and restoring state between clients

When he was done, he sat back and realized he had
written the foundation for a threading package

So, We Can Use Wrapper Frameworks!

= Just like the case with multithreading where
many frameworks exist out there that provide
many readily available multithreading models.
= NBIO Frameworks:
Java: Apache Mina.
C++: Boost::asio and POCO C++ Libraries.
Perl: 10::Async.
Python: Twisted.

* These libraries not just support NBIO for network
communication, they also include asynchronous
file operations.

Reexamine the Example Server...

* There are part of this server that are similar to
any other NBIO server:

Setting up multi-channel sockets.

Selecting events from the selector and
dispatching them in the dispatcher loop.

This is bootstrap logic.

= Other parts vary from one server to another:

Logic in all event handlers (accept, read, write, ...
etc.).

Those methods define the protocol.

Apache MINA

* |san open source Java network application
framework.

= Unified APIs for various transport protocols
such as TCP, UDP and serial communication.

= Separates the low-level network handling API
from the application logic.

Apache Mina—A Eirst Example

» The Setup:

MINA 2.x Core

JDK 1.5 or greater

SLF4J 1.3.0 or greater
Log4J 1.2 users: slf4j-api.jar, slf4j-log4j12.jar, and Log4J 1.2.x
Log4J 1.3 users: slf4j-api.jar, slf4j-log4ja3.jar, and LogsJ 1.3.x
java.util.logging users: slf4j-api.jar and slf4j-jdk14.jar
IMPORTANT: Please make sure you are using the right slf4j-
*.jar that matches to your logging framework.

For instance, slf4j-log4j12.jar and logsj-1.3.x.jar can not be
used together and will malfunction.

Most of the functionalities in
pUb|iC class MinaEchoServer { the reactor pattern are
private static final int PORT = 8080; embedded in this class.
public static void main(String [] args) throws IOException
Codec: Converting byte

NioSocketAcceptor acceptor = new NioSocketAcceptor(); stream into a logical
acceptor.getFilterChain().addLast(message. The one used
“codec’, here is supplied by MINA.

new ProtocolCodecFilter(new TextLineCodecFactory(Charset
forName("UTF-8"))));

Processes the messages.

4
acceptor.setHandler(new EcholoHandlef());
acceptor.bind(new InetSocketAddress(PORT));

} Provides Several handlers for
} various events. These
handlers can be overridden as
/ we have done here with these
two events.

public class EcholoHandler extends loHandlerAdapter {

Handler for caught exceptions.

@Override P

public void exceptionCau§F1t(IoSession session, Throwable cause) throws Exception {
session.close();

}

Handler for received messages.
@Override &/—K

public void messageReceived(loSession session, Object message) throws Exception {

session.write((String) message);
} \ This is an EchoServer. Just send back
} what ever was received in the

message.

That is it!

— Bootstrap

— Protocol

r& PuTTY Configuration |M‘

+—— Raw Messages

Category:
-] Session Basic options for your PuTTY sessi
Logging

=] Terminal)
Keybomd Host Name (or IP address)

Type any message
. and the server will
Features Connection type: i
= Window © RS) Telnet () Rlogin) SSH () Serial reply with the

J;Zﬁ:i:::fe Load, save or delete a stored session same messa g €.

Translation Saved Sessions

Bell localhost

Selection
I - -
H Con:zlciiuol: Defauk Settings | load | £ ehab-PC - PuTTY (o] B i)
Data ’
Proxy

Telnet ’ Delete ‘
Rlogin -

+- SSH

Serial

Save ‘

Close window on exit:
Always Never @ Only on clean exit

' About ’ ’ Help ‘ | Open | ’ Cancel

Putty can be downloaded from this link:

Comments About MinaEchoServer

= As we have seen, MINA takes care of the generic
bootstrap code which usually requires significant
optimization.

= You just need to plug in some code for handling the
implemented protocol.

= MINA provides implementation for several protocols.

= Separating the protocol handler from the protocol
decoder (TextLineCodecFactory) and the bootstrap
logic (NioSocketAcceptor) separates the business
logic (i.e. EcholoHandler) from the protocol.

