Today’s Lecture

• White-Box Testing
 – Control Flow Graphs
 • Coverage Criteria

Testing Approaches

• Black Box Testing
 – Tests are selected based on specification of intended functionality
 – Tester can only see interface to test subject
 – Emphasis on proper use of test subject

• White Box Testing
 – Tests are selected based on internal structure
 – Tester can see inside test subject
 – Emphasis on proper structure of test subject

White-box Testing: Coverage

• Statement Coverage
• Edge Coverage (Branch Coverage)
• Condition Coverage (Edge Coverage)
• Path Coverage

Details to follow...
Flow Graphs

Graph representation of control flow and data flow relationships

• Control Flow
 The partial order of statement execution, as defined by the semantics of the language

• Data Flow
 The flow of values from definitions of a variable to its uses

A Sample Ada Program to Test

```ada
function P return INTEGER is
begin
  X, Y: INTEGER;
  READ(X); READ(Y);
  while (X > 10) loop
    X := X – 10;
    exit when X = 10;
  end loop;
  if (Y < 20 and then X mod 2 = 0) then
    Y := Y + 20;
  else
    Y := Y – 20;
  end if;
  return 2 * X + Y;
end P;
```

P’s Control Flow Graph (CFG)

White-box Testing Criteria

• Statement Coverage
 Select a test set T such that, by executing P for each d in T, each elementary statement of P is executed at least once
All-Statements Coverage of P

Example all-statements-adequate test set:

(X = 20, Y = 10)

(X = 20, Y = 30)

White-box Testing Criteria

• Edge Coverage

Select a test set T such that, by executing P for each d in T, each edge of P’s control flow graph is traversed at least once.
All-Edges Coverage of P

Example all-edges-adequate test set:

(X = 20, Y = 10)

(X = 15, Y = 30)

White-box Testing Criteria

• Condition Coverage
 Select a test set \(T \) such that, by executing \(P \) for each \(d \) in \(T \), each edge of \(P \)'s control flow graph is traversed at least once and all possible values of the constituents of compound conditions are exercised at least once.
Example all-conditions-adequate test set:

\[(X = 20, Y = 10)\]

\[(X = 5, Y = 30)\]

\[(X = 21, Y = 10)\]
White-box Testing Criteria

• Path Coverage
 Select a test set T such that, by executing P for each d in T, all paths leading from the initial to the final node of P’s control flow graph are traversed at least once.

Example all-paths-adequate test set:

$(X = 5, Y = 10)$
Example all-paths-adequate test set:
\((X = 5, Y = 10)\)
Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
Example all-paths-adequate test set:

(X = 5, Y = 10)
(X = 15, Y = 10)
Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)
Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)
Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)
All-Paths Coverage of P

Example all-paths-adequate test set:
(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)

...