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A little background 

• Graduated with MESE 1995 
•  25 years in development 
• Variety of mostly small shops in Boulder area  
• Agile development since late 90s 
• Currently employed at Valtech 
• Agile Transformation Coach 
•  tom@smallwood-software.com 



Today’s Purpose 

•  Free form and spontaneous 
• Answer your questions about using Agile 
•  Supplement 
•  Typical challenges 



Your impressions 

• How rigorous were you using agile? 
• What worked well? 
• Benefits that you experienced? 
• Questions about Agile practices? 



Agile Introduction 

•  The course provided a good foundation of Agile 
• One of the course presentations provided a good 

description of Scrum  
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Chaotic •  High turbulence 
•  No clear cause & effect 
•  Unpredictable 
•  Many decisions no time 

•  Immediate action to re-establish order 
•  Prioritize and select actionable work 
•  Look for what works rather than perfection 
•  Act, sense, respond 
•  Act on what is high priority and can be 
bounded 

Complex •  More unpredictability than 
predictability 
•  Emergent answers 
•  Many competing ideas 

•  Create bounded environments 
•  Increase level of interaction/
communication 
• Generate ideas 
•  Probe, sense, respond  
•  Servant leadership 
•  Let people figure out the best way 

Complicated •  More predictability than 
unpredictability 
•  Fact-based management 
•  Experts work out the wrinkles 

•  Utilize experts to gain insights 
•  Use metrics to gain control 
•  Sense, analyze, respond 
•  Command & control 

Simple •  Repeating patterns 
•  Consistent events 
•  Clear cause & effect 
•  Well established knowns 
•  Fact based management 

•  Use best practices 
•  Extensive communication not necessary 
•  Establish patterns and optimize them 
•  Command & control 



Defined, Predictive 

Empirical, 
Unpredictable 

Start with a 
plan and all 
requirements 

End with all 
requirements 
completed 

Start with 
goals and 
some priority 
requirements 

End with 
goals met  



Long Feedback Cycles 

Short Feedback Cycles 

Effect of Feedback Length 
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Treating SW Dev as predictive 
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destination 
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expected 
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The plan 

Inspect and Adapt 

The actual 
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@ T1 



What we learn 

•  Plans change for a variety of reasons 
• Expect them to change 
•  SW is novel and complex 
• Use a process that allows for change 
•  Planning is done at different levels 
•  Inspect and adapt 



Horizon of Predictability 
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The Problem With “Waterfall” 
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It never quite works out 

Requirements


Design


Implementation


Big Batch  
of Features The Reality #1 

We ran into some surprises 

Verification




The Problem With “Waterfall” 

Implementation


Verification


The Reality #2 
We had to meet our schedule 

Test and Fix 
Aka “The circle of hell” 



The Problem With “Waterfall” 

Implementation


The Reality #3 
This took longer than expected 

And other nightmares 
•  late integration of component and system 
•  untested deployments 
•  lack of production-like environments 
•  production find and fix 
•  manual regression testing  
•  death marches 
•  burnout 
•  divorce 
•  people quit 



What we learn 

•  Small plans are less complex than big plans 
• Variance exists no matter how well you plan 
• Death marches are no fun 
•  Predict future progress by past progress 
• Excessive designing results in bloat 
• Building it proves it 
• Complex systems emerge from simple systems 



Sprint 2


Horizon of  Predictability
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Backlogs that Support Agile Planning 

Product 
Backlog 

R1 R2 R3 

S1 S2 S3 

Goals 
Feature Sets 

Feature Sets 
Features 

Functions/Actionable 

Epic Stories 

User Stories 

Vision 

Release/Roadmap 

Sprint 



Abide by the horizon of predictability 



What we learn 

• Uncover details to the level that is responsible 
• Delay decisions until the last responsible 

moment 
• Don’t do work until its needed (JIT) 
•  JIT Requirements 



Right-sizing stories - INVEST 

•  I – independent 
• N – negotionable 
• V – valuable 
• E – estimatable 
•  S – small 
•  T - testable 



Right-sizing stories 

Stories too big Stories small so steady 
progress is made 





Effort               Complexity             Risk 
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Challenges of Agile 

•  Still considered new-fangled 
• Requires discipline -- very few companies have it 
• Agile failures blamed on Agile 
• Most are looking for a process to follow not a 

new way of thinking 
• Waterfall behaviors are difficult to overcome 
• Agile requires cultural change – this is hard 
•  Teams are empowered, leadership serves 
• Making the entire value stream agile  



What Agile means to you 

• Agile testing – very few companies do it. There is 
a big need for people that know how to do it. 

