Today’s Lecture

• Introduce the Petri Net Formalism
 – Present several examples

Petri Nets

• Formal Definition

\[N = \{ P, T, A, M_0 \}, \text{ where} \]
\[P \text{ is a finite set of places} \]
\[T \text{ is a finite set of transitions} \]
\[A \text{ is a finite set of arcs (arrows)} \]
\[M_0 \text{ is the initial marking of } N \]
Graphical Representation

Petri Nets

- Intuitive Meaning
 - A place holds tokens
 - A transition represents activity
 - An arc connects a place and a transition
 - A marking is an arrangement of tokens in places, representing state
 - An initial marking represents an initial state

Execution Model

- Input and Output Places
 - Place P is an input place for transition T if there is an arc from P to T
 - Place P is an output place for transition T if there is an arc from T to P

- Enabled Transition
 - A transition is enabled if there is at least one token at each of its input places

Petri Net Semaphore
Execution Model

• Firing a Transition
 – An enabled transition is nondeterministically selected and fired by removing one token from each of its input places and depositing one token at each of its output places

• Firing Sequence
 – A firing sequence is a sequence $<t_0, t_1, \ldots, t_n>$ such that t_0 is enabled and fired in M_0, t_1 is enabled and fired in M_1, etc.
Breaking the Semaphore

• Lets look at the semaphore example again and see how a change to the initial marking will change the semantics of the Petri Net
 – In particular, we will break the semantics of the semaphore by adding one token
Petri Net Semaphore

Enabled Transitions

After Firing

Enabled Transitions
Filling Station Example

- Lets model the following situation
 - Fuel Pumps
 - Spaces next to Pumps
 - A cashier that takes payment
- Questions
 - What is the concurrency that we want modeled?
 - How do we handle the parameterization of the Petri net? (e.g. lets say I want to add a pump)