Today’s Lecture

- White-Box Testing
 - Data Flow Graphs
- Minimum Retesting
 - Program Dependence Graphs
 - Control Dependence Graphs
 - Data Dependence Graphs

Flow Graphs

- Control Flow
 The partial order of statement execution, as defined by the semantics of the language
- Data Flow
 The flow of values from definitions of a variable to its uses

A Sample Ada Program to Test

```
function P return INTEGER is
begin
  X, Y: INTEGER;
  READ(X); READ(Y);
  while (X > 10) loop
    X := X - 10;
    exit when X = 10;
  end loop;
  if (Y < 20 and then X mod 2 = 0) then
    Y := Y + 20;
  else
    Y := Y - 20;
  end if;
  return 2 * X + Y;
end P;
```
White-box Testing Criteria

• Use Coverage

Select a test set T such that, by executing P for each d in T, all paths leading from each definition of a variable to each use of that variable in P’s control/data flow graph are traversed at least once.
How many test cases are needed?

Program Dependence Graph (PDG)
- Summary Representation of “Dependence”
- Nodes Are Either Statements or Predicates or the Special Node “Entry”
- Two Kinds of Edges
 - Control dependence edge
 - Data dependence edge
- Two Subgraphs Induced by the Edges

Control Dependence Graph (CDG)
- Informal Definition
 - For nodes X and Y in a CFG, Y is control dependent on X if, during execution, X can directly affect whether Y is executed

Minimizing Retesting
- Test Only What Is Affected by a Change
- Key: Dependency Analysis
 Also used for optimization, parallelization, …
- At Coarse Level, Module Relationships
 Uses, calls, imports, includes, …
- At Fine Level, Control and Data Flow
 Program dependence graphs
Control Dependence Graph (CDG)

- Formal Definition
 - Let X and Y be nodes in a CFG. If Y appears on every path from X to the exit node, where Y ≠ X, then Y post-dominates X.
 - There is a control dependence from X to Y with label L iff:
 • there is a non-null path p from X to Y, starting with edge L, such that Y post-dominates every node strictly between X and Y on p; and
 • Y does not post-dominate X.
Data Dependence Graph (DDG)

• Informal Definition
 – Two statements are data dependent if they might reference the same memory location and one of the references is an assignment to the memory location
 – Intuition: If the statements cannot be switched without affecting the program, then they are data dependent

• Formal Definition
 – Let X and Y be nodes in a CFG. There is a data dependence from X to Y with respect to a variable v iff there is a non-null path p from X to Y with no intervening definition of v and either:
 • X contains a definition of v and Y a use of v;
 • X contains a use of v and Y a definition of v; or
 • X contains a definition of v and Y a definition of v.
Minimum Regression Testing

Given program \(P \), its modified version \(P' \), and test set \(T \) used to test \(P \), find a way, making use of \(T \), to test \(P' \)

- Identify changes to \(P \) resulting in \(P' \)
- Select \(T' \), a subset of \(T \), related to changes
- Run \(T' \) on \(P' \)
Goals

- Safety
 Every relevant test from T must be selected
- Precision
 Select only tests that exhibit different behavior
- Efficiency
 Cheap to calculate and run T’

Modifications

- Adding Statements
- Deleting Statements
- Changing Statements
- Theorem
 Need only tests in T that can traverse different regions of statements in P and P’, where regions are dependent-equivalent sub-CDGs

Test Selection Algorithm

procedure SelectTests
 Construct CDGs of P and P’, with entry nodes E1, E2
 T’ = Compare (E1, E2)

procedure Compare (N1,N2)
 mark N1 and N2 visited
 if (children of N1 and N2 differ) then
 return all tests that traverse N1
 else
 T’ = NULL
 for each region or predicate child C1 of N not yet visited do
 find C2, the corresponding child of N2
 T’ = T’ union Compare (C1,C2)