Today’s Lecture

• Examine Algebraic Specifications
 – Compare Stack and Queue
 – Introduce Homework 4

Algebraic Specifications

• Algebras are Akin to Abstract Data Types
• Sets of Values
• Operations
• Many Formalisms
 – Larch, CCS, Lotos, …
 – RAISE can be used in an algebraic “style”

Terminology

• Homogeneous Algebra
 Single set and its operations
• Heterogeneous Algebra
 Multiple sets and their operations
• Signature
 Collection of sets in heterogeneous algebra
• Sort
 A set within an algebra
Terminology

- **Syntax**

 Signature plus operations with domains and ranges

- **Semantics**

 Equations involving operations; axioms

- **Generators**

 Operations that create instance of an algebra; inductive rules of inference

Algebraic Specification of Stack

```
algebra StackOfItem
imports Boolean;     introduces
sorts Stack, Item;
operations
  Create: → Stack;
  IsEmpty: Stack → Boolean;
  Push: Stack × Item → Stack;
  Pop: Stack → Stack;
  Top: Stack → Item;
constrains Create, IsEmpty, Push, Pop, Top so that
Stack generated by [Create, Push]
```

Algebraic Specification of Queue

```
algebra QueueOfItem
imports Boolean;     introduces
sorts Queue, Item;
operations
  Create: → Queue;
  IsEmpty: Queue → Boolean;
  Enqueue: Queue × Item → Queue;
  Dequeue: Queue → Queue;
  Front: Queue → Item;
constrains Create, IsEmpty, Enqueue, Dequeue, Front so that
Queue generated by [Create, Enqueue]
```

Algebraic Specification of Pizza

```
algebra Nonsense
imports Boolean;     introduces
sorts Pizza, Car;
operations
  Cat: → Pizza;
  Horse: Pizza → Boolean;
  Dog: Pizza × Car → Pizza;
  Bird: Pizza → Pizza;
  Mouse: Pizza → Car;
constrains Cat, Horse, Dog, Bird, Mouse so that
Pizza generated by [Cat, Horse]
```
Semantic Specification of Stack

for all [s: Stack; i: Item]
IsEmpty(Create) = true;
IsEmpty(Push(s,i)) = false;
Pop(Create) = error;
Top(Create) = error;
Pop(Push(s,i)) = s;
Top(Push(s,i)) = i;
end StackOfItem;

Semantic Specification of Queue

for all [q: Queue; i: Item]
IsEmpty(Create) = true;
IsEmpty(Enqueue(q,i)) = false;
Dequeue(Create) = error;
Front(Create) = error;
Dequeue(Enqueue(q,i)) = if (IsEmpty(q))
then Create
else Enqueue(Dequeue(q),i);

Front(Enqueue(q,i)) = if (IsEmpty(q))
then i
else Front(q);
end QueueOfItem;

Homework 4

• Give the semantics for an algebraic specification of a set of items
 – I give you the syntax
• Sets contain only one instance of a particular value
 – e.g. Adding {2} to {1, 2} gives {1, 2}
 – Adding {3} to {1, 2} gives {1, 2, 3}