• Make TDD your development methodology 
• Be skilled in multiple disciplines 
•  Learn Agile/Lean – this is bound to be with us 

for a very long time. 2000s Agile was used in 
small shops. 2010s large companies are now 
adopting Agile.   
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ROI - Iterative 

Cost 
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Technical Debt 

Technical 
Debt 

Technical 
Debt 

Technical 
Debt 

Over time, 
technical debt 
accumulates, 
System must be 
rewritten 





• 	
  Add	
  nothing	
  but	
  value	
  

• 	
  Center	
  on	
  people	
  who	
  add	
  value	
  

• 	
  Flow	
  value	
  from	
  demand	
  

• 	
  Op>mize	
  across	
  organiza>ons	
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  The	
  first	
  step	
  in	
  Lean	
  thinking	
  is	
  learning	
  to	
  see	
  waste	
  
and	
  remove	
  it.	
  

	
  Don’t	
  try	
  to	
  improve	
  the	
  “value	
  add”	
  steps	
  –	
  	
  
at	
  least	
  ini>ally	
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Overproduc>on	
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Extra	
  (Unused)	
  Features	
  
Gold	
  Pla>ng	
  

Un-­‐integrated	
  code	
  
Untested	
  Code	
  

Un-­‐deployed	
  Code	
  

Develop	
  only	
  for	
  today’s	
  stories	
  
Don’t	
  build	
  “for	
  the	
  ages”	
  

YAGNI	
  



Work	
  in	
  Progress	
  
(All	
  work	
  in	
  progress	
  is	
  poten>al	
  waste)	
  

Prematurely	
  specified	
  details	
  
Par>ally	
  completed	
  stories	
  

Un-­‐integrated	
  code	
  
Untested	
  code	
  

Un-­‐deployed	
  code	
  

Delay	
  work	
  un>l	
  it	
  is	
  needed	
  and	
  can	
  
be	
  completed	
  (i.e.,	
  JIT)	
  

Minimize	
  WIP	
  



Inefficient	
  Process	
  
Manual	
  Opera>ons	
  
Excessive	
  Formality	
  

Unnecessary	
  Paperwork	
  
Handoffs	
  

Complex	
  communica>on	
  methods	
  
Doing	
  more	
  than	
  is	
  necessary	
  

Face-­‐to-­‐face	
  communica>on	
  
Do	
  the	
  simplest	
  thing	
  possible	
  



Finding	
  and	
  Re-­‐finding	
  Informa>on	
  
Relearning	
  

Long	
  feed-­‐back	
  loops	
  
Distributed	
  teams	
  

High-­‐effort	
  communica>on	
  
Handoffs	
  

Jerky	
  and	
  interrupted	
  flow	
  	
  

Keep	
  communica>on	
  costs	
  (effort)	
  cheap	
  
Cross-­‐func>onal	
  and	
  co-­‐located	
  teams	
  

Smooth	
  flow	
  



Defects	
  not	
  caught	
  by	
  tests	
  
Unclear	
  acceptance	
  criteria	
  

Handoffs	
  
Long	
  feed-­‐back	
  loops	
  
No	
  Product	
  Owner	
  

Keep	
  defects	
  out	
  of	
  the	
  code!	
  
Use	
  TDD,	
  SDD,	
  Executable	
  Requirements	
  

Automated	
  tes>ng	
  of	
  all	
  types	
  
“Stop	
  the	
  line”	
  mentality	
  

Mistake-­‐proof	
  anything	
  and	
  everything	
  



Wai>ng	
  
Distributed	
  teams	
  
Mul>-­‐tasking	
  

Organiza>onal	
  Silos	
  
Product	
  Owner	
  not	
  available	
  

Long	
  feed-­‐back	
  loops	
  
Handoffs	
  

Teams	
  make	
  cri>cal	
  decisions	
  every	
  15	
  minutes	
  
Cross-­‐func>onal	
  teams	
  

Co-­‐located	
  teams	
  
Highly	
  available	
  Product	
  Owner	
  



Handoffs	
  
Managing/Maintaining	
  Premature	
  Details	
  
Managing	
  large	
  backlogs	
  and	
  bug	
  lists	
  

Product	
  Owner	
  (customer)	
  not	
  available	
  to	
  team	
  

Every	
  >me	
  informa>on	
  is	
  transferred	
  to	
  
another	
  group	
  or	
  person	
  knowledge	
  is	
  
usually	
  lost	
  (and	
  wai>ng	
  is	
  usually	
  

introduced)	
  
Follow	
  JIT	
  Principles	
  	
  

Clean	
  House	
  



If	
  something	
  does	
  not	
  directly	
  	
  
add	
  value,	
  it	
  is	
  waste.	
  	
  

If	
  there	
  is	
  a	
  way	
  to	
  do	
  without	
  it,	
  	
  
it	
  is	
  waste.	
  

Speed	
  is	
  the	
  absence	
  of	
  waste	
  	
  




