
The Ins and Outs of Agile Methods
Tom Smallwood
Lecture 28– CSCI 5828
04/22/2010

A little background

• Graduated with MESE 1995
•  25 years in development
• Variety of mostly small shops in Boulder area
• Agile development since late 90s
• Currently employed at Valtech
• Agile Transformation Coach
•  tom@smallwood-software.com

Today’s Purpose

•  Free form and spontaneous
• Answer your questions about using Agile
•  Supplement
•  Typical challenges

Your impressions

• How rigorous were you using agile?
• What worked well?
• Benefits that you experienced?
• Questions about Agile practices?

Agile Introduction

•  The course provided a good foundation of Agile
• One of the course presentations provided a good

description of Scrum

Close to
Certainty

Far from
Certainty

Close to
Agreement

Far from
Agreement

Technology

Requirements

Chaotic •  High turbulence
•  No clear cause & effect
•  Unpredictable
•  Many decisions no time

•  Immediate action to re-establish order
•  Prioritize and select actionable work
•  Look for what works rather than perfection
•  Act, sense, respond
•  Act on what is high priority and can be
bounded

Complex •  More unpredictability than
predictability
•  Emergent answers
•  Many competing ideas

•  Create bounded environments
•  Increase level of interaction/
communication
• Generate ideas
•  Probe, sense, respond
•  Servant leadership
•  Let people figure out the best way

Complicated •  More predictability than
unpredictability
•  Fact-based management
•  Experts work out the wrinkles

•  Utilize experts to gain insights
•  Use metrics to gain control
•  Sense, analyze, respond
•  Command & control

Simple •  Repeating patterns
•  Consistent events
•  Clear cause & effect
•  Well established knowns
•  Fact based management

•  Use best practices
•  Extensive communication not necessary
•  Establish patterns and optimize them
•  Command & control

Defined, Predictive

Empirical,
Unpredictable

Start with a
plan and all
requirements

End with all
requirements
completed

Start with
goals and
some priority
requirements

End with
goals met

Long Feedback Cycles

Short Feedback Cycles

Effect of Feedback Length

Origin
The
planned
destination
@ T0

The plan

Treating SW Dev as predictive

Origin
The
planned
destination
@ T0

The plan

In the mean time

The real
destination
@ T1

Origin The
expected
destination
@ T0

The plan

Inspect and Adapt

The actual
destination
@ T1

What we learn

•  Plans change for a variety of reasons
• Expect them to change
•  SW is novel and complex
• Use a process that allows for change
•  Planning is done at different levels
•  Inspect and adapt

Horizon of Predictability

Cone of Uncertainty

Now Future

Levels of Planning

Daily	

Sprint	

Release	

Roadmap	

Vision	

Period of Time

The Problem With “Waterfall”

Horizon of Predictability

Requirements

Design

Implementation

Verification

Predictable Uncertain Unpredictable

Now

Future

Big Batch
of Features The Plan

It never quite works out

Requirements

Design

Implementation

Big Batch
of Features The Reality #1

We ran into some surprises

Verification

The Problem With “Waterfall”

Implementation

Verification

The Reality #2
We had to meet our schedule

Test and Fix
Aka “The circle of hell”

The Problem With “Waterfall”

Implementation

The Reality #3
This took longer than expected

And other nightmares
•  late integration of component and system
•  untested deployments
•  lack of production-like environments
•  production find and fix
•  manual regression testing
•  death marches
•  burnout
•  divorce
•  people quit

What we learn

•  Small plans are less complex than big plans
• Variance exists no matter how well you plan
• Death marches are no fun
•  Predict future progress by past progress
• Excessive designing results in bloat
• Building it proves it
• Complex systems emerge from simple systems

Sprint 2

Horizon of Predictability

Horizon of Predictability

Predictable Uncertain Unpr

Horizon of Predictability

Predictable Uncertain

Predictable

Small Batch
of Features

Small Batch
of Features

Small Batch
of Features

Sprint 3

Sprint 1

Backlogs that Support Agile Planning

Product
Backlog

R1 R2 R3

S1 S2 S3

Goals
Feature Sets

Feature Sets
Features

Functions/Actionable

Epic Stories

User Stories

Vision

Release/Roadmap

Sprint

Abide by the horizon of predictability

What we learn

• Uncover details to the level that is responsible
• Delay decisions until the last responsible

moment
• Don’t do work until its needed (JIT)
•  JIT Requirements

Right-sizing stories - INVEST

•  I – independent
• N – negotionable
• V – valuable
• E – estimatable
•  S – small
•  T - testable

Right-sizing stories

Stories too big Stories small so steady
progress is made

Effort Complexity Risk

0	

20	

40	

60	

80	

100	

0	
 20	
 40	
 60	
 80	
 100	

Challenges of Agile

•  Still considered new-fangled
• Requires discipline -- very few companies have it
• Agile failures blamed on Agile
• Most are looking for a process to follow not a

new way of thinking
• Waterfall behaviors are difficult to overcome
• Agile requires cultural change – this is hard
•  Teams are empowered, leadership serves
• Making the entire value stream agile

What Agile means to you

• Agile testing – very few companies do it. There is
a big need for people that know how to do it.

