Descriptive Specifications

- Focuses on Properties
 - Describes the desired properties of a system rather than its desired behavior
- Formalisms
 - Axiomatic (Logic)
 - Algebraic

Formalisms Provide Preciseness

- Use of Mathematical Formalisms
 - Properties are specified precisely by building on top of the precise mathematical syntax and semantics of the underlying formalisms
- Mathematical Foundations
 - Predicate logic, set theory, abstract algebra

Today's Lecture

- Introduce Descriptive Specifications
 - E-R Diagrams (Semi-Formal)
 - Axiomatic
 - Algebraic
 - Tour of the RAISE system
 - Developed in Denmark
 - Sold to European Manufacturing companies
 - Using RAISE to create these types of specifications
 - Has a full tool suite
Entity-Relationship Diagrams

- A semi-formal notation for describing the structure and relationships of data
 - Akin to how Data Flow Diagrams are a semi-formal notation for describing the operations that access and manipulate data

Problems
- Syntax and Semantics are not precisely defined
- Lack of Expressive power
 - Requires the use of natural language annotations

Example ER Diagram

(taken from textbook page 200)

ER Diagrams and UML

- ER Diagrams can be seen as precursors to UML's Class Diagrams

Differences
- Operations and inheritance are added

Advantages
- ER notation was never standardized, UML's class diagrams provide a standard notation
 - However, remember that they are both semi-formal

Logic Specifications

- Vocabulary of Logical Expressions
 - Variables, constants, predicates, functions
 - Connectives: and (\(\land\)), or (\(\lor\)), not (\(\neg\)), implies (\(\Rightarrow\)), equivalent (\(\equiv\))
 - Quantifiers: exists (\(\exists\)), for all (\(\forall\))

- Combined with Vocabulary of Application
 - Example: set operators (\(\in\), \(\cup\), \(\cap\),)
 - Example: ADT operators (Push, IsFull,)
Logic Specifications

¥ Examples
—x > y and y > z implies x > z
—for all x (exists y (y = x + z))

¥ Additional Notes
—Variables are either free or bound
 ¥ A formula with all variables bound is called closed; closed formulas are always either true or false
—Expressions are theories in the logic
—V&V amounts to theorem proving

Creating Logic Specifications

¥ Helper Predicates and Functions
—Define the base properties of interest
 ¥ Used as a domain-specific vocabulary
—Modularize the specification
 ¥ e.g., defined in one spec; used in another

¥ Examples
—height(bob) = 72; tall(bob)
—for p: person (height(p)>60 implies tall(p))

Logic Specification Techniques

¥ Preconditions and Postconditions
—Textbook gives lots of examples on 204-205
Assume <i1, i2, i3, > are input values
Assume <o1, o2, o3, > are output values

¥ A property is defined
 {Pre(i1, i2, i3,)}
 P
 {Post(o1, o2, o3, , i1, i2, i3, >}

¥ Example
 {exists z (i1 = z * i2)}
 P
 {o1 = i1/i2}

Logic Specification Techniques

¥ Invariants and Assertions
—Logic specs are used to assert properties of portions of code as well
—For instance, to assert something that is always true of a routine or to record the assumptions about variables passed to a procedure
 {n > 0}
procedure reverse (a: in out int_array; n: in int)
 {for all i (1<=i<=n) implies (a(i) = old_a(n-i+1))}
Algebraic Specifications

- Make use of heterogeneous algebra
 - a collection of different sets on which several operations are defined
 - Traditional algebras are homogeneous, one set and a several operations; e.g. integers
 - Heterogeneous algebras contain multiple sets
 - e.g. length(ken) = 3
 - Here we have the set of strings and integers with one operation length defined

RAISE

- A Method and a Language
- Specification Language: RSL
- Specifications Refined in Levels
 - Associated consistency proof obligations
- Proofs of Properties Aided by Tools

Rigorous Approach to Industrial Software Engineering

Background Information

- In RAISE, they make use of a funny notion of the domain and range of a function
- Each function consists of a set of tuples. The domain is the set of elements that make up the first element of each tuple; the range is the set of elements that make up the second set of each tuple

Example

<table>
<thead>
<tr>
<th>S</th>
<th>Empty Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>S = {}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2)</td>
<td>S = {1}</td>
<td>S = {2}</td>
</tr>
<tr>
<td>(1,2), (3,4)</td>
<td>S = {1, 3}</td>
<td>S = {2, 4}</td>
</tr>
<tr>
<td>(3, 4)</td>
<td>S = {3, 4}</td>
<td></td>
</tr>
</tbody>
</table>
RAISE Specification of POTS