= MINA-based server have an architecture that is very
extensible (described next). We could have added for
example client black listing feature for example.

MINA-Based Server Architecture

loSession:
Holder of state for a connection (either client-side or
server-side)
Passed along with every event
Important Methods : (Write, Close, and get/setAttribut)

loHandler:
Akin to a Servlet
Endpoint of a filter chain

Important Methods: (sessionOpened,
messageReceived, and sessionClosed)

|O FilterChain:
Chain of loFilter's for each loSession
Can setup template chains per loConnector/loAcceptor
Dynamic addition/removal

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
©
=
=
@)
e
o}
=
O
i
I
I
I
I
I
I
I
I
I
!
I
\

N
-~
-

loProcessor

| ————————
loAcceptor

MINA-Based Server Architecture

= |oFilters:
Akin to a ServletFilter
View/Hack/Slash the event stream

Important Methods: (sessionOpened, messageReceived, filterWrite,
sessionClosed).

Currently built: (Logging, Compression, Blacklist, and SSL).
= |oAcceptor:
Server-side entry point.
Accepts incoming connections and fires events to an loHandler.
Important Methods: (bind).
= |oProcessor:
Internal component

Handles reading and writing data to an underlying connection Each
connection is associated with a single loProcessor (shared amongst

We will define our own codec

public class SWServer { . - S
public static final int PORT = 8330; TETEE @ UEng &) Puliz i ems

public static void main(String[] args) throws IOException {
SWServerloHandler handler = new SWServerloHandler();
SocketAcceptor acceptor = new SocketAcceptor();
acceptor.getFilterChain().addLast("protocol”, new ProtocolCodecFilter(new MinaCodecFactory(false)));

acceptor.bind(new InetSocketAddress(PORT), handleg;)
System.out.printin("server is listenig at port " + PORT); We will also define our own

} handler.

public class MinaCodecFactory implements ProtocolCodecFactory {

private final ProtocolEncoder encoder; . .
private final ProtocolDecoder decoder; This will define how a

response message will be
encoded into a byte stream
to be transferred over the
network.

public MinaCodecFactory(boolean client) {
encoder = new MinaResponseEncoder();
decoder = new MinaRequestDecoder();

}

public ProtocolEncoder getEncoder
return encoder;

} This will define how a byte
stream received from the
return decoder: P network will interpreted

} into a message.
}

ws Exception {

public ProtocolDecoder getDecoder() throws Exception {

public abstract class Message { < Message class exchanged in our custom protocol.
protected int flags = 0; // The flag. Indicates if the message is zipped of flat, in addition to other info.
protected int sessionld = 0; // The session Id assigned by the server to the custom client.
protected int messagelLength = 0; // message length, when deflated (i.e. not zipped).
protected int packetLength = 0; // packet length. If message is not zipped will same as message length.
protected String messageString =""; // the actual XML message.
I, Omitted from here are regular setters and getters.
}
Encoder: Writes the
public class MinaResponseEncoder extends ProtocolEncoderAdapter{ < message into a byte
buffer to be sent out
public void encode(loSession session, Object message, ProtocolEncoderOutput out) throws Exception { over he network.
Message minaResponse = (Message) message;
- ByteBuffer buffer = ByteBuffer.allocate(0).setAutoExpand(true);
3 buffer.putint(minaResponse.getFlags());
buffer.putint(minaResponse.getSessionld());
buffer.putint(0); __ Write the header
buffer.putint(minaResponse.getMessagelength()); inf
buffer.putint(minaResponse.getPacketLength()); INTo.
buffer.put(minaResponse.getMessageString().getBytes()); _
buffer.flip(): <\ _
out.write(buffer); Write the XML part of
} the message.
}

Give the byte buffer to MINA for it to
handling sending it out.

The decoder: will handle
converting the byte stream
> received from the network

public class MinaRequestDecEder extends CumulativeProtocolDecoder { into a message.
protected boolean doDecode(loSession session, ByteBuffer in, ProtocolDecoderOutput out) throws Exception {
if (in.remaining() >= 12) {

}

}

}else {

}

int flags = in.getInt();

int sessionld = in.getlnt();

int packetLength = in.getInt();
int messagelLength = in.getint(); Read the XML part of the

6/ message.
byte[] packet = new byte[packetLength];

in.get(packet); Create a message object.