• Make TDD your development methodology
• Be skilled in multiple disciplines
•  Learn Agile/Lean – this is bound to be with us

for a very long time. 2000s Agile was used in
small shops. 2010s large companies are now
adopting Agile.

ROI - Waterfall

Cost

Time

I

R

ROI - Iterative

Cost

Time

Technical Debt

Technical
Debt

Technical
Debt

Technical
Debt

Over time,
technical debt
accumulates,
System must be
rewritten

• 	
 Add	
 nothing	
 but	
 value	

• 	
 Center	
 on	
 people	
 who	
 add	
 value	

• 	
 Flow	
 value	
 from	
 demand	

• 	
 Op>mize	
 across	
 organiza>ons	

The	
 Value	
 Stream	

10
min

20
min

10
min

30
min

20
min

30 min

Time Worked
-------------- =
Efficiency
 Cycle Time

40 min 200 min 50 min

 90
-------------- = 20%
Efficient
 410

	
 The	
 first	
 step	
 in	
 Lean	
 thinking	
 is	
 learning	
 to	
 see	
 waste	

and	
 remove	
 it.	

	
 Don’t	
 try	
 to	
 improve	
 the	
 “value	
 add”	
 steps	
 –	
 	

at	
 least	
 ini>ally	

10
min

20
min

10
min

30
min

20
min

30 min 40 min 200 min 50 min

Overproduc>on	

Inventory	

Extra	
 Processing	
 Steps	

Mo>on	

Defects	

Wai>ng	

Transporta>on	

Overproduc>on	

Inventory	

Extra	
 Processing	
 Steps	

Mo>on	

Defects	

Wai>ng	

Transporta>on	

Extra	
 (Unused)	
 Features	

Gold	
 Pla>ng	

Un-­‐integrated	
 code	

Untested	
 Code	

Un-­‐deployed	
 Code	

Develop	
 only	
 for	
 today’s	
 stories	

Don’t	
 build	
 “for	
 the	
 ages”	

YAGNI	

Work	
 in	
 Progress	

(All	
 work	
 in	
 progress	
 is	
 poten>al	
 waste)	

Prematurely	
 specified	
 details	

Par>ally	
 completed	
 stories	

Un-­‐integrated	
 code	

Untested	
 code	

Un-­‐deployed	
 code	

Delay	
 work	
 un>l	
 it	
 is	
 needed	
 and	
 can	

be	
 completed	
 (i.e.,	
 JIT)	

Minimize	
 WIP	

Inefficient	
 Process	

Manual	
 Opera>ons	

Excessive	
 Formality	

Unnecessary	
 Paperwork	

Handoffs	

Complex	
 communica>on	
 methods	

Doing	
 more	
 than	
 is	
 necessary	

Face-­‐to-­‐face	
 communica>on	

Do	
 the	
 simplest	
 thing	
 possible	

Finding	
 and	
 Re-­‐finding	
 Informa>on	

Relearning	

Long	
 feed-­‐back	
 loops	

Distributed	
 teams	

High-­‐effort	
 communica>on	

Handoffs	

Jerky	
 and	
 interrupted	
 flow	
 	

Keep	
 communica>on	
 costs	
 (effort)	
 cheap	

Cross-­‐func>onal	
 and	
 co-­‐located	
 teams	

Smooth	
 flow	

Defects	
 not	
 caught	
 by	
 tests	

Unclear	
 acceptance	
 criteria	

Handoffs	

Long	
 feed-­‐back	
 loops	

No	
 Product	
 Owner	

Keep	
 defects	
 out	
 of	
 the	
 code!	

Use	
 TDD,	
 SDD,	
 Executable	
 Requirements	

Automated	
 tes>ng	
 of	
 all	
 types	

“Stop	
 the	
 line”	
 mentality	

Mistake-­‐proof	
 anything	
 and	
 everything	

Wai>ng	

Distributed	
 teams	

Mul>-­‐tasking	

Organiza>onal	
 Silos	

Product	
 Owner	
 not	
 available	

Long	
 feed-­‐back	
 loops	

Handoffs	

Teams	
 make	
 cri>cal	
 decisions	
 every	
 15	
 minutes	

Cross-­‐func>onal	
 teams	

Co-­‐located	
 teams	

Highly	
 available	
 Product	
 Owner	

Handoffs	

Managing/Maintaining	
 Premature	
 Details	

Managing	
 large	
 backlogs	
 and	
 bug	
 lists	

Product	
 Owner	
 (customer)	
 not	
 available	
 to	
 team	

Every	
 >me	
 informa>on	
 is	
 transferred	
 to	

another	
 group	
 or	
 person	
 knowledge	
 is	

usually	
 lost	
 (and	
 wai>ng	
 is	
 usually	

introduced)	

Follow	
 JIT	
 Principles	
 	

Clean	
 House	

If	
 something	
 does	
 not	
 directly	
 	

add	
 value,	
 it	
 is	
 waste.	
 	

If	
 there	
 is	
 a	
 way	
 to	
 do	
 without	
 it,	
 	

it	
 is	
 waste.	

Speed	
 is	
 the	
 absence	
 of	
 waste	
 	