* Plain Old Telephone Service

scheme POTS =
 class
 type
 value
 variable
RAISE Specification of POTS

scheme POTS =
 class
type Line,
 Status = Line \vec{m}\{On_Hook, Off_Hook\},
 Calls = Line \vec{m}\ Line

RAISE Specification of POTS

scheme POTS =
 class
type Line,
 Status = Line \vec{m}\{On_Hook, Off_Hook\},
 Calls = Line \vec{m}\ Line

RAISE Specification of POTS

scheme POTS =
 class
type Line,
 Status = Line \vec{m}\{On_Hook, Off_Hook\},
 Calls = Line \vec{m}\ Line

RAISE Specification of POTS

scheme POTS =
 class
type Line,
 Status = Line \vec{m}\{On_Hook, Off_Hook\},
 Calls = Line \vec{m}\ Line

RAISE Specification of POTS

scheme POTS =
 class
type Line,
 Status = Line \vec{m}\{On_Hook, Off_Hook\},
 Calls = Line \vec{m}\ Line
RAISE Specification of POTS

scheme POTS =
 class
 type Line,
 Status = Line \rightarrow \{On_Hook, Off_Hook\},
 Calls = Line \rightarrow Line
 value go_off_hook : Line \rightarrow Unit,

place_call : Line \times Line \rightarrow Bool,
scheme POTS =
 class
 type Line,
 Status = Line \rightarrow \{On_Hook, Off_Hook\},
 Calls = Line \rightarrow Line
 value go_off_hook : Line \rightarrow Unit,
 go_on_hook : Line \rightarrow Unit,
 place_call : Line \times Line \rightarrow Bool,
 end_call : Line \rightarrow Unit
 variable line_status : Status = [L |-> On_Hook | L : Line],
 active_calls : Calls = []
RAISE Specification of POTS

axiom

forall L, L1, L2 : Line

\[\text{go_off_hook}(L) \]

\[\text{go_on_hook}(L) \]

\[\text{place_call}(L_1, L_2) \]

\[\text{end_call}(L) \]
RAISE Specification of POTS

axiom forall L, L_1, L_2 : Line
 \[\text{go_off_hook}(L) \text{ post } \text{line_status} = \text{line_status}' \quad [L \rightarrow \text{Off_Hook}], \]

\[\text{go_on_hook}(L) \text{ post } \text{line_status} = \text{line_status}' \quad [L \rightarrow \text{On_Hook}], \]

axiom forall L, L_1, L_2 : Line
 \[\text{go_off_hook}(L) \text{ post } \text{line_status} = \text{line_status}' \quad [L \rightarrow \text{Off_Hook}], \]

\[\text{go_on_hook}(L) \]

place_call(L_1, L_2) as S
RAISE Specification of POTS

axiom forall L, L1, L2 : Line ¥
go_off_hook(L) post line_status = line_status\[L \rightarrow Off_Hook \],

go_on_hook(L) post line_status = line_status\[L \rightarrow On_Hook \],

place_call(L1, L2) as S
post S \Rightarrow L_1 \neq L_2

∧ L_2 \notin dom active_calls\[L_1 \rightarrow L_2 \]
RAISE Specification of POTS

axiom forall L, L1, L2 : Line ¥
 go_off_hook(L) post line_status = line_status' [L |->
 Off_Hook],

 go_on_hook(L) post line_status = line_status' [L |->
 On_Hook],

 place_call(L1, L2) as S
 post S ⇒ L1 ≠ L2 ∧ active_calls = active_calls' [L1 |-> L2]
 ∧ L2 ∉ dom active_calls' ∧ L2 ∉ rng active_calls'
 pre line_status(L1) = Off_Hook
 ∧ L1 ∉ dom active_calls

February 17, 2000 ' Kenn eth M. Anderson, 2000 45
RAISE Specification of POTS

end_call(L)

post if \(L \in \text{dom active_calls} \)

then

else

end
RAISE Specification of POTS

end_call(L)
post if L ∈ dom active_calls
then active_calls = active_calls \ { L }
else

end

RAISE Specification of POTS

end_call(L)
post if L ∈ dom active_calls
then active_calls = active_calls \ { L }
else ∃ L₃ : Line ¥
active_calls (L₃) = L
active_calls = active_calls \ { L₃ }
end
end_call(L)
 post if L ∈ dom active_calls'
 then active_calls = active_calls' \ { L }
 else ∃ L3 : Line ¥
 active_calls' (L3) = L ∧
 active_calls = active_calls' \ { L3 }
 end
 pre L ∈ dom active_calls ∨ L ∈ rng active_calls