Today’s Lecture

• Finish the Filling Station Example
• Look at analysis techniques using Petri Nets
• Look at extensions to the basic Petri Net formalism
 – add “data” to tokens
 – add “conditionals” to transitions

Filling Station Example

• Lets model the following situation
 – Fuel Pumps
 – Spaces next to Pumps
 – A cashier that takes payment
• Questions
 – What is the concurrency that we want modeled?
 – How do we handle the parameterization of the Petri net? (e.g. lets say I want to add a pump)

Concurrency Problems

• Starvation
 Enabled transition never fired
• Deadlock
 Unintended lack of enabled transitions
• V&V Tries to Detect These Problems
 Static and dynamic analysis techniques
Analysis of Specifications

• Design is a Human Activity
 Can be wrong; can change
• Verification and Validation
• V&V are “W.R.T.” Activities
• A Confidence Game
 V&V can only be used to raise confidence in
 the quality of a specification

Approaches to Analysis

• Dynamic Analysis
 – Executes specification text to reveal properties
 – Requires executable specifications
 – Example: testing
• Static Analysis
 – Examines specification text to reveal properties
 – Useful in the absence of execution semantics, but also
 where execution would be impractical
 – Example: proof of correctness

Dynamic Analysis

• An Experimentation Activity
• Goal: Demonstrate (In)correct Behavior
• An Experiment Characterizes a Single Behavior
• Applied to the Artifact Itself
• Can Miss Critical Behaviors
• In General, Impossible to Demonstrate Absence of
 Error

Petri Net Dynamic Analysis

• Reachability Graph
 – The reachability graph of a Petri net is a graph
 representation of its possible firing sequences
• Analysis Cast as Search for Node in
 Reachability Graph
 – Found, means behavior possible, not found
 means behavior impossible
Petri Net Dynamic Analysis

• Example: Two-process Semaphore

Is it possible for both processes to be in their critical regions at the same time in the same marking? That is, is the following a valid marking?

\[M = (|\text{In}_1|, |\text{CR}_1|, |\text{Out}_1|, |\text{Sem}|, |\text{In}_2|, |\text{CR}_2|, |\text{Out}_2|) = (0,1,0,0,1,0) \]

Reachability Graph

Each node in the graph is a marking

\[(|\text{In}_1|, |\text{CR}_1|, |\text{Out}_1|, |\text{Sem}|, |\text{In}_2|, |\text{CR}_2|, |\text{Out}_2|) \]
Petri Net Dynamic Analysis

- Example: Two-process Semaphore
 Is it possible for both processes to be in their critical regions at the same time in the same marking? That is, is the following a valid marking?

\[M = (|\text{In}_1|, |\text{CR}_1|, |\text{Out}_1|, |\text{Sem}|, |\text{In}_2|, |\text{CR}_2|, |\text{Out}_2|) = (0,1,0,0,0,1,0) \]

Petri Net Static Analysis

- The Method of Invariants
 Invariants are properties of a Petri net that hold in all markings
- Analysis Cast as Proof of Invariance

Static Analysis

- Goal: Prove Theorems About Properties
- An Analysis Characterizes a Class ofBehaviors
- Applied to a (Static) Model
- Can Abstract Away Critical Aspects
- In General, Impossible to Prove Absence of Error

- Example: Two-process Semaphore
 Is the sum of the tokens in \(\text{CR}_1\), \(\text{CR}_2\), and \(\text{Sem}\) equal to 1 in all reachable markings? That is, for \(\forall m \in \text{all possible markings}\) does:

\[|\text{CR}_1| + |\text{CR}_2| + |\text{Sem}| = 1 \]
Shortcoming of Basic Petri Nets

Simplicity of building blocks leads to complexity in nets

Example: Semaphore for n processes requires $2n$ transitions and $3n+1$ places

Would Like…
- *Enable* and *fire* as computations
- Tokens as data, not just control

Higher-Level Petri Nets

- Some Enhancements to Basic Petri Nets
 - Typed places and information-bearing tokens
 - Predicate transitions
 - Hierarchical decomposition of places and transitions

Requirement for analysis of higher-level nets: reducible to basic nets for analysis
Execution Model

- “Enable” is a Predicate on Input Tokens
 - Transition with k input places is enabled if there exists a k-tuple of tokens, one at each input place, that satisfy the predicate; called a ready tuple
 - Enabled transition and ready tuple are nondeterministically selected
 - Tokens of selected ready tuple removed at firing
Execution Model

- Function Computes Output Token Values
 - Transition with h output places uses the function to compute h values, one for each output token

Higher-Level Net Semaphore

Enabled Transition

After Firing