Read the header
information.

Message request = new RequestMessage(flags, sessionld, packetLength, messagelLength, packet);

out.write(request); <—1
MINA will send this decoder

return true;
output to the protocol (10

return false; Handler).

P Our Protocol Handler

~
public class SWServerloHandler extends loHandlerAdapter {

public void sessionOpened(loSession session) throws Exception {
-

\ Nothing interesting when

session is created.

public void exceptionCaught(loSession session, Throwable cause) throws Exception { .
Close the session

when something
wrong happens.

SessionLog.warn(session, cause.getMessage(), cause);

A

session.close();

public void messageReceived(loSession session, Object message) throws Exception {
RequestMessage request = (RequestMessage) message;

Random randomGenerator = new Random();

int sessionld = request.getSessionld(); Handle the
request and send

— the response
message back.

Document doc = RequestParser.parseRequest(request.getMessageString());

ResponseMessage response = RequestHandlerFactory.getRequestHandler(request).processRequest(request);

session.write(response);

Few More Features to talk about...

= MINA also:

Provides the means to build NBIO clients.

Provides ExecutorFilter class . This class is
implementing the loFilter interface, and basically, it
contains an Executor to spread the incoming events to
a pool of threads.

Provides SSL Filters to server SSL requests.
Provides Customizable logging feature using logsj.
Integrates well with JMX and Spring.

Provides the means for unit testing through mock

Performance Result

* Here is a well cited
performance
comparison between
Apache MINA and the
production ready
Apache WebServer.

 Data size used is very
small. The gapis
expected to be bigger
when using larger data
sizes.

20,000
9
@
w«1
™ 15,000
w1
o
ad
10,000

100 500 1000 5,000 10,000
of Clients

—=— Apache 2.0.58 —+— MINA 2.0.0-M1 —— Difference

Who Uses Mina?

= SubEtha SMTP : http://code.google.com/p/subethasmtp/

= EURId: http://www.eurid.eu/ (After one hour MINA had handled
more than o.5 million SSL connections).

= Avis:The Avis event notification router and client library.
= The Apache Directory Project.

= QuickFIX —QuickFIXEngine.org : Financial Information eXchange
Protocol.

= JStyx —JStyx.sf.net : Styx, a file sharing NFS-like protocol.

= AsyncWeb: http://mina.apache.org/asyncweb/.

Executive Summary

The Problem:

Servers need to server thousands of clients simultaneously but the server blocks
on |O ops.

Old solution: Multi-threading still wastes a lot of resources on context switching
and may not scale well due to limitation on having 1000s of threads.

= New Solution: Non-Blocking IO...
Which Delegates the responsibility of handling 10 to the OS and hardware.

Thus converting the 10 intensive app into CPU intensive. Blocking coefficient goes
lower.

Requiring less number of threads, impacting the architecture of the software.
= NBIO follows the Reactor Pattern.

» Just Like multithreading is hard, NBIO is hard as well...So, we'll use
NBIO frameworks.

= Example NBIO framework: introducing Apache MINA.

= More about Apache MINA's features and benefits and architecture:
Separate the protocol from the business logic.

References

= [1] Network Performance:
http://en.wikipedia.org/wiki/Network performance

= [2]The CaoK Problem by Dan Kegel: http://www.kegel.com/ciok.html

= [3]Why Events Are A Bad Idea (for high-concurrency servers), by Brewer
et.al:
http://static.usenix.org/events/hotoso3/tech/full papers/vonbehren/
vonbehren.pdf

= [4]Thousands of Threads and Blocking I/O
The old way to write Java Servers is New again:
http://www.mailinator.com/tymaPaulMultithreaded.pdf

» [5]Apache Mina User Guide: http://mina.apache.org/user-guide.html

= [6] "JAVA NIO FRAMEWORK Introducing a high-performance 1/O
framework for Java” by Ronny Standtke and Ulrich Ultes-Nitsche.

= [7] “Reactor : An Object Behavioral Pattern for Demultiplexing